CÉDRIC MILLIET

ABSTRACT. It is shown that a stable division ring with positive characteristic has finite dimension over its centre. This is then extended to simple division rings.

Macintyre proved any ω -stable field to be either finite or algebraically closed [7]. This was generalised by Cherlin and Shelah to superstable fields [3]. It follows that a superstable division ring is a field [2]. The result was broadened to supersimple division rings by Pillay, Scanlon and Wagner in [8]. As for stable fields, infinite ones are conjectured to be separably closed. Scanlon proved that an infinite stable field has no Artin-Schreier extension [10]. Wagner adapted the argument to show that a simple field has only finitely many Artin-Schreier extensions [6]. Proving commutativity usually goes in two steps, showing first that the ring viewed as a vector space over its centre must have finite dimension, and proving that the centre cannot have skew extensions of finite degree. Concerning a stable division ring, at least can we show that in positive characteristic, it must have finite dimension over its centre. This also holds for a simple division ring.

1. One word on stable structures

In a given theory T, a formula f(x, y) is said to have the *order property* if it totally orders an infinite sequence, i.e. if there exists an infinite sequence $a_1, a_2 \ldots$ such that

$$T \models f(a_i, a_j)$$
 if and only if $i < j$

The formula f has the *strict order property* if it defines a partial ordering with infinite chains, i.e. if there exists an infinite sequence $a_1, a_2 \ldots$ such that

$$T \models \bigwedge_{i < j} f(a_i, a_j) \land a_i \neq a_j$$

If a formula has the strict order property, it has the order property.

Definition 1. A theory is *stable* if no formula has the order property. A structure is *stable* if its theory is so.

We refer to [9] and [12] for details about stable groups. We just recall that to any formula f(x, y) in a group without the strict order property is associated an integer n, such that any strictly decreasing chain of subgroups defined by formulae $f(x, a_1), \ldots, f(x, a_m)$ have no more than n elements. Moreover :

Key words and phrases. Division ring, stable theory, simple theory.

²⁰⁰⁰ Mathematics Subject Classification. 03C45, 03C60, 16K20.

The results of this paper form part of the author's doctoral dissertation, written in Lyon under the supervision of professor Frank O. Wagner.

Fact 1. (Baldwin-Saxl [1]) In a stable group, to any formula f(x, y) is associated an integer n, so that the intersection of any family of subgroups H_1, \ldots, H_m, \ldots defined by formulae $f(x, a_1), \ldots, f(x, a_m), \ldots$ be the intersection of no more than n among them.

Therefore, any strictly monotone chain of centralisers in a stable group is finite.

Proposition 2. Let G be a group without the strict order property, and f a group homomorphism from G to G. If there is a fixed formula f(x, y) so that each iterated image of f is definable by some formula $f(x, a_i)$, then G equals the product Ker $f^n \cdot$ Im f^n for some integer n. Consequently, if f is injective, it is onto.

Proof. As the iterated images of f are uniformly definable, they become stationary at some rank n.

2. STABLE DIVISION RINGS

Theorem 3. A stable division ring of positive characteristic must have finite dimension over its centre.

Proof. Let D be this ring, p its characteristic, a an element outside the centre, and f_a the map mapping an element x of the ring to $x^a - x$.

(1) The iterated images and kernels of f become stationary : since

$$f_a^{p^n}(x) = \sum_{k=0}^{p^n} (-1)^{p^n - k} C_{p^n}^k x^{a^k} = x^{a^{p^n}} - x = f_{a^{p^n}}(x)$$

a sub-chain of the iterated images is uniformly definable : the iterated images become stationary by stability. The same argument holds for the iterated kernels.

(2) The map f is not onto : if it were, since the kernel is non-trivial, the sequence of iterated kernels would be properly ascending, a contradiction.

(3) D is a finite dimensional vector space over C(a): after Proposition 2, there is an integer m such that

$$D = \mathrm{Ker} f^m + \mathrm{Im} f^m$$

Note that this is a direct sum. Let H be the image of f^m ; increasing m, we may assume the kernel of f^m to be $C(a^m)$. Let I be a minimal intersection of left translates of H by non-zero elements of D; this is a proper left ideal of D and hence zero. However, by Fact 1 the intersection is a finite intersection, say of size n. After [4, Corollary 2 p. 49], the dimension of $C(a^m)$ over C(a) is the same as the dimension of $Z(C(a^m))(a)$ over $Z(C(a^m))$, so H is a vector space over C(a) having codimension at most m, and I has codimension at most $m \cdot n$.

(4) To conclude, let $D < D_1 < \cdots < D_n < D_{n+1}$ be a chain of centralisers, with D_n minimal non commutative. The ring D has finite dimension, say l, over the field D_{n+1} . According to [4, Corollary 2 p. 49], the dimension of D over its centre must be no greater than l^2 .

Remark 4. The centre of an infinite stable division ring must be infinite. In positive characteristic, it contains the algebraic closure of \mathbf{F}_p according to [10] : every element of finite order lies in the centre.

3. SIMPLE DIVISION RINGS

We do not define here what a simple theory is, but refer to [13] for more information. We shall just need the following facts. Recall that two subgroups of a given group are *commensurable* if the index of their intersection is finite in both of them.

Fact 2. (Schlichting [11, 13]) Let G be a group and \mathfrak{H} a family of uniformly commensurable subgroups. There is a subgroup N of G commensurable with members of \mathfrak{H} and invariant under the action of the automorphisms group of G stabilising the family \mathfrak{H} setwise. If the members of \mathfrak{H} are definable, so is N.

Fact 3. (Wagner [13]) In a simple group, a descending chain of intersections of a family $H_1, H_2...$ of subgroups defined respectively by formulae $f(x, a_1), f(x, a_2)...$ where f(x, y) is a fixed formula, becomes stationary, up to finite index.

Remark 5. If $D_1 < D_2$ are two infinite division rings, the additive index of D_1 in D_2 is infinite. As a consequence, in a simple division ring, any descending chain of centralisers becomes stationary.

Fact 4. In a simple structure, no formula has the strict order property.

Theorem 6. A simple ring of positive characteristic must have finite dimension over its centre.

Proof. Let D be this ring, p its characteristic, a an element outside the centre, and f_a mapping x to $x^a - x$.

(1) The iterated images and kernels of f become stationary, and f is not onto : as in the stable case by Fact 4.

(2) The centraliser of a is infinite : we may assume the order of a to be finite, and even a prime, say q. According to [5, Lemma 3.1.1], there is an element x of finite order such that xax^{-1} equals a^i but not a. Fermat's Theorem asserts that i^{q-1} equals one modulo q, so x^{q-1} and a commute : C(a) is infinite, as it contains x^{q-1} .

(3) D is a vector space over C(a) having finite dimension : according to Proposition 2, we get

$$D = \mathrm{Ker} f^m + \mathrm{Im} f^m$$

Let H stand for the image of f^m , and assume its kernel to be $C(a^m)$. Set N a minimal intersection up to finite index of non-zero left translates of H; by Fact 3, it has finite size, say n. Consider the set \mathfrak{H} of non-zero left translates of N. This is a uniformly commensurable invariant family; by Fact 2, there is an additive invariant subgroup I commensurable with N. So I is a proper ideal, whence zero, and N must be finite. Since it is a right vector space over C(a), it is actually zero. We conclude as in the stable case that D has finite dimension over C(a), and over its centre by Remark 5.

Proposition 7. Let K be an infinite field, and f a field morphism of K. Let F be the set of points fixed by f. Let P be a polynomial splitting in F, and suppose that the iterated compositions $P(f)^n$ be uniformly definable. If K is simple, either K is an algebraic extension of F, or the image of P(f) has finite index in K^+ .

Proof. We may assume K to be infinite. Let $(X-a_i)^{n_i}$ be the splitting factors of f. Note that $\operatorname{Ker} P(f)$ equals the sum $\bigoplus_i \operatorname{Ker} (f-a_i \cdot id)^{n_i}$, each factor $\operatorname{Ker} (f-a_i \cdot id)^{n_i}$

having dimension at most n_i over F. According to Proposition 2, the field K equals $\operatorname{Ker} P(f)^m + \operatorname{Im} P(f)^m$. Let H be the image of $P(f)^m$, and N a minimal intersection up to finite index of non-zero translates of H. Note that if N is finite, there is a minimal intersection which is a proper ideal, hence zero. By Fact 3, N is a finite intersection, say of size n. Write \mathfrak{H} the set of non-zero translates of N. According to Fact 2, there is an additive invariant subgroup I of K, commensurable with N. So I is an ideal of K. If I is the whole of K, the image of P(f) has finite index in K^+ ; should F be infinite, the map P(f) would be onto as its image is a vector space over F. Otherwise, I is zero, and so is N. But H is a vector space over F having finite codimension, say r, so N has codimension at most $r \cdot n$.

References

- John Baldwin and Jan Saxl, Logical stability in group theory, Journal of the Australian Mathematical Society 21, 3, 267–276, 1976.
- [2] Gregory Cherlin, Super stable division rings, Logic Colloquium '77, North Holland, 99–111, 1978.
- [3] Gregory Cherlin and Saharon Shelah, Superstable fields and groups, Annals of Mathematical Logic 18, 3, 227–270, 1980.
- [4] Paul M. Cohn, Skew fields constructions, Cambridge University Press, 1977.
- [5] Israel N. Herstein, Noncommutative Rings, The Mathematical Association of America, fourth edition, 1996.
- [6] Itay Kaplan, Thomas Scanlon and Frank O. Wagner, Artin-Schreier extensions in dependent and simple fields, to be published.
- [7] Angus Macintyre, On ω_1 -categorical theories of fields, Fundamenta Mathematicae **71**, 1, 1–25, 1971.
- [8] Anand Pillay, Thomas Scanlon and Frank O. Wagner, Supersimple fields and division rings, Mathematical Research Letters 5, 473–483, 1998.
- [9] Bruno Poizat, Groupes Stables, Nur Al-Mantiq Wal-Ma'rifah, 1987.
- [10] Thomas Scanlon, Infinite stable fields are Artin-Schreier closed, unpublished, 1999.
- [11] Günter Schlichting, Operationen mit periodischen Stabilisatoren, Archiv der Matematik 34, 97–99, Basel, 1980.
- [12] Frank O. Wagner, Stable groups, Cambridge University Press, 1997.
- [13] Frank O. Wagner, Simple Theories, Mathematics and its Applications, 503. Kluwer Academic Publishers, Dordrecht, 2000.

Current address, Cédric Milliet: Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208 CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

E-mail address, Cédric Milliet: milliet@math.univ-lyon1.fr