
ORDERED O-STABLE GROUPS

VIKTOR VERBOVSKIY

Abstract. An ordered structure M is called o-λ-stable if for any subset A

with |A| ≤ λ and for any cut in M there are at most λ 1-types over A which

are consistent with the cut. It is proved in the paper that an ordered o-stable
group is abelian. Also there were investigated definable subsets and unary

functions of o-stable groups.

1. Introduction, notations and preliminaries

Since the notion of an o-minimal structure appeared in [9] various generalizations
were introduced. Among them are weakly o-minimal structures [6, 8] and quasi-o-
minimal theories [3, 4]. It is easy to see that any cut in o-minimal structure has
only one completion up to a complete type over the model. For weakly o-minimal
structures a similar result has been proved by Kulpeshov [7]: Let M be a totally
ordered structure. Then M is weakly o-minimal iff the following holds on M : any
cut 〈C,D〉 in M has at most two complete 1-types over M extending 〈C,D〉, and
if a cut 〈C,D〉 in M has two complete 1-types over M extending 〈C,D〉, then the
set of all realizations of each of these types is convex in any elementary extension
of M . It immediately follows from the notion of quasi-o-minimality that each cut
has at most continuum extensions up to complete types over a model.

What is common for all of these notions. That each cut has a few number of
extensions. Recall that stable theories have a few types. So we can combine these
things and introduce the notion of an o-stable theory: each cut in each model of
this theory has a few complete types which extend it.

Let M = (M,<, . . . ) be a totally ordered structure, a is an element of M and
A, B subsets. As usually we write a < A if a < b for any b ∈ A, and A < B if a < b
for any a ∈ A and b ∈ B. A partition 〈C,D〉 of M is called a cut if C < D. Given
a cut 〈C,D〉 we construct a partial type {c < x < d : c ∈ C, d ∈ D}, which we
also call a cut and use the same notation 〈C,D〉. If the set C is definable, then the
cut is called quasirational, if in addition supC ∈ M then the cut 〈C,D〉 is called
rational, a non-definable cut is called irrational. If C = (−∞, c) we denote this cut
by (c − 0, c), and if C = (−∞, c] we denote it by (c, c + 0). If C = M we denote
this cut +∞ and supA stands for 〈C,D〉, where C = {c ∈ M : c < supA}. If the
set C is definable we will sometimes distinguish cuts defined by supC and infD
as: supC stands for 〈C,D〉 ∪ {C(x)} and infD stands for 〈C,D〉 ∪ {¬C(x)}. A
cut 〈C,D〉 in an ordered group is called non-valuational [8, 17] if d − c converges
to 0 whenever c and d converge to supC and infD accordingly. A cut, which is
not non-valuational, is called valuational. Observe that for a valuational cut 〈C,D〉
there is a convex subgroup H such that supC = sup(a+H) for some a, and this cut
is definable iff H is definable. An ordered group G is said to be of non-valuational
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type, if any quasirational cut is non-valuational. Note that G is of non-valuational
type iff there is no definable non-trivial convex subgroup in G.

A cut 〈C,D〉 in (M,<) is called definable in M iff the sets C,D are definable
in M. The set of all cuts 〈C,D〉 definable in M and such that D has no lowest
element will be denoted by M . The set M can be regarded as a subset of M
by identifying an element a ∈ M with the cut 〈(−∞, a], (a,+∞)〉. After such an
identification, M is naturally equipped with a linear ordering extending (M,<):
〈C1, D1〉 ≤ 〈C2, D2〉 iff C1 ⊆ C2. Clearly, (M,<) is a dense substructure of (M,<).

A subset A of M is called convex if for any a, b ∈ A the interval [a, b] ⊆ A. A
convex component of a set A is a maximal convex subset of A. The convex hull A
of A is defined as A = {b ∈ M : ∃a1, a2 ∈ A(a1 ≤ b ≤ a2)}. An ordered structure
is called weakly o-minimal if any definable subset consists of finitely many convex
components [6, 8].

Let P be some property. We say that P holds eventually in A if there is an
element a ∈ M such that a < supA and P holds on (a,∞) ∩ A. If A = M , we
omit it. If sets B and C are eventually equal in A we denote this by B ∞=A C. Let
B ⊆ A ⊆M . The set B is said to be dense in A if for any a1 < a2 form A there is
b ∈ B with a1 < b < a2. If A = M we omit it. A dense component of B in A is a
maximal subset of B which is dense in A.

Let T be an L-theory and φ(x̄, ȳ) a formula. We say that φ has the independence
property (relatively T ) if for all n < ω there is a model M |= T and two sequences
(āi : i < n) and (b̄J : J ⊆ n) in M such that M |= φ(āi, b̄J) if and only if i ∈ J . We
say that T has the independence property if some formula has the independence
property.

Notation 1.1. Let s be a partial n-type, A a set. Then

Sn
s (A) , {p ∈ Sn(A) : p ∪ s is consistent}

Note, s need not to be a type over A.

Definition 1.2. (1) An ordered structure M is o-stable in λ if for any A ⊆M
with |A| ≤ λ and for any cut 〈C,D〉 in M there are at most λ one-types
over A which are consistent with the cut 〈C,D〉, i.e. |S1

〈C,D〉(A)| ≤ λ.
(2) A theory T is o-stable in λ if every model of T is. Sometimes we write T

is λ-o-stable or o-λ-stable
(3) T is o-stable if there exists a λ in which T is o-stable.
(4) T is o-superstable if there exists a λ such that T is o-stable in all µ ≥ λ.
(5) T is strongly o-stable if in addition any definable cut in a model M of T is

definable in the language of pure ordering, or, that is the same, if supA ∈M
for any definable subset A of M.

In the following lemma we prove that an o-stable theory does not have the strict
order property inside a cut.

Lemma 1.3 (Strict order property inside a cut). Let M be a model of an o-stable
theory, and N a sufficiently saturated elementary extension of M. Then for any
formula φ(x, ȳ) there is a bound n = nφ for the following chain in an arbitrary cut
〈C,D〉 in M

φ(N , ā1) ∩ 〈C,D〉(N ) ⊂ φ(N , ā2) ∩ 〈C,D〉(N ) ⊂ · · · ⊂ φ(N , āk) ∩ 〈C,D〉(N )
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Proof. Assume the contrary, that there is a formula φ(x, ȳ) such that for any natural
number n there is a cut 〈Cn, Dn〉 in M and there is a sequence of len(ȳ)-tuples
〈ān

i : i < n〉 such that

φ(N , ān
0 ) ∩ 〈Cn, Dn〉(N ) ⊂ φ(N , ān

1 ) ∩ 〈Cn, Dn〉(N ) ⊂ · · · ⊂
⊂ φ(N , ān

n−1) ∩ 〈Cn, Dn〉(N )

Observe that for any triple (i, j, n) with i < j < n there are c ∈ C and d ∈ D such
that either φ(M, ān

i )∩(c, supC) ⊂ φ(M, ān
j )∩(c, supC), or φ(M, ān

i )∩(supC, d) ⊂
φ(M, ān

j ) ∩ (supC, d) if the set C is definable, and φ(M, ān
i ) ∩ (c, d) ⊂ φ(M, ān

j ) ∩
(c, d) if C is not definable.

We add two new (1 + len(ȳ))-ary predicates P (x, ȳ) and R(x, ȳ) naming the
following sets ⋃

n<ω

Cn × {an
i : i < n},

⋃
n<ω

Dn × {an
i : i < n}

correspondingly. Obviously, at least one of the following two properties holds for
infinitely many natural numbers:

φ(N , ān
1 ) ∩ P (N , ān

1 ) ∩ 〈Cn, Dn〉(N ) ⊂ φ(N , ān
2 ) ∩ P (N , ān

1 ) ∩ 〈Cn, Dn〉(N ) ⊂
⊂ · · · ⊂ φ(N , ān

n−1) ∩ P (N , ān
1 ) ∩ 〈Cn, Dn〉(N )

φ(N , ān
1 ) ∩R(N , ān

1 ) ∩ 〈Cn, Dn〉(N ) ⊂ φ(N , ān
2 ) ∩R(N , ān

1 ) ∩ (〈Cn, Dn〉(N ) ⊂
⊂ · · · ⊂ φ(N , ān

n−1) ∩R(N , ān
1 ) ∩ 〈Cn, Dn〉(N )

Say, the first one holds. Let I be an ordered set of indices. Consider the following
type p(x̄i : i ∈ I) which consists of formulae of the following form:

∀v(P (v, x1) → φ(N , x̄i) ∩ (v, supP (N , x̄1)) ⊂ φ(N , x̄j) ∩ (v, supP (N , x̄1)))

for all i < j ∈ I. Clearly, p is finitely consistent. Let N+
1 = (N1, P ) be an

elementary extension of (M, P ) realizing the type p by a sequences (b̄i : i ∈ I). Let
C = P (N+

1 ) and D be the compliment of C. Let also 〈C,D〉 be a cut in I. Then
the following type

r〈C,D〉(x) = {¬φ(x, b̄i) : i ∈ C} ∪ {φ(x, b̄i) : i ∈ D}

is consistent with the cut 〈C,D〉. Thus the cut 〈C,D〉 may have 2|I| extensions
and the elementary theory T of M is not o-|I|-stable. Since I is arbitrary, T is not
o-stable. �

Another property of o-stable theories is the following:

Fact 1.4. [15] An o-stable theory does not have the independence property.

Lemma 1.3 and Fact 1.4 implies the following criterion of o-stability.

Theorem 1.5. Let a language L contain binary symbol ‘<’ and a theory T of L
include axioms saying that ‘<’ is a total order. The theory T is o-stable iff it has
no the independence property and the strict order property inside a cut.

Proof. The direction ‘only if’ follows from Lemma 1.3 and Fact 1.4. So we assume
that a theory T has no both the independence property and the strict order property
inside a cut. If T is not o-stable, similar to stability there is a model M |= T , a
cut 〈C,D〉 in M and a formula ϕ(x; ȳ) such that there are 2|M | ϕ-types over M
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which are consistent with the cut 〈C,D〉. We add a new unary relational symbol
P naming the set C. Let (N , P ) � (M, P ) be sufficiently saturated, and both α
and β be such that they realize the cut 〈C,D〉 and α < supP < β. Claim that
each ϕ-type p which is consistent with the cut 〈C,D〉 is also consistent with the
cut sup(P (N )) in the model N .

Let θ(x; ȳ, α, β) , ϕ(x; ȳ) ∧ α < x < β, then there are 2|M | θ-types over M .
The formula θ has no the independence property, then by Shelah’s results θ has the
strict order property: there is a sequence (b̄i : i < ω) of elements of M such that
θ(N ; b̄i, α, β) ⊂ θ(N ; b̄j , α, β) iff i < j. Thus to obtain a contradiction it is sufficient
to show that ¬θ(x; b̄i, α, β)∧ θ(x; b̄j , α, β) is consistent with the cut sup(P (N )) for
any i < j. Indeed, then ¬ϕ(x; b̄i)∧ϕ(x; b̄j) is consistent with the cut sup(P (N )) if
i < j, which contradicts to o-stability.

Let i < j. If ¬θ(x; b̄i, α, β)∧θ(x; b̄j , α, β) is not consistent with the cut sup(P (N ))
then there is γ ∈ P (N ) such that

θ(N ; b̄i, α, β) ∩ (γ, sup(P (N ))) = θ(N ; b̄j , α, β) ∩ (γ, sup(P (N )))

or that is the same, then there is γ ∈ P (N ) such that

ϕ(N ; b̄i) ∩ (γ, sup(P (N ))) = ϕ(N ; b̄j) ∩ (γ, sup(P (N )))

Then there is c ∈ C such that

ϕ(M; b̄i) ∩ (c, sup(C)) = ϕ(M; b̄j) ∩ (c, sup(C))

Similarly it can be shown that there is d ∈ D such that

ϕ(M; b̄i) ∩ (sup(C), d) = ϕ(M; b̄j) ∩ (sup(C), d)

Thus ϕ(M; b̄i) ∩ (c, d) = ϕ(M; b̄j) ∩ (c, d). This contradicts to existence of α and
β in N . �

Fact 1.6. [13] Let T be a theory of a language L without the independence property,
and M ≺ N two models of T such that N is |M |+-saturated. For any formula
φ(x̄) with parameters in N we add a new relational symbol Pφ(x̄) interpreted by
PMφ = φN ∩Mk in order to form language L∗. Then the expansion M∗ of M
as an L∗-structure admits quantifier elimination. In particular, M∗ has no the
independence property.

Lemma 1.7. Let the expansion M∗ be defined as in Fact 1.6 and M∗
1 an elemen-

tary extension of M∗. Let also N1 be a sufficiently saturated elementary extension
of M1. Then for any Pφ(x̄) there are parameters in N1 such that PM1

φ = φN1∩Mk
1 .

That is, the property that new relations are externally definable preserves in ele-
mentary extensions of M∗.

Proof. LetN be an |M |+-saturated elementary extension ofM, andM∗
1 an elemen-

tary extension of M. By the definition ψ∗(M) = ψ(N , ᾱ) ∩M for some ᾱ ∈ N .
Consider the formula ψ(x̄; ȳ). Clearly, the formula ψ∗(x̄) is the definition of a
θ(ȳ; x̄) , ψ(x̄; ȳ)-type p(ȳ) of ᾱ over M . Let p1 be a unique θ-type over M1 extend-
ing p with the same definition ψ∗. Let N1 be an |M1|+-saturated elementary exten-
sion of M1, and ᾱ1 ∈ N1 realize the type p1. Then ψ∗(M∗

1) = ψ(N1, ᾱ1) ∩Mn+1
1 .

�
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Theorem 1.8. Let T be an o-stable theory of a language L, and M ≺ N two
models of T such that N is |M |+-saturated. For any formula φ(x̄) with parameters
in N we add a new relational symbol Pφ(x̄) interpreted by PMφ = φN ∩Mk in order
to form a language L∗. Then the elementary theory T ∗ of the expansion M∗ of M
is o-stable.

Proof. Since T ∗ has no the independence property it is sufficient to prove that it
has no the strict order property onside a cut. Assume the contrary, that T ∗ is
not o-stable and then has the strict order property inside a cut witnessed by some
L∗-formula Θ(x, ȳ) and a cut 〈C,D〉 in some model M0 of T ∗. By Lemma 1.7
without loss of generality we may assume that M0 = M. Then there is an infinite
sequence (b̄i : i ∈ I) such that Θ(M∗

1, b̄i)∩ 〈C,D〉(M∗
1) ⊂ Θ(M∗

1, b̄j)∩ 〈C,D〉(M∗
1)

for all i < j in some elementary extension M∗
1 of M∗. Claim that the convex set

C is definable by some L∗-formula. Indeed let α ∈ N realize the cut 〈C,D〉. Then
(x < α)∩M defines C. Without lost of generality we may assume that for all i < j
there is ci,j such that in the expanded model M∗ the following holds:

Θ(M∗, b̄i) ∩ (ci,j , supC) ⊂ Θ(M∗, b̄j) ∩ (ci,j , supC)

Recall, that Θ(M∗, b̄i) = θ(N , b̄i, α) ∩M for some ᾱ ∈ N and some L-formula
θ. Let C̄ be the convex hull of C in N , and D̄ the compliment of C̄ in N . Then
for any cut 〈C,D〉 in I the following type

{¬θ(x, b̄i) : i ∈ C} ∪ {θ(x, b̄i) : i ∈ D}
is consistent with the cut 〈C̄, D̄〉 in N . This contradicts to o-stability of T . �

There is an analog of Morley’s theorem for o-ω-stable theories.

Lemma 1.9. Let T be o-ω-stable. Then for any λ > ω the theory T is o-λ-stable.

Proof. The proof is similar to the proof of analogous Morley’s theorem. In this
proof it is sufficient to replace the set of all one-types with the set of all one-types
which are consistent with a given cut. �

Lemma 1.10. Let T be o-λ-stable, M = (M,<, . . . ) |= T , and A a definable subset
of M . Then A with the full induced structure is o-λ-stable.

Proof. Let 〈C,D〉 be a cut in A. Claim that supC defines also a cut in M . The
lemma follows. �

Lemma 1.11. Let T be o-λ-stable, M = (M,<, . . . ) |= T , and E is a definable
equivalence relation with convex classes. Then M/E with the full induced structure
is ordered and o-λ-stable.

Proof. If a cut in M/E has too many extensions to complete types, then the
corresponding cut in M has the same extensions to complete types. �

Lemma 1.12. Let T be o-λ-stable, M = (M,<, . . . ) |= T , and E is a defin-
able equivalence relation with unbounded classes. Then M/E with the full induced
structure is λ-stable.

Proof. Consider a definable set in G/K: it is a union of E-classes. Then this set is
consistent with the cut +∞. Since T is o-λ-stable, the elementary theory of M/E
is λ-stable. �
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Observe that if T is o-ω-stable, then for each cut 〈C,D〉 we can introduce local
Morley rank of a formula as well as of a type.

Definition 1.13. (1) We say that Morley rank of a formula φ(x) inside a cut
〈C,D〉 is equal to or greater than 1 and write RM〈C,D〉(φ) ≥ 1 for this, if
{φ(x)} ∪ 〈C,D〉 is consistent.

(2) RM〈C,D〉(φ) ≥ α + 1 if there are infinitely many pairwise inconsistent for-
mulae ψi(x) such that RM〈C,D〉(φ(x) ∧ ψi(x)) ≥ α.

(3) If α is a limit ordinal, then RM〈C,D〉(φ) ≥ α if RM〈C,D〉(φ) ≥ β for all
β < α.

(4) RM〈C,D〉(φ) = α if RM〈C,D〉(φ) ≥ α and RM〈C,D〉(φ) 6≥ α+ 1.

By the similar way we can define local Morley degree of a formula. As usually we
define Morley rank of a type. More generally, if r is some rank of a type from the
stability theory, we may introduce a localization r〈C,D〉 of this rank by replacing
the set of all types with the set off all types consistent with the cut 〈C,D〉.

2. Ordered o-stable groups: commutativity and general properties

Throughout this section G is an ordered group with unit e whose elementary
theory is o-stable.

Let H be a convex subgroup of G (not necessary definable). Similar to stability
for any formula ϕ(x, ȳ) there is a natural number n such that each chain K1 ∩H ⊂
K2 ∩ H ⊂ · · · ⊂ Km ∩ H has length at most n, provided that Ki is definable by
ϕ(x, āi) for some āi and that each Ki is not bounded in the convex subgroup H.
We call this trivial chain condition for H. Here we use only the fact that Ki are
subsets of G. For two subsets A and B of G denote

A
−→∩ B ,

{
A ∩B if A is not bounded in B,
{e} otherwise.

Note that here A−→∩ B is not necessary equal to B
−→∩ A. Using this notation we

can rewrite the trivial chain condition as for any formula ϕ(x, ȳ) there is a natural
number n such that each chain K1

−→∩ H ⊂ K2
−→∩ H ⊂ · · · ⊂ Km

−→∩ H has length at
most n, provided that Ki = ϕ(G, āi).

Proofs of the following three lemmata are similar to proofs of the correspondent
facts for stable groups.

Lemma 2.1 (Baldwin-Saxl condition [2]). For any formula ϕ(x, ȳ) and any convex
subgroup H there is a natural n such that the intersection of a family of subgroups
of the form Ki

−→∩ H, where Ki = ϕ(G, āi), is the intersection of just n of them.
Consequently, subgroups which are finite or infinite intersections of Ki, form an
almost uniform family in that sense that for any set of indices I there are b̄0, . . . ,
b̄n−1 such that

⋂
i∈I(Ki

−→∩ H) =
⋂

j<n(Kj
−→∩ H). So we may apply the trivial chain

condition.

Lemma 2.2 (O-superstable chain condition). In an o-superstable ordered group
G for any convex subgroup H there is no infinite decreasing sequence K0

−→∩ H ⊃
K1

−→∩ H ⊃ · · · ⊃ Kn
−→∩ H ⊃ . . . , where Ki are definable subgroups of G, such that

|Kn
−→∩ H : Kn+1

−→∩ H| = ∞ for each n.
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Lemma 2.3 (O-omega-stable chain condition). In an o-omega-stable ordered group
G for any convex subgroup H there is no an infinite decreasing sequence K0

−→∩ H ⊃
K1

−→∩ H ⊃ · · · ⊃ Kn
−→∩ H ⊃ . . . , where Ki are definable subgroups of G.

Lemma 2.4. Let H and K be definable subgroups of G. Then H ∩K = H ∩K,
i.e. if K ≤ H, then H ∩K is not bounded in K.

Proof. Let ϕ(x, a) , ∃y ∈ K(e ≤ y ≤ a ∧ x ∈ H · y). Obviously if a < b then
ϕ(G, a)∩ (h, supH) ⊆ ϕ(G, b)∩ (h, supH) for any h ∈ H. Since G is o-stable, there
is no strict order property inside any cut, and in particular in the cut defined by
supH. Then there is a0 ∈ K such that for any b ∈ K, which is bigger than a0 there
is hb ∈ H such that ϕ(G, a) ∩ (hb, supH) = ϕ(G, b) ∩ (hb, supH).

Let k1 > a0 be an element of K. Then H · k1 ⊆ ϕ(G, a0) holds eventually in the
cut supH. Choose an arbitrary large element h1 ∈ H. Since h1k1 ∈ ϕ(G, a0) there
are h2 ∈ H and k2 ∈ [e, a0] ∩K such that h1k1 = h2k2. Rewrite this equality as
k1k

−1
2 = h−1

1 h2. Obviously, k1k
−1
2 ∈ K ∩H. Observe that k2 is bounded by a0 and

k1 may be chosen arbitrary large. This implies that k1k
−1
2 can be arbitrary large

and consequently K ∩H is not bounded in K. �

Lemma 2.5. If H is a minimal definable unbounded in G subgroup, then H is the
least definable unbounded in G subgroup.

Proof. Assume that K is a definable unbounded subgroup. By Lemma 2.4 the
intersection K ∩H is not bounded in G. Since H is minimal, K ∩H = H. �

Lemma 2.6. For any element a ∈ G there is a convex subgroup Ha of G containing
a, such that the center Z(Ha) of Ha is not bounded in Ha.

Proof. Let a be a positive element of G and C(a) the centralizer of a. Consider
a formula ψ(x, a, b) which says that a ≤ b and x ∈ C(c) for all c ∈ [a, b]. Define
a formula θ(y, a) as ψ(y, a, y). Claim that θ(G, a) is not empty and sup θ(G, a)
defines a convex subgroup which we denote by Ha. Indeed, θ(G, a) contains a and
b2 whenever b ∈ θ(G, a).

By Lemma 2.4 for any b1 < b2 < · · · < bn < supHa with b1 > a the intersection
of all C(bi) is not bounded in Ha. Since G is o-stable we may apply Baldwin-Saxl’s
condition to the intersection of uniformly definable family of subgroups inside the
cut defined by supHa. Then

⋂
{C(b) : b ∈ [a, supHa)} is an intersection of just

n of them and is not bounded in Ha by Lemma 2.4. It is easy to see that this
intersection is the center of Ha. Thus Z(Ha) is not bounded in Ha. �

Lemma 2.7. If the center of an arbitrary densely ordered group is dense in the
group, then this group is abelian.

Proof. First we claim that in an ordered group both functions fa(x) = ax and
ga(x) = xa are continuous. Indeed, ax0ε

−1 < ax < ax0ε iff x0ε
−1 < x < x0ε.

Let a and b be arbitrary elements. Since the center Z is dense, there is a sequence
{cα} of elements from the center, which converges to b. Then

ab = a · lim cα = lim acα = lim cαa = (lim cα) · a = ba

Thus the group is abelian. �

Theorem 2.8. An ordered o-stable group is abelian.
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Proof. Without loss of generality we may assume that G = Ha for some element a.
Indeed, if Ha is abelian for any element a, then G is abelian.

Let Z be the center of G and H the greatest subgroup of Z, which is convex in
G. Obviously, H is a definable normal subgroup of G.

Assume the contrary, that G is not abelian, then H is a bounded subgroup of
G. Define sets A and B as follows:

B , {g ∈ Z : g > H}, A , {g ∈ G : H < g < B}
Claim, that the set A consists of cosets of H

Claim 2.8.1. The index |A : H| is finite.

Proof. Consider the following formula:

ϕ(x, b) , ∃y(e ≤ y < b ∧ x ∈ yZ)

Let a1 < a2 < · · · < an be elements of A such that ai ·H < ai+1. Then ai+1 · Z 6⊆
ϕ(G, ai). By Lemma 2.6 the center Z is not bounded in G, which implies that any
coset of Z is consistent with the cut +∞. Then ϕ(G, ai) is eventually in the cut
+∞ a strict subset of ϕ(G, ai+1). Since there is no the strict order property inside
any cut, there is a bound on the length of a1 < a2 < · · · < an. Thus |A : H| is
finite. �

Claim 2.8.2. The set A is empty.

Proof. Assume the contrary, that the set A is not empty. Then in the virtue of
Claim 2.8.1 the quotient group G/H is discretely ordered and there are an injective
homomorphism τ : Z → G/H and a natural number n such that any representative
of τ(n) in G is central.

Observe that τ(Z) is a subgroup of the center Z(G/H) of the quotient group
G/H. Indeed, if τ(1) 6∈ Z(G/H) then there is an element g ∈ G/H such that
τ(1)g 6= gτ(1), say, τ(1)g < gτ(1). Since τ(1) is positive, g < τ(1)g < gτ(1). Elim-
inating g we obtain that τ(0) = g−1g < g−1τ(1)g < τ(1), which is contradictory,
because τ(1) is the least positive element in G/H.

Let b be a representative in G of τ(1). Since b is not central there is an element
c such that bc 6= cb. From the other hand bH is central in G/H. Hence [b, c] ∈ H.
By easy calculations

bnc = bn−1(bc) = bn−1cb[b, c] = bn−2cb[b, c]b[b, c] = bn−2cb2[b, c]2 = · · · = cbn[b, c]n

we obtain that e = [bn, c] = [b, c]n, because bn is central as a representative in G of
τ(n). This yields a contradiction, because any ordered group is torsion-free. �

The consequence of Claim 2.8.2 is that Z(G)/H is dense in G/H. By Lemma 2.7
G/H is abelian, because Z(G)/H ≤ Z(G/H).

Assume that there are elements a and b of G such that ab 6= ba. Let c = [a, b].
Since G/H is abelian, the element c belongs to H. As in Claim 2.8.2 we obtain that
[a, bn] = [a, b]n = cn. Consider the following formula ϕ(x, a, d) , d−1 < [a, x] < d.
Observe that [a, f ] = [a, b] = c for any element f ∈ C(a) · b. Indeed, if f = a1b
then aa1b = a1ab = a1bac. Thus ϕ(G, a, d) consists of cosets of C(a). It is easy to
see that C(a) · bn 6⊆ ϕ(G, a, cn) and C(a) · bn ⊆ ϕ(G, a, cn+1). Thus we obtain the
strict order property witnessed by ϕ(x; a, y) in the cut defined by supC(a). This
contradicts to o-stability of G. �
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From now on we shall use the additional notation for the group operation.
As a corollary of Lemma 1.12 we obtain the following.

Lemma 2.9. Let K be a definable unbounded subgroup. Then G/K with the full
induced structure is stable.

Let Σ be the family of all convex (not necessary definable) subgroups of G. Two
convex subgroups A and B ∈ Σ are called a jump if A is a subgroup of B and there
is no subgroup C ∈ Σ such that A < C < B.

Lemma 2.10. For each natural n ≥ 2 the number of jumps A < B, such that A/B
is not n-divisible, is finite.

Proof. Let ϕn(x, a) , ∃y(0 ≤ y ≤ a ∧ x ∈ y + nG). If for some n the number
of jumps A < B such that A/B is not n-divisible is infinite, then ϕ(x; y) has the
strict order property inside the cut +∞. Indeed, if a ∈ A is such that a+B is not
divisible by n in the quotient group B/A, then for any b ∈ B the coset a + nG is
not a subset of ϕ(G, b). �

Lemma 2.11. If the elementary theory of G is o-superstable, then |G : nG| < ∞
for any positive integer n.

Proof. The lemma follows from the o-superstable chain condition. Indeed, nG is
not bounded in G and if |G : nG| = ∞, then |nqG : nq+1G| = ∞. �

Lemma 2.12. If the elementary theory of G is o-ω-stable, then G as a pure ordered
group is elementary equivalent to the ordered group of rationals.

Proof. Since an ordered o-stable group G is abelian, it is sufficient to prove that
G is divisible. Because of the o-ω-stable chain condition any chain of the form
G ≥ pG ≥ p2G ≥ · · · ≥ pkG ≥ . . . stabilizes in finite many steps. Since G is
ordered, any chain G > pG > p2G > · · · > pkG > . . . cannot be finite. Thus
G = pG and G is divisible. �

Question 1. Characterize all pure ordered o-stable and o-superstable groups:
(1) is an ordered group G o-stable iff G is abelian and for each natural n ≥ 2

the number of jumps A < B such that B/A is not n-divisible is finite?
(2) is an ordered group G o-superstable iff G is abelian and |G : nG| < ∞ for

each positive integer n?

3. Definable subsets of ordered o-stable groups

Throughout this section G is a sufficiently saturated ordered group whose ele-
mentary theory is o-stable. We say that a formula ϕ is eventually minimal inside
a cut s if ϕ is consistent with s and for any formula ψ exactly one of ϕ ∧ ψ and
ϕ ∧ ¬ψ is consistent with s. The aim of this section is to investigate the eventual
stabilizer

Kϕ(x) , ∃z∀y
[
z < y → (ϕ(y) ↔ ϕ(y + x))

]
of a formula ϕ, which is eventually minimal in the cut +∞. Obviously, Kϕ , Kϕ(G)
is a subgroup ofG. Observe that for any g ∈ G the formula ϕ(x+g) is also eventually
minimal.
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Claim that for any definable convex set A each of inf A and supA defines a
convex subgroup H−

A and H+
A , respectively, in the following way:

H−
A , {g ∈ G : a− |g| ∈ A for any a ∈ A}

H+
A , {g ∈ G : a+ |g| ∈ A for any a ∈ A}

Observe that the above restriction that we shall investigate the eventual stabilizer
in the cut +∞ is not essential. Indeed, let 〈C,D〉 be a cut, such that H+

C is not
trivial. Since the expansion by a unary predicate naming a convex set preserve
o-stability, we may assume that this convex subgroup is definable and that in fact
supC = supH+

C . So we can investigate the eventual stabilizer at the cut +∞ in
H+

C , which is obviously equal to the eventual stabilizer at the cut 〈C,D〉 in the
whole group G.

Now we prove some technical lemmata.

Lemma 3.1. For any definable subset A the number of infinite convex components
whose infimums belong to G is finite.

Proof. Assume the contrary. Let E(x, y) be an equivalence relation on A whose
classes are convex components of A. Since G is supposed to be sufficiently saturated
we may find countably many of these classes {[ai] : i < ω} such that [ai] < [aj ] for
all i < j and that there is a positive element b such that nb is less than the length
of convex components [a]E for any positive integer n (in the discrete case we may
suppose that Z < G and that b > Z).

Let a cut 〈C,D〉 in G be defined as C = (−∞, sup
⋃

i[ai]). Then

inf[a]E < inf[a]E + b < sup[a]E

The convex set (inf[a]E , inf[a]E+b) is a proper subset of (inf[a]E , inf[a]E+2b). Since
there are infinitely many possibilities for b the following formula has the strict order
property inside the cut 〈C,D〉:

θ(x, y) , ∃z(z ∈ A ∧ x ∈ (inf[z]E , inf[z]E + y))

This contradicts to o-stability of G. �

Lemma 3.2. Let G be densely ordered. Then for any infinite definable set there is
an interval, where this set is dense.

Proof. Assume that an infinite definable set A is not dense in any interval. Let

B = {a ∈ A : (a, c) ∩A = ∅ for some c > a}

By Lemma 3.1 the set B is finite. Thus without loss of generality we may assume
that B is empty. Also we can suppose that for any a ∈ A and c < a there is an
element a1 ∈ A with c < a1 < a.

Let a ∈ A and b1 > a. Since A is not dense in (a, b1) there is an interval (c1, d1)
which has an empty intersection with A and which is a subinterval of (a, b1). Since
the set B is empty, a < c1. Assume that we found out an element bα and an interval
(cα, dα) for α < λ < ω1. Let λ = ν + 1. We choose bν+1 ∈ A ∩ (a, cν). Then there
is an interval (cν+1, dν+1) which has an empty intersection with A and which is
a subinterval of (a, bν). If λ is a limit ordinal then bλ ∈

⋂
α<λ(a, cα). Since G is

sufficiently saturated, this intersection is not empty. Claim that elements bν can be
chosen so that the length of the convex component of the compliment of A which
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contains the interval (cν , dν) is bigger than those one which contains the interval
(cν+1, dν+1).

Since the set A is infinite we can find a monotone (say, decreasing) sequence
〈an : n < ω〉 of elements of A. Consider the cut 〈C,D〉 defined by the infimum
of this sequence. Observe that for any an we can repeat the above construction.
It means that in some neighborhood of an there are convex components of the
compliment of A of an arbitrary small length.

Let a formula φ(x, y) says that x belongs to a convex component of the compli-
ment of A, which has length less than y. Since there is no the strict order property,
for any positive g ∈ G there is a natural number ng such that for any n > ng any
convex component inside (an+1, an) of the compliment of A has length less than
g. Let k > ng. Consider an arbitrary convex component of the compliment of A
in (ak+1, ak). Let h be smaller than the length of this convex component. Then
ng < nh. Since G is assumed to be uncountable, we obtain a contradiction. �

As a corrolary of this lemma we obtain that each definable subset consists of
dense components and of finitely many isolated point. The following lemma also is
immediate from Lemma 3.2.

Lemma 3.3. Any definable subgroup of a dense o-stable ordered group G is dense
in G.

Lemma 3.4. Let G be an ordered group with dense order whose elementary theory
is o-stable. Then there is no definable function f : A → B such that the set A is
definable and dense, B ⊆ G, 〈C,D〉 is a cut in B and there are infinitely many
sequences 〈an,i : i ∈ In〉n<ω of elements of A converging to αn with αn 6= αk

for all n < k < ω such that limi→∞ f(an,i) = supC for any n < ω, i.e. that
{f(x) : |αn − x| < |αn − an,i|} is consistent with 〈C,D〉 for any n and i.

Proof. Without lost of generality we may assume that αn < αk for n < k and that
for each n the sequence 〈an,i : i ∈ In〉 is strictly monotone, say, strictly increasing.
Let 〈C,D〉 be a cut in G defined as sup C = sup{αn : n < ω}. By compactness we
may assume that there are c1 ∈ C and d1 ∈ D such that for each n there is in,1

such that f(an,in,1) ∈ (c1, d1). Assume that we have found ck ∈ C and dk ∈ D.
Then again by compactness we can find ck+1 ∈ C and dk+1 ∈ D such that for each
n f(an,in,k

) 6∈ (ck+1, dk+1) and there is in,k+1 such that f(an,in,k+1) ∈ (ck+1, dk+1).
Then the following formula

ϕ(x; y, z) , y < f(x) < z

has the strict order property inside the cut 〈C,D〉, contradicting to o-stability of G.
�

Lemma 3.5. Let ϕ be such that for any g ∈ G either ϕ(G) ∞= (ϕ(G) + g) or
ϕ(G) ∩ (ϕ(G) + g) ∞= ∅. Then Kϕ is unbounded.

Proof. Assume the contrary, that Kϕ is bounded. Let H1 be the convex hull
of Kϕ. If G/H1 is dense, then let H , H1. If G/H1 is discrete, then let g be a
representative of the least positive coset of H1. In this case let H ,

⋃
n∈Z(ng+H1).

Since G is sufficiently saturated, G/H is dense.
Then for any g 6∈ H the intersection ϕ(G) ∩ (ϕ(G) + g) is eventually empty.
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Define a formula

ψ(x, y, z) , ∃t(y < t < z ∧ ϕ(x− t))

Claim 3.5.1. There are a < b such that b − a > supH and for any c and d with
a < c < d < b and d−c > supH it holds that ψ(x, a, b) and ψ(x, c, d) are eventually
equal at the cut +∞.

Proof. Since there is no the strict order property inside a cut. �

Fix some element c ∈ (a, b) and some e ∈ (sup(c+H), b). Then

Claim 3.5.2. Eventually ϕ(G) + c ⊆ ψ(G, e, b)

Proof. Eventually ψ(G, c, b) ⊆ ψ(G, e, b) ∪ (ϕ(G) + c) ⊆ ψ(G, a, b) = ψ(G, e, b). �

Claim 3.5.3. For any d ∈ (e, b) the intersection (ϕ(G)+c)∩(ϕ(G)+d) is eventually
empty at the cut +∞.

Now we define a function f : (e, b) → G as

f(x) = sup[(ϕ(G) + c) ∩ (ϕ(G) + x)]

By Claims 3.5.1–3.5.3 the function f is not bounded in any subinterval (b1, b2) of
(e, b) with b1 +H < b2. So we may find infinitely many disjoint intervals (bn,1, bn,2)
such that f is not bounded in each (bn,1, bn,2). In each interval we can find a
sequence 〈an,i : i ∈ In〉 such that {f(an,i) : i ∈ In} is unbounded. This contradicts
to Lemma 3.4. Thus Kϕ contains an element which does not belong to H. �

Claim that a formula ϕ such that for any g ∈ G either ϕ(G) ∞= (ϕ(G) + g) or
ϕ(G) ∩ (ϕ(G) + g) ∞= ∅ does exist in any o-stable group, because ψ(x + y)-rank of
a formula ψ(x) is finite.

Lemma 3.6. Let ϕ(x) be a formula such that the eventual stabilizer Kϕ is not
bounded. Then ϕ(G) ∩ (g +Kϕ) 6∞= ∅ for some g. If in addition ϕ(x) is eventually
minimal, then eventually ϕ(G) ⊆ g +Kϕ.

Proof. Take an arbitrary a ∈ Kϕ. By the definition of Kϕ there is some b such that
for any c, if b < c and b < a+ c then ϕ(c) ↔ ϕ(c+ a). Let c ∈ ϕ(G) be bigger than
b. Then c+ n · a ∈ ϕ(G) for all natural n, and so ϕ(G)∩ (c+Kϕ) is infinite and is
dense in some interval by Lemma 3.2.

We show that there is an element c, such that ϕ(G) ∩ (c+Kϕ) 6∞= ∅. Let

ψ1(y, d) , ∃u∃v
(
d < u < v ∧ [ϕ(G) ∩ (y +Kϕ) is dense in (u, v)]

)
ψ(x, d) , ∃y

(
ψ1(y, d) ∧ x ∈ (y +Kϕ)

)
Since there is no the strict order property inside the cut +∞, there is d1 such that

ψ(G, d1)
∞= ψ(G, d2) for any d2 > d1. Also ψ(G, d1) is not eventually empty, because

Kϕ is unbounded and the above mentioned element c can be chosen arbitrary large.
Let c ∈ ϕ(G) be bigger than d1. Then ϕ(G) ∩ (c+Kϕ) 6∞= ∅.

If ϕ(x) is eventually minimal, then obviously eventually ϕ(G) ⊆ g +Kϕ. �

Lemma 3.7. Let Kϕ be the eventual stabilizer of an arbitrary formula ϕ(x). As-
sume that Kϕ contains a positive element. Then there is a convex in Kϕ subgroup
H of Kϕ such that eventually ϕ(G) is equal to ϕ(G) +H.
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Proof. If Kϕ is the zero-group, then the lemma is trivial. So, let a ∈ Kϕ be positive.
Then by the definition of Kϕ there is c such that ϕ(G)∩(c,∞) = (ϕ(G)+a)∩(c,∞).
We define a function f as

f(x) , inf{c ∈ G : ϕ(G) ∩ (c,∞) = (ϕ(G) + x) ∩ (c,∞)}

By Lemma 3.4 in any interval (a1, b1) there is a subinterval [a2, b2] such that
the function f is bounded on [a2, b2] ∩ Kϕ by some c. Then f is bounded on
[−b2,−a2] ∩Kϕ with a bound c + b2. Moreover, f is bounded on the intersection
[a2 − b2, b2 − a2] ∩Kϕ. Indeed, let h ∈ [0, b2 − a2]. Then

x ∈ ϕ(G) ⇐⇒ x+(a2+h) ∈ ϕ(G) ⇐⇒ (x+a2+h)−a2 ∈ ϕ(G) ⇐⇒ x+h ∈ ϕ(G)

Since f(2x) ≤ f(x)+x the function f is bounded on [2(a2− b2), 2(b2−a2)]∩Kϕ

as well as on [n(a2 − b2), n(b2 − a2)] ∩Kϕ for each natural n.
Let H =

⋃
n∈N[n(a2 − b2), n(b2 − a2)] ∩ Kϕ. By compactness we may assume

that f is bounded on H. Then eventually ϕ(G) is equal to ϕ(G) +H. �

We say that G has boundedly many definable convex subgroups if there is a
cardinal λ such that in any group which is elementary equivalent to G the number
of convex definable subgroups does not exceed λ. Otherwise we say that G has
unboundedly many definable convex subgroups. We say that a convex set A is coset-
infinite, if it is not a finite union of cosets of definable subgroups.

Lemma 3.8. If for some formula ϕ(x) the number of coset-infinite convex com-
ponents of ϕ(G, ā) is infinite, then G has unboundedly many definable convex sub-
groups.

Proof. Assume the contrary, that such a formula ϕ(x) does exist and G has bound-
edly many definable convex subgroups. Recall that for any convex A each of inf A
and supA defines a convex subgroup H−

A and H+
A , respectively.

Since G has boundedly many definable convex subgroups, so convex components
of ϕ(G) define finitely many convex subgroups. Thus we can suppose that each
convex component of ϕ(G, ā) is not a coset of a convex subgroup, is coset-infinite
and H−

A = H−
B and H+

A = H+
B for any convex components A and B. Without loss

of generality we may assume that H−
A ≤ H+

A . Since G/H−
A with the full induced

structure is also o-stable, we can suppose that H−
A = {0}. Then inf A ∈ G. The

lemma follows from Lemma 3.1. �

Lemma 3.9. Assume that G has boundedly many definable convex subgroups. Then
for any formula ϕ(x, ȳ) there is a number kϕ such that for any ā the number of
infinite dense components of ϕ(G, ā) which are not cosets of subgroups is at most
kϕ.

Proof. Let A be the topological closure of ϕ(G, ā) in the topology induced by the
ordering. Then the intersection of a convex component of A with ϕ(G, ā) gives a
dense component of ϕ(G, ā). Thus the lemma follows from Lemma 3.1. �

Recall that G is of non-valuational type if it contains no non-trivial definable
convex subgroup.

Lemma 3.10. Let in addition G be of non-valuational type. Then any equivalence
relation in G has at most finitely many infinite convex classes.
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Proof. The lemma directly follows from Lemma 3.8, because there is no definable
convex non-trivial subgroups. �

Lemma 3.11. Let G be of non-valuational type with dense order. Let φ(x) be a
formula and 〈C,D〉 a cut. Then φ(G) is either eventually dense in C or eventually
empty in C. (The same holds for D with the inverse ordering)

Proof. Let Eφ(x, y) be an equivalence relation with convex classes such that each
class is a maximal convex set which either is infinite and has an empty intersec-
tion with φ(G), or is not necessary infinite and φ(G) is dense in this class. By
Lemma 3.10 Eφ has at most finitely many convex classes, that is sufficient for us.
�

We will prove that if G has boundedly many convex definable subgroups, then
an eventually minimal formula is eventually equal to a coset of its eventual sta-
bilizer, which is the least definable unbounded subgroup. Also we will construct
an example of a group with unboundedly many definable convex subgroups, such
that an eventually minimal formula is eventually a proper subset of its eventual
stabilizer.

Theorem 3.12. Let G have boundedly many concex definable subgroups, A a defin-
able unbounded subset, and KA its eventual stabilizer. Then eventually A is equal
to A+KA.

Proof. Let H be a maximal convex in KA definable subgroup such that eventually
A is equal to A+H. By Lemma 3.7 H is not a zero group. If H = KA we are done.
So assume that H < KA. By the definition the eventual equality of A and of A+h
means that there is an element c such that A∩ (c,∞) = (A+H)∩ (c,∞). Consider
the quotient groupG1 = G/H1 with the definable subsetA1 = A∩(sup c+H,∞)/H.
Then the eventuall stabilizer K1 of A1 in G1 is equal to KA/H. Let H1 be the
maximal convex in K1 subgroup such that eventually in G1 the equality of A1 and
A1 + H1 holds. By the choice of H the group H1 must be a zero group and by
Lemma 3.7 H1 is not a zero group.

This implies that there is no maximal convex in KA definable proper subgroup
such that eventually A is equal to A + H. Let G′ be the union of all definable
convex proper subgroups of G. Since there is only boundedly many definable convex
subgroups and G is considered to be sufficietly saturated, G′ is a proper subgroup
of G. We can expand our language adding a unary predicate naming G′. This
preserves o-stability. Thus we obtained a maximal convex in KA definable proper
subgroup of G, that gives a contradaction. �

Theorem 3.13. Let G have boundedly many convex definable subgroups, and A
an eventually minimal definable subset. Then there is the least definable unbounded
subgroup K, such that A is eventually equal to a coset of K. In particular, K is
divisible.

Proof. By Lemma 3.6 A is eventually a subset of g+KA for some g. For simplicity
of notation we assume that g = 0. Then A is eventually a subset of KA. By
Theorem 3.12 the set A is eventually equal to A + KA, which means that A is
eventually equal to KA. �
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Theorem 3.14. Let G be an o-stable ordered group with boundedly many definable
convex subgroups. Assume that G is not weakly o-minimal, that is there is a defin-
able subset A consisting of infinitely many convex components and a non-rational
cut 〈C,D〉 such that both A and the compliment of A are consistent with this cut.
Then there is an externally definable unbounded proper subgroup K of H+

C (where
H+

C is the stabilizer of the set C). If in addition the cut 〈C,D〉 is definable then K
is definable.

Proof. Let A be a definable subset consisting of infinitely many convex components.
Since G is sufficiently saturated there are convex components Ai of A such that
Ai < Aj for i < j < ω. Let C = sup

⋃
i<ω Ai. Claim that supC defines a

subgroup H+
C , which is not zero-group, because G is sufficiently saturated. Thus

supC = sup(H+
C + g) for some g ∈ G. For simplicity of notations we assume

that g = 0. Obviously, H+
C is at least externally definable as a convex subset. By

Theorem 1.8 the elementary theory of (G,H+
C ) is o-stable and by Lemma 1.10 the

elementary theory of the full induced structure of H+
C is o-stable. So without loss

of generality we may assume that A is an unbounded subset of G.
Let ϕ(x; y) = x ∈ (y + A). Since G is o-stable (2, ϕ)-rank of A inside the cut

+∞ is finite. So there are ai ∈ G for i < n and τ ∈ n2 such that the formula

θ(x) ,
∧
i<n

ϕτ(i)(x; ai)

satisfies the requirements of Lemma 3.5. Then Kθ is an externally definable un-
bounded subgroup of G.

Obviously, if C is definable, there is no need to expand the language and then
Kθ is definable. �

Now I shall give an example of an o-ω-stable ordered group with a proper defin-
able subset, whose eventual stabilizer is equal to the group.

Let G be the direct power RQ with lexicographical ordering, and a subgroup
H = QQ. Let E be an equivalence relation with convex classes whose classes are
archimedean classes of G. Then each positive element a define a convex subgroups
Ka = (− inf E(G, a), inf E(G, a)). Let Ba = E(G, a) ∩ (H + Ka) and a unary
predicate P names the union

⋃
a∈GBa. It will be shown that (G,<,+,−, 0, P, E)

is a group we are looking for. Obviously for any element g ∈ G it holds that

P (G) ∩ (supE(G, g),+∞) = (P (G) + g) ∩ (supE(G, g),+∞)

Thus the eventual stabilizer KP of P is equal to G.
In [14] it has been proved that Th(G,<,+,−, 0, E) is weakly o-minimal and

admits quantifier elimination. Below we prove that the elementary theory of the
expansion of this structure by P also admits quantifier elimination and consequently
is o-ω-stable.

Theorem 3.15. The elementary theory T of (G,<,+,−, 0, P, E) admits quantifier
elimination.

Proof. First, claim that any term in variables x1, . . . , xn is equal to k1x1+· · ·+knxn,
where ki ∈ Z. Second we consider how we can reduce E(t1, t2), where t1, t2 are
terms, to a more simple form. Let x be a variable, and u, v terms. Note, that
0 < x < y implies E(x + y, y), since y < y + x < 2y, E(y, 2y) and E-classes
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are convex. If 0 < −x < y ∧ ¬E(x, y), then y/2 < y + x < y, and consequently
E(x+ y, y) holds.

We shall use the following notations:

E1(x, y) , E(x, y) ∧ ¬E(|x|, |x− y|)
inf[y] < x , y < x ∨ E(x, y)

sup[y] < x , y < x ∧ ¬E(x, y)

inf[y]1 < x , y < x ∨ E1(x, y)

sup[y]1 < x , y < x ∧ ¬E1(x, y)

Eg(x, y) , (inf[−|g|] < x, y < sup[|g|]) ∨ E(|x− y|, |g|)
E1

g , Eg(x, y) ∧ ¬Eg(|x|, |x− y|)

Other notations x < inf[y], x < sup[y], x < inf[y]1, x < sup[y]1, x < inf[y]g,
x < sup[y]g (respectively Eg), x < inf[y]1g, x < sup[y]1g (respectively E1

g) are de-
fined similarly. Obviously, E(x, y) is equivalent to inf[y] < x < sup[y] and similar
equivalences hold for other equivalence relations.

In a natural way we can define addition on the set of cuts in G. Let 〈Ci, Di〉
be cuts, for i = 1, 2, 3. Then 〈C3, D3〉 = 〈C1, D1〉 + 〈C2, D2〉 iff for any c3 ∈ C3

and d3 ∈ D3 there are ci ∈ Ci and di ∈ Di for i = 1, 2 such that c3 = c1 + c2 and
d3 = d1 + d2. Then sup[a]g = sup[g] + a, and sup[a]1g = sup[g]1 + a. The similar
hold for the infimum.

Claim that

E(x+ y, z) ⇐⇒ [E(x+ y, y) ∧ E(y, z)] ∨ [E(x+ y, x) ∧ E(x, z)] ∨
[¬E(x+ y, y) ∧ ¬E(x+ y, x) ∧ E(x,−y) ∧ E(x+ y, z)]

and

E(x+ y, x) ⇐⇒ inf[y] < x < sup[y] ∨ |x| > sup[|y|] ∨
(inf[y] < −x < sup[y] ∧ −x 6∈ (inf[y]1, sup[y]1))

E(x+ y, y) ⇐⇒ inf[y] < x < sup[y] ∨ |x| < inf[|y|] ∨
(inf[y] < −x < sup[y] ∧ −x 6∈ (inf[y]1, sup[y]1))

E(x+ y,−x) ⇐⇒ inf[y] < −x < sup[y] ∧ −x 6∈ (inf[y]1, sup[y]1))

Now consider E(x + y, x + z). Applying a reduction for E(x + y, z) twice we
obtain that it is equivalent to

[E(x+ y, y) ∧ E(x+ z, z) ∧ E(y, z)]∨
[E(x+ y, y) ∧ E(x+ z, x) ∧ E(y, x)]∨
[E(x+ y, y) ∧ ¬E(x+ z, z) ∧ ¬E(x+ z, x) ∧ E(y, x+ z)]∨
[E(x+ y, x) ∧ E(x+ z, x)]∨
[¬E(x+ y, x) ∧ ¬E(x+ y, y) ∧ E(x+ z, z) ∧ E(x+ y, z)]∨
[¬E(x+ y, x) ∧ ¬E(x+ y, y) ∧ E(x+ z, x) ∧ E(x+ y, x)]∨
[¬E(x+ y, x) ∧ ¬E(x+ y, y) ∧ ¬E(x+ z, z) ∧ ¬E(x+ z, x)∧

∧ E(x+ y, x+ z)].

Claim that 3-d, 5-th and 6-th disjuncts are inconsistent. Consider 3-d disjunct.
We have that E(x,−z) and then ∀t(E(|x|, t) → |y| < t). Consequently E(x +



ORDERED O-STABLE GROUPS 17

y, x) ∧ ¬E(x+ y, y), this is inconsistent with E(x+ y, y). Disjuncts 5-th and 6-th
are considered analogously.

Consider the last disjunct: ¬E(x+ y, x)∧¬E(x+ y, y)∧¬E(x+ z, z)∧¬E(x+
z, x) ∧ E(x + y, x + z)]. Let E(x + y, g) hold. Then Eg(y,−x), Eg(−x, z), and
Eg(y, z). So the last conjunct is equivalent to

− x = y = z∨(
sgn(x+ y) = sgn(x+ z) ∧

[
(y > z ∧ inf[y − z] < −x < sup[y − z])∨
(y ≤ z ∧ inf[z − y] < −x < sup[z − y])

])
In a similar way it is possible to show that E(x + y,−x + z) is a boolean com-

bination of convex sets of the same forms. Indeed, it is equivalent to

[E(x+ y, y) ∧ E(−x+ z, z) ∧ E(y, z)]∨
[E(x+ y, y) ∧ E(−x+ z,−x) ∧ E(−x, y)]∨
[E(x+ y, y) ∧ ¬E(−x+ z, z) ∧ ¬E(−x+ z,−x) ∧ E(x, z) ∧ E(y,−x+ z)]∨
[E(x+ y, x) ∧ E(−x+ z, x)]∨
[¬E(x+ y, x) ∧ ¬E(x+ y, y) ∧ ¬E(−x+ z, z) ∧ ¬E(−x+ z,−x)∧

∧ E(x+ y,−x+ z)].

Consider the last disjunct. Let E(x + y, g) hold. Then Eg(y,−x), Eg(x, z),
Eg(−x,−z) and Eg(y,−z). So the last conjunct is equivalent to

x = −y = z∨(
sgn(x+ y) = sgn(−x+ z) ∧

[
(y > −z ∧ inf[y + z] < −x < sup[y + z])∨
(y ≤ −z ∧ inf[z + y] < −x < sup[z + y])

])
Thus E(x+y,±x+z) is a boolean combination of convex sets of the form (a1, a2),

where either ai ∈ G ∪ {±∞} or ai = sup[bi], or ai = inf[bi], or ai = sup[bi]1, or
ai = inf[bi]1.

Claim that sup[x] < y iff x < inf[y].
Thus, to prove the theorem it is enough to consider a formula ∃x

∧
i ϕi(x, ȳ),

where every ϕi (or ¬ϕi) is one of the following forms:
(1) mx = u,
(2) mx < u, or mx > u,
(3) mx < sup[v], or mx > sup[v],
(4) mx < inf[v], or mx > inf[v],
(5) mx < sup[v]1, or mx > sup[v]1,
(6) mx < inf[v]1, or mx > inf[v]1,
(7) P (mx+ u),
(8) ¬P (mx+ u).

Since x 6= y ⇐⇒ x > y ∨ x < y, x 6< y ⇐⇒ x > y ∨ x = y, and mx 6<
sup[v] ⇐⇒ mx > sup[v] we may assume that each ϕi of the forms (1)–(6) occurs
in the positive form.

Claim that m(sup[nx + u] + v) = sup[nx + u] + mv and that sup[nx + u] =
sup[mnx + mu]. Observe also that P (nx + u) ⇐⇒ P (mnx + mu). Thus by
multiplying each equality and inequality by some number we can obtain that m’s
in all conjuncts are equal. Since the group is divisible for simplicity of notation
we may assume that m = 1. If some ϕi is of the form x = u, then replacing each
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occurrence of x with u in each conjuncts we obtain an equivalent quantifier-free
formula.

Now we suppose that there is no conjunct of the first form. Moreover, we may
assume that that at most one of the ϕi is of the form (2)–(6). (where < and > count
separately). Indeed, x < u∧x < v is equivalent to [x < u∧u ≤ v]∨ [x < v∧v < u].
The similar can be done for x > u∧ x > v. Claim that bound1[u1] < bound2[u2] is
definable by a quantifier-free formula, where boundi ∈ {inf, sup}. Then a formula
of the form x < bound1[v1] ∧ x < bound2[v2] is equivalent to (x < bound1[v1] ∧
bound1[v1] ≤ bound2[v2]) ∨ (x < bound2[v2] ∧ bound2[v2] ≤ bound1[v1]).

Then ∃x
∧

i ϕi(x, ȳ) is equivalent to a formula saying that there is an element x,
which belongs to a convex set and satisfies

∧
j P (x+ ui) and

∧
j ¬P (x+ uk).

Consider P (x + u). It is equivalent to (|x| < inf[|u|] ∧ P (u)) ∨ (|u| < inf[|x|] ∧
P (x)) ∨ (E(|x|, |u|) ∧ P (u+ x)). Taking into account that

E(x, u) ∧ P (u+ x) ∧ E(x, v) ∧ P (v + x)

is equivalent to E(x, u) ∧ P (x + u) ∧ E(u, v) ∧ P (u − v), we can suppose that at
most one of ϕi is of the form P (x+ u).

Since ¬P (x+u) is equivalent to (|x| < inf[|u|]∧¬P (u))∨(|u| < inf[|x|]∧¬P (x))∨
(E(|x|, |u|) ∧ ¬P (u+ x)) it is possible to assume that if at most one of ϕi is of the
form P (x+ u) then there is no conjunct of the form ¬P (x+ u).

Hence ∃x
∧

i ϕi(x, ȳ) is equivalent to a formula saying that there is x, which
belongs to a convex set U , which has non-empty intersection either with P (x+ u)
or has no intersection with finitely many P (x + u)’s. Let a ∈ U . If the length
of U is bigger than the length of [a]1, then U has a non-empty intersection with
P (G)+g for any g with |g| < sup[a] as well as with the compliment of a finite union
of (P (G)+g)’s with similar g’s. If the length of U is less than or equal to the length
of [a]1, then U has a non-empty intersection with P (G) + g iff a ∈ P (G) + g. So,
it is sufficient to show that all of these is expressible by a quantifier-free formula.

Case 1. Assume that one of ϕi is of the form P (x + g). Then we may suppose
that there is no conjunct of the form ¬P (x+ g). If the considered convex set U is
unbounded then obviously there is an element which satisfy P (x+ g) from U . So,
assume that both bounds in the formula do exist. Adding to bounds −g we obtain
an equivalent formula ∃x(inf U − g < x < supU − g ∧ P (x)). So for simplicity of
notation we assume that g = 0.

Case 1.1. bound1 U = bound2[b]. Then any non-empty convex set U has length
bigger than [b]1 and ∃x(inf U < x < supU ∧ P (x)) is equivalent to inf U < supU .

Case 1.2. bound1 U = bound2[b]1, say supU = sup[b]1. Then the length of U
is bigger that [b]1 iff inf U < inf[b]1. Otherwise either inf U = inf[b1] or inf[b]1 <
inf U = c < sup[b1]. In this case ∃x(inf U < x < supU ∧ P (x)) is equivalent to
P (b).

Case 1.3. bound1 U = bound2[b] + g or bound1 U = bound2[b]1 + g for some g
with |g| > sup[|b|], say supU = sup[b] + g. Then ∃x(inf U < x < supU ∧ P (x)) is
equivalent to inf U < supU ∧ ∃x(inf U < x < sup[b]1 ∧ P (x)) (case 1.2).

Case 1.4. U = (b, c). Then ∃x(b < x < c ∧ P (x)) is equivalent to b < c ∧
(¬E1(b, c) ∨ P (b)).

Case 2. No conjunct is of the form P (x+g) and there are finitely many conjuncts
of the form ¬P (x+ g). Claim that ¬P (x+ g)∧E(|x|, |g|)∧¬P (x+ h)∧E(|x|, |h|)
implies E(|g|, |h|), thus we may assume that the considered convex set U is a subset
of [g] and the absolute values of all g’s are in the same E-class. Consider U .
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Assume that supU = sup[b]1. If E1(−g, b), then U ∩ ¬P (x + g) is equivalent to
(inf U,min{sup[b]1, b − inf[|b + g|]1}) ∧ ¬P (x + g). Similar facts hold in the cases
inf U = inf[b]1, supU = b, inf U = b, boundU = b + bound[g], boundU = b +
bound[g]1. So we may assume that if one of these conditions holds, then ¬E1(b,−g).

Case 2.1. bound1 U = bound2[b]. Then any non-empty convex set U has length
bigger than [b]1 and ∃x(inf U < x < supU ∧

∧
i ¬P (x+gi)) is equivalent to inf U <

supU .
Case 2.2. bound1 U = bound2[b]1, say supU = sup[b]1. Then the length of U

is bigger that [b]1 iff inf U < inf[b]1. Otherwise either inf U = inf[b1] or inf[b]1 <
inf U = c < sup[b1]. In this case ∃x(inf U < x < supU∧

∧
i ¬P (x+gi)) is equivalent

to
∧

i ¬P (b+ gi).
Case 2.3. bound1 U = bound2[b]+g or bound1 U = bound2[b]1+g for some g with

|g| > sup[|b|], say supU = sup[b] + g. Then ∃x(inf U < x < supU ∧
∧

i ¬P (x+ gi))
is equivalent to inf U < supU ∧ ∃x(inf U < x < sup[b]1 ∧

∧
i ¬P (b+ gi)) (case 2.2).

Case 2.4. U = (b, c). Then ∃x(b < x < c ∧
∧

i ¬P (x + gi)) is equivalent to
b < c ∧ (¬E1(b, c) ∨

∧
i ¬P (b+ gi) ∨

∧
i ¬P (c+ gi)). �

Theorem 3.16. The elementary theory T of (G,<,+,−, 0, P, E) is o-ω-stable.
More precisely, each cut over a model has finitely many extensions up to complete
type over the model.

Proof. By the previous theorem (G,<,+,−, 0, E) is weakly o-minimal, thus each
cut has at most 2 completions. Let 〈C,D〉 be a cut and p(x) a type over G extending
〈C,D〉. For simplicity we may assume that x > 0 ∈ p(x).

Let 〈C,D〉 be a cut and KC be the stabilizer of C.
Claim that if 0 < |x| < inf[|a|], then P (x+ a) is equivalent to P (a). If 0 < |a| <

inf[|x|], then P (x + a) is equivalent to P (x). The formula E(x, a) ∧ P (x + a) ∧
E(|x|, |b|) ∧ P (x + b) ∧ ¬E1(x,−b) is equivalent to E(x, a) ∧ P (x + a) ∧ E(a, b) ∧
P (b − a) ∧ ¬E(c,−b) for some c such that E1(x, c) ∈ p. If there is no c such that
E1(x, c) ∈ p, then 〈C/E1, D1〉 is an irrational cut in G/E1. Then ¬E1(x,−b) holds
for any b ∈ G and the above formula is equivalent in Th(G) ∪ {c < x < d : c ∈
C, d ∈ D} to E(x, a) ∧ P (x+ a) ∧ E(a, b) ∧ P (b− a).

Let 〈C/E1, D1〉 be an irrational cut in G/E1. If E(x, a) ∈ p then there are
extensions of the cut of two kinds: {P (x + b), E(x, a)} for some b ∈ [a] defines a
complete type over G and {¬P (x+ b), E(x, a) : b ∈ G} defines a complete type. If
E(x, a) 6∈ p for any p then 〈C/E,D〉 is an irrational cut in G/E. Then there are
two extension of the cut: with P (x) or with ¬P (x).

So, assume that E1(x, a) ∈ p for some a ∈ G.
Case 1. There is b ∈ E1(G, a) such that b ∈ D and inf{b − c : c ∈ C} is a

minimal or b ∈ C and inf{d − b : d ∈ D} is a minimal. Then we can consider the
following cut, which has the same number of extensions and been considered above:
〈C − b,D − b〉.

Case 2. There is no such b ∈ E1(G, a) as in Case 1. Then KC = {0}. Assume
that P (x+c) ∈ p and |x+c| < inf[|c|]. Then there is c′ such that |x+c′| < inf[|x+c|].
By the definition of P it holds that P (x+ c) ⇐⇒ P (x+ c− (x+ c′)). So we may
replace P (x + c) with P (c − c′). Thus this cut has at most two extensions: with
P (x+ c) or with ¬P (x+ c). �
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4. Ordered o-stable fields

Let R = (R,<,+, ·, 0, 1, . . . ) be an ordered o-stable field.

Lemma 4.1. Any definable subgroup of the additive group of R is convex.

Proof. Assume the contrary, that H is a definable subgroup of (R,+), which is not
convex. Let K be the maximal convex subgroup of H, and for some b > a > 0 an
interval (a, b) contains infinitely many cosets of K. Then infinitely many of these
cosets are not subset of H. Let h ∈ H and c ∈ R be such that 0 < h < a and
ch ∈ (a, b) \ H. Then c > 1 and supH ≤ sup cH. By Lemmata 2.4 and 3.3 the
intersection H ∩ cH is not bounded in H. By Baldwin-Saxl condition (Lemma 2.1)
there are c0, . . . , cn−1 such that

H ∩
⋂
{cH : c ∈ (ah−1, bh−1)} = H ∩

⋂
i<n

ciH

Hence H1 , H ∩
⋂
{cH : c ∈ (ah−1, bh−1)} is not bounded in H. By the trivial

chain condition inside the cut supH we may assume that H1 is minimal. Let c 6= ci
for i < n. Then eventually in the cut defined by supH the equality H1 ∩ cH1 = H1

holds.
Let h ∈ H1 and g < h be not in H1. Let c = hg−1. Then c > 1 and sup cH1 ≥

supH1. So, the intersection H1 ∩ cH1 is unbounded in H1 and since H1 is minimal
this intersection is equal to H1. By the choice of c it holds that cg = h ∈ H1 ⊆ cH1.
Then cg = ch1 for some h1 ∈ H1 and g ∈ H1, giving a contradiction. �

In [8] it has been shown that each weakly o-minimal ordered field is real closed.

Theorem 4.2. Let R be an o-stable ordered field with boundedly many convex
definable subgroups of the additive group. Then R is weakly o-minimal and real
closed. In particular, if R is a strongly o-stable ordered field, then it is o-minimal.

Proof. Assume the contrary, that R is not weakly o-minimal. Then there is a
definable subset A with infinitely many convex components. So we may assume
that there are convex components [ai] for i < ω0 such that [ai] < [aj ] iff i < j.
Let 〈C,D〉 be a cut defined by sup

⋃
i<ω0

[ai]. Then supC = sup(H + a) for some
convex definable subgroup H. Since the ϕ-rank of A inside 〈C,D〉 is finite, for
ϕ(x; y) , x ∈ (y+A) there is a definable subset B of A which at the cut 〈C,D〉 has
the following property: if B ∩ (B + g) is not eventually an empty set, then these
sets are eventually equal.

Let H be a non-zero subgroup. Then the eventual stabilizer KB of B − a is not
bounded in H. By Lemma 4.1 KB is convex. Then KB = H By Theorem 3.12
eventually B equals to B + KB = B + H, which is eventually equal to H. That
gives a contradiction.

Thus H is a zero subgroup. Let b1 < c1 < b2 < c2 < · · · < bn < cn < . . .
be an infinite sequence of elements such that bn ∈ B and cn 6∈ B. Let α be an
infinitesimal relatively bn+1 − cn and cn − bn for all n. Let C = supn<ω bn. Then
supC = supn<ω bn = supn<ω bn + α = supC + α. Thus we find another cut
whose eventual stabilizer now is not a zero group. So we may repeat the above
consideration. �

Due to this theorem it is quite natural to ask the following

Question 2. Is there an ordered o-stable field which is not weakly o-minimal? Is
an ordered o-stable (o-superstable, or o-ω-stable) field real closed?
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5. Ordered non-valuational o-omega-stable groups

Throughout this section G is an ordered group whose elementary theory is non-
valuational o-ω-stable.

Simple examples of non-valuational (or even strongly) o-ω-stable ordered groups
which are not o-minimal are the following: (R, <,+, α·Q), where α is some real num-
ber. Other examples will be considered in Subsection 5.1. Note that by Lemma 2.4
the elementary theory of (R, <,+,Q, α ·Q) is not o-stable for any irrational α.

Lemma 5.1 (Descending chain condition). There is no infinite descending chain
of definable subgroups in an ordered non-valuational o-ω-stable group.

Proof. Since there is no bounded subgroups, all non-zero definable subgroups are
consistent with the cut +∞. Now we can apply the o-omega-stable chain condition.
�

Claim that since an o-ω-stable group is divisible, the ordering of G is dense.
The following theorem immediately follows from Theorem 3.13:

Theorem 5.2. Any formula with the least Morley rank and degree in the cut +∞
eventually is a coset of the least definable non-trivial subgroup of G. In particular,
for any two definable eventually minimal subsets A and B there is an element g
such that eventuall A+ g equals B.

Immediately we obtain the following

Corollary 5.3. Any formula of Morley rank 1 in the cut +∞ eventually is a finite
union of cosets of the least definable non-trivial subgroup of G.

Since any type consistent with the cut +∞ is definable, we can speak of the
eventual fixer of a type. Let p ∈ S1(G) be consistent with the cut +∞, contain
ϕ(x) and have the same Morley rank and degree. Let

Fix+∞(p) = {g ∈ G : g + α |= p for some (∼ any) α |= p}

It is easy to check that if ϕ(x) has the least positive Morley rank and degree
then Fix+∞(p) = Kϕ.

Lemma 5.4. Morley rank of the eventual fixer of a type in the cut +∞ is not
bigger than Morley rank of the type in this cut.

Proof. If Morley rank of a type in the cut +∞ is 1, then obviously, Morley rank
of its eventual fixer is 1. If Morley rank of a type in the cut +∞ is bigger than
1, then by Corollary 5.3 we can consider the quotient group G′ of G modulo the
least definable non-trivial group. By Lemma 1.12 G′ is a ω-stable. Claim that the
preimage of the fixer of the quotient type in G′ will be the eventual fixer of the
type in G. Since for ω-stable group the similar fact holds, the lemma follows. �

5.1. Examples of ordered strongly o-ω-stable groups. Consider a divisible
subgroup K = (K,+,−, . . . ) = (K,LK) of the group of reals, possibly with an
extra structure, which has zero intersection with the group of rationals Q. Let
G = Q +K. We may assume that the elementary theory TK of K = (K,+,−, . . . )
admits quantifier elimination.



22 VIKTOR VERBOVSKIY

We construct the following structure: G = (G,<,+,−, Q, . . . ), where Q stands
for unary predicate naming the set Q of rational numbers. For each relation Rn of
K we define a relation with the same name R on G by

G |= Rn(a1, . . . , an) ⇐⇒ K |= R(a1 +Q, . . . , an +Q)

By other words we define the structure of K on the quotient group G/Q.

Theorem 5.5. The elementary theory T of G admits quantifier elimination.

Proof. Let ϕ(x, ȳ) be a conjunction of formulae of the following forms and its
negation:

(1) nx = t;
(2) nx < t;
(3) t < nx;
(4) Q(nx+ t);
(5) ψ(n1x+ t1, . . . , nkx+ tk), where ψ(z1, . . . , zk) is a formula of LK;

here t and ti are terms in ȳ.
We are going to eliminate existential quantifier in the formula: ∃xϕ(x, ȳ).
Since formulae of the form (1)− (4) are stable under multiplication by a positive

natural number, we may assume that n’s in subformulae of ϕ of these form are
the same. Obviously, nx = t1 ∧ nx = t2 is equivalent to nx = t1 ∧ t1 = t2, and
¬nx = t is equivalent to nx < t∨ nx > t. Thus we may assume that the formula ϕ
contains at most one positive occurrence of a formula of the form (1). Also we may
assume that the formula ϕ contains at most one positive occurrence of a formula
of the form (2) and of the form (3). Indeed, nx < t1 ∧ nx < t2 is equivalent to
(nx < t1 ∧ t1 < t2) ∨ (nx < t2 ∧ t2 ≤ t1).

Consider Q(nx + t1) ∧ Q(nx + t2). It is equivalent to Q(nx + t1) ∧ Q(t2 − t1).
Hence, we may assume that the formula ϕ contains at most one subformula of the
form (4).

Assume that ϕ contains a subformula of the form (1). Then we can replace nx
with t in subformulae of the form (2)−(4). Consequently, ∃xϕ(x, ȳ) is equivalent to
(∃x(nx = t∧ψ(n1x+ t1, . . . , nkx+ tk)))∧ θ(ȳ). For simplicity of notation we omit
θ. By the construction of G the formula ψ(n1x+ t1, . . . , nkx+ tk) is equivalent to
ψ(n1x+t1+q1, . . . , nkx+tk+qn) for arbitrary rational qi. Then ∃x(nx = t∧ψ(n1x+
t1, . . . , nkx + tk)) is equivalent to ∃x(nx = t + q ∧ ψ(n1x + t1, . . . , nkx + tk)) for
arbitrary q, which in turn is equivalent to ∃x(Q(nx− t)∧ψ(n1x+ t1, . . . , nkx+ tk)),
which can be considered as a formula ∃x(nx = t∧ψ(n1x+ t1, . . . , nkx+ tk)) of the
language LK in TK. Since by our supposition TK admits quantifier elimination, we
can omit the existential quantifier.

Thus we may assume that ϕ does not contain a subformula of the form (1). Then
ϕ(x, ȳ) has the following general form:

v1 < nx < v2 ∧Q(nx, v3) ∧
∧
i

¬Q(nx,wi) ∧ ψ(n1x+ t1, . . . , nkx+ tk)

By the construction of G we may replace x with x + q for any rational q. So the
subformula v1 < x < v2 can be replaced with v1 < v2. Again by the construction
of G we may replace considering a formula

∃x

(
Q(nx, v3) ∧

∧
i

¬Q(nx,wi) ∧ ψ(n1x+ t1, . . . , nkx+ tk)

)
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with considering the following formula of K

∃x

(
nx = v3 ∧

∧
i

nx 6= wi ∧ ψ(n1x+ t1, . . . , nkx+ tk)

)
Since TK admits quantifier elimination, we may eliminate the existential quantifier.

Clearly, other cases are similar. So, T admits quantifier elimination. �

Now let K be an arbitrary abelian torsion-free omega-stable group with cardi-
nality at most continuum. Claim that here by an omega-stable group we mean
totally transcendental group, not o-omega-stable group. Then K as a pure group
is a direct product of copies of the set Q of rationals and the number of copies is
equal to the cardinality of K. Let {aα : α < |K|} be a linearly independent over
Q subset of the set of reals R. Then there is an isomorphism τ of K as a pure
group onto a group of the form

∑
α<|K| aα ·Q, which can be ordered by the natural

ordering of reals.
Let G be constructed from τ(K) as above. The previous theorem implies the

following:

Theorem 5.6. Let the elementary theory TK of K is ω-stable. Then the theory T
is strongly o-ω-stable. Moreover if in K a formula ϕ(x) has Morley rank n, then
for any cut 〈C,D〉 of G Morley rank of the corresponding formula ϕ(x) inside the
cut 〈C,D〉 equals n+ 1.

6. Unary definable function and predicates

Throughout this subsection G is an ordered group whose elementary theory is
non-valuational o-stable and is not weakly o-minimal. We assume also that there
is the least non-trivial definable subgroup G1 of G. Claim that if G is o-ω-stable
and non-valuational, then G1 does exists. One more supposition is that the full
induced structure on G1 is a non-valuational weakly o-minimal structure. Claim
that it cannot be o-minimal because for any g 6∈ G1 the intersection (−∞, g) ∩G1

is not an interval in G1.
Weak o-minimality of G1 implies that for any cut s = 〈C,D〉 and any definable

subset A eventually in the cut s the set A consists of cosets of G1. Indeed A∩ (g+
G1) is a finite union of convex sets. Hence either eventually in s the intersection
A ∩ (g +G1) is equal to g +G1 or is empty. Let

B , A \ (∪{g +G1 : A ∩ (g +G1) eventually in s equals g +G1})
Obviously, the intersection B ∩ (g +G1) is empty for any g. It is sufficient now to
show that eventually in s the set B is empty. If not we define function

f(g, c) , supB ∩ (g +G1) ∩ (−∞, c)

where g runs over G and c over C. Since the formula

ϕ(x, a, c) , x ∈ ∪{g +G1 : f(g, c) < a}
has not the strict order property inside any cut the image of f is finite. It means
that B is bounded in C, that is eventually in s it is empty.

We shall use the following fact, proved by R. Wencel:

Fact 6.1. [17] Let M be an ordered non-valuational weakly o-minimal group. Then
any definable unary function is piecewise strictly monotone and continuous, where
pieces are convex.
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Obviously that this theorem is applicable to any coset of G1:

Corollary 6.2. The restriction of a definable function to any coset of G1 is piece-
wise strictly monotone and continuous.

Theorem 6.3. Let G be an ordered non-valuational o-stable group with a non-
valuational weakly o-minimal minimal non-trivial definable subgroup Any definable
unary function is piecewise monotone and continuous, i.e. there is a finite definable
partition of the group G such that the restriction of the function to any element of
the partition is strictly monotone and continuous. Observe, it is not necessary that
we partition G into convex sets.

Proof. Let f be a definable unary function in G. Since any coset of G1 is non-
valuational weakly o-minimal, the restriction of f onto any coset of G1 is piecewise
monotone and continuous. Let E(x, y) be an equivalence relation which says that
x − y ∈ G1 and the function f is monotone and continuous on the set ((x, y) ∪
(y, x)) ∩ (G1 + x). Since Th(G1) is non-valuational weakly o-minimal there is a
natural number n such that there are at most n equivalence classes of E on any
coset of G1. Observe that E-classes are convex in cosets of G1.

We say that two cosets [a] and [b] of G1 are of the same type if they have the
same number of E-classes, the restriction of f to the first E-class in [a] is strictly
increasing iff the restriction of F to the first class in [b] is strictly increasing, the
same holds if the restriction of f is strictly decreasing or constant and the same
holds for the second E-class, the third one, . . . , and the last one. Clearly there are
finitely many types of cosets of G1 and these types are definable. So, for simplicity
we may assume that all cosets of G1 are of the same types.

We say that a coset [a] of G1 is less than a coset [b] of G1 if the supremum in G
of the first E-class in [a] is less than the supremum in G of the first E-class in [b].

Consider a formula ϕ(x; y) which says that the supremum of the first E-class in
x + G1 is less than y. Since the cut +∞ has no the strict order property, the set
of supremums of the first E-classes of all coset of G1 is finite. So, we may assume
that this set consists of a unique elements, as well as the set of supremums of the
second E-classes, of the third E-classes and so on. Moreover we may assume that
there is only one E-class in each coset of G1.

Since G1 is dense in G and the restriction of f to any coset of G1 is strictly
monotone and continuous, we may construct an extension fa of the restriction of
f on a coset [a] of G1 to the whole group G as follows. Let ai → g, where ai ∈ [a].
Then fa(g) = lim f(ai).

If the restrictions of f and fa to a coset [b] of G1 are not equal, there is a first
convex set in [b] where for any element c either f(c) < fa(c), or f(c) > fa(c).
If the first inequality holds we say that the coset [a] is bigger than the coset [b].
Since there is no strict order property inside the cut +∞, there is a finite definable
partition of G into A0, . . .Am−1 such that for any i < m and for any a, b ∈ Ai it
holds that the restriction of f on the coset [b] of G1 is equal to the restriction of fa

on the coset [b].
Again we may assume that m = 0. Then f is continuous on G. We prove that f

is strictly increasing on G. It follows from the above that f is increasing. Assume
that there are a and b such that f(a) = f(b). Since G1 is dense in G there is an
element c ∈ a+G1 such that a < c < b. Then f(a) = f(c), that contradicts to our
supposition that the restriction of f on any coset of G1 is strictly increasing.
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If f is strictly decreasing or constant in any coset of G1 then the proof is similar.
�

Theorem 6.4. In an ordered non-valuational o-stable group with a non-valuatio-
nal weakly o-minimal minimal non-trivial definable subgroup the algebraic closure
satisfies the exchange principle: if c ∈ acl(Ab) \ acl(A) then b ∈ acl(Ac) \ acl(A).

Proof. Let c ∈ acl(Ab)\acl(A). Since in any ordered structure the algebraic closure
coincides with the definable closure, there is an A-definable function f such that
f(b) = c. By Theorem 6.3 there is a definable subset B containing the element b
such that the restriction of f on B is continuous and is either strictly increasing,
or strictly decreasing. It cannot be constant because then c ∈ acl(A). Obviously,
the restriction of f on B is a bijection between B and C = f(B). Then f−1 can be
defined and b = f−1(c). The last implies that b ∈ acl(Ac). �

In [5] it was proved the following. Let T be stable one-based and let G be a
group interpreted in T . The induced structure on G is of the following kind: G
is abelian-by-finite, there are subgroups Hi, definable over acl(∅), such that in G
every formula is equivalent to a boolean combination of cosets mod the Hi’s. Here
we can apply this result for o-stable groups.

Theorem 6.5. Let G be an ordered non-valuational o-stable group with a non-
valuational weakly o-minimal minimal non-trivial definable subgroup G1. Let the
stable quotient group G/G1 with the full induced structure be one-based. Then any
definable subset of G is a finite union of cosets of definable subgroups intersected
with definable convex sets.

Proof. Let A be a definable subset of G, and 〈C,D〉 a cut in G such that A is
not eventually empty at this cut. First we consider the case when this cut is +∞.
Then eventually A consists of cosets of G1 and we can define the eventual quotient
A/G1 of the set A by the following way: g +G1 ∈ A/G1 iff eventually g +G1 is a
subset of A. Since G/G1 is one-based, A/G1 is a finite union of cosets of definable
subgroups of G/G1. Let B be the lift of the eventual quotient A/G1 to G. So for
each g ∈ G eventually B ∩ (g +G1) is equal to A ∩ (g +G1). Let

f(g) = inf{a ∈ G : B ∩ (g +G1) ∩ (a,∞) = A ∩ (g +G1) ∩ (a,∞)}
Since there is no the strict order propery inside the cut +∞ witnessed by the
formula ϕ(x, a) , x ∈

⋃
f(g)<a g +G1 the image of f must be finite. So there is a

definable convex unbounded set U such that A ∩ U = B ∩ U .
Now assume that 〈C,D〉 is of the form (a− 0, a). Since eventually in (a− 0, a)

the set A consists of cosets of G1 we can repeat the above arguments.
Thus in some neighbourhood of a point in G set A equals the finite union of

cosets of definable groups of G.
Let E be an equivalence relation which says that each equivalence class is a

maximal convex set such that for any a and b from this set eventually in the cut
(a− 0, a) the set A is equal to A+ a− b, that is the eventual in (a− 0, a) quotient
A/G1 is equal to the eventual in (b − 0, b) quotient A/G1. Since the group G is
non-valuational, the equivalance relation may contain at most finitely many infinite
E-classes. Claim that since G is dense each finite E-class consists of one element.
If there are infintely many one-element E-classes then there is an open interval
consisting of one-element E-classes. Let a be in this interval. Then by the above
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arguments there is b < a such that A ∩ (b, a) = B ∩ (b, a), implying that (b, a) is a
subset of an E-class. Thus E has finitey many equivalence classes and the theorem
is proved. �
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