
STABLE DIVISION RINGS
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Abstract. It is shown that a stable division ring with positive characteristic
has finite dimension over its centre. This is then extended to simple division
rings.

Macintyre proved any ω-stable field to be either finite or algebraically closed [7].
This was generalised by Cherlin and Shelah to superstable fields [3]. It follows that
a superstable division ring is a field [2]. The result was broadened to supersimple
division rings by Pillay, Scanlon and Wagner in [8]. As for stable fields, infinite
ones are conjectured to be separably closed. Scanlon proved that an infinite stable
field has no Artin-Schreier extension [10]. Wagner adapted the argument to show
that a simple field has only finitely many Artin-Schreier extensions [6]. Proving
commutativity usually goes in two steps, showing first that the ring viewed as a
vector space over its centre must have finite dimension, and proving that the centre
cannot have skew extensions of finite degree. Concerning a stable division ring, at
least can we show that in positive characteristic, it must have finite dimension over
its centre. This also holds for a simple division ring.

1. One word on stable structures

In a given theory T , a formula f(x, y) is said to have the order property if it totally
orders an infinite sequence, i.e. if there exists an infinite sequence a1, a2 . . . such
that

T |= f(ai, aj) if and only if i < j

The formula f has the strict order property if it defines a partial ordering with
infinite chains, i.e. if there exists an infinite sequence a1, a2 . . . such that

T |=
∧
i<j

f(ai, aj) ∧ ai 6= aj

If a formula has the strict order property, it has the order property.

Definition 1. A theory is stable if no formula has the order property. A structure
is stable if its theory is so.

We refer to [9] and [12] for details about stable groups. We just recall that to
any formula f(x, y) in a group without the strict order property is associated an
integer n, such that any strictly decreasing chain of subgroups defined by formulae
f(x, a1), . . . , f(x, am) have no more than n elements. Moreover :
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Fact 1. (Baldwin-Saxl [1]) In a stable group, to any formula f(x, y) is associated
an integer n, so that the intersection of any family of subgroups H1, . . . ,Hm, . . .
defined by formulae f(x, a1), . . . , f(x, am), . . . be the intersection of no more than
n among them.

Therefore, any strictly monotone chain of centralisers in a stable group is finite.

Proposition 2. Let G be a group without the strict order property, and f a group
homomorphism from G to G. If there is a fixed formula f(x, y) so that each iterated
image of f is definable by some formula f(x, ai), then G equals the product Kerfn ·
Imfn for some integer n. Consequently, if f is injective, it is onto.

Proof. As the iterated images of f are uniformly definable, they become stationary
at some rank n. �

2. Stable division rings

Theorem 3. A stable division ring of positive characteristic must have finite di-
mension over its centre.

Proof. Let D be this ring, p its characteristic, a an element outside the centre, and
fa the map mapping an element x of the ring to xa − x.
(1) The iterated images and kernels of f become stationary : since

fpn

a (x) =
pn∑

k=0

(−1)pn−kCk
pnxak

= xapn

− x = fapn (x)

a sub-chain of the iterated images is uniformly definable : the iterated images
become stationary by stability. The same argument holds for the iterated kernels.
(2) The map f is not onto : if it were, since the kernel is non-trivial, the sequence
of iterated kernels would be properly ascending, a contradiction.
(3) D is a finite dimensional vector space over C(a) : after Proposition 2, there is
an integer m such that

D = Kerfm + Imfm

Note that this is a direct sum. Let H be the image of fm ; increasing m, we
may assume the kernel of fm to be C(am). Let I be a minimal intersection of left
translates of H by non-zero elements of D ; this is a proper left ideal of D and
hence zero. However, by Fact 1 the intersection is a finite intersection, say of size
n. After [4, Corollary 2 p. 49], the dimension of C(am) over C(a) is the same as
the dimension of Z(C(am))(a) over Z(C(am)), so H is a vector space over C(a)
having codimension at most m, and I has codimension at most m · n.
(4) To conclude, let D < D1 < · · · < Dn < Dn+1 be a chain of centralisers, with
Dn minimal non commutative. The ring D has finite dimension, say l, over the
field Dn+1. According to [4, Corollary 2 p. 49], the dimension of D over its centre
must be no greater than l2. �

Remark 4. The centre of an infinite stable division ring must be infinite. In positive
characteristic, it contains the algebraic closure of Fp according to [10] : every
element of finite order lies in the centre.
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3. Simple division rings

We do not define here what a simple theory is, but refer to [13] for more information.
We shall just need the following facts. Recall that two subgroups of a given group
are commensurable if the index of their intersection is finite in both of them.

Fact 2. (Schlichting [11, 13]) Let G be a group and H a family of uniformly com-
mensurable subgroups. There is a subgroup N of G commensurable with members
of H and invariant under the action of the automorphisms group of G stabilising
the family H setwise. If the members of H are definable, so is N .

Fact 3. (Wagner [13]) In a simple group, a descending chain of intersections of a
family H1, H2 . . . of subgroups defined respectively by formulae f(x, a1), f(x, a2) . . .
where f(x, y) is a fixed formula, becomes stationary, up to finite index.

Remark 5. If D1 < D2 are two infinite division rings, the additive index of D1 in
D2 is infinite. As a consequence, in a simple division ring, any descending chain of
centralisers becomes stationary.

Fact 4. In a simple structure, no formula has the strict order property.

Theorem 6. A simple ring of positive characteristic must have finite dimension
over its centre.

Proof. Let D be this ring, p its characteristic, a an element outside the centre, and
fa mapping x to xa − x.
(1) The iterated images and kernels of f become stationary, and f is not onto : as
in the stable case by Fact 4.
(2) The centraliser of a is infinite : we may assume the order of a to be finite, and
even a prime, say q. According to [5, Lemma 3.1.1], there is an element x of finite
order such that xax−1 equals ai but not a. Fermat’s Theorem asserts that iq−1

equals one modulo q, so xq−1 and a commute : C(a) is infinite, as it contains xq−1.
(3) D is a vector space over C(a) having finite dimension : according to Proposition
2, we get

D = Kerfm + Imfm

Let H stand for the image of fm, and assume its kernel to be C(am). Set N a
minimal intersection up to finite index of non-zero left translates of H ; by Fact 3,
it has finite size, say n. Consider the set H of non-zero left translates of N . This
is a uniformly commensurable invariant family ; by Fact 2, there is an additive
invariant subgroup I commensurable with N . So I is a proper ideal, whence zero,
and N must be finite. Since it is a right vector space over C(a), it is actually zero.
We conclude as in the stable case that D has finite dimension over C(a), and over
its centre by Remark 5. �

Proposition 7. Let K be an infinite field, and f a field morphism of K. Let F be
the set of points fixed by f . Let P be a polynomial splitting in F , and suppose that
the iterated compositions P (f)n be uniformly definable. If K is simple, either K is
an algebraic extension of F , or the image of P (f) has finite index in K+.

Proof. We may assume K to be infinite. Let (X−ai)ni be the splitting factors of f .
Note that KerP (f) equals the sum

⊕
i Ker(f−ai ·id)ni , each factor Ker(f−ai ·id)ni
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having dimension at most ni over F . According to Proposition 2, the field K equals
KerP (f)m+ImP (f)m. Let H be the image of P (f)m, and N a minimal intersection
up to finite index of non-zero translates of H. Note that if N is finite, there is a
minimal intersection which is a proper ideal, hence zero. By Fact 3, N is a finite
intersection, say of size n. Write H the set of non-zero translates of N . According
to Fact 2, there is an additive invariant subgroup I of K, commensurable with N .
So I is an ideal of K. If I is the whole of K, the image of P (f) has finite index
in K+ ; should F be infinite, the map P (f) would be onto as its image is a vector
space over F . Otherwise, I is zero, and so is N . But H is a vector space over F
having finite codimension, say r, so N has codimension at most r · n. �
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