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Abstract

We generalize the Hart-Shelah example [1] to higher in�nitary logics. We build, for each

natural number k ≥ 2 and for each in�nite cardinal λ, a sentence ψλk of the logic L(2λ)+,ω
that (modulo mild set theoretical hypotheses around λ and assuming 2λ < λ+m) is cat-

egorical in λ+, . . . , λ+k−1 but not in ik+1(λ)+ (or beyond); we study the dimensional

encoding of combinatorics involved in the construction of this sentence and study var-

ious model-theoretic properties of the resulting abstract elementary class K∗(λ, k) =
(Mod(ψλk),≺(2λ)+,ω) in the �nite interval of cardinals λ, λ+, . . . , λ+k.

Keywords: Model theory, in�nitary logic, categoricity, abstract elementary classes.

The study of categoricity transfer has been central to model theory since Morley’s

theorem; the question of �nding extensions of this theorem to in�nitary contexts and to

abstract elementary classes has been a major source of results. Many central concepts of

stability theory, both in �rst order and in its generalizations, are essential byproducts of

the theory built in order to generalize the original Morley theorem.

One of the most important landmarks along this path was the Categoricity Transfer

result for Lω1,ω due to the �rst author: if a sentence ψ is categorical in ℵn for all n < ω

and the weak GCH holds for the ℵn’s (2ℵn < 2ℵn+1 for all n < ω) thenψ is categorical in
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all cardinals (see [2] and [3]; although these are two references, they correspond to “Part

A” and “Part B” of one big paper from 1983). Notice the unusually strong assumption!

An example from 1990 due to Bradd Hart and the �rst author of this paper [1] estab-

lished the (surprising) necessity of that strong assumption: the existence of few models at

all the ℵn’s is needed to get the eventual categoricity transfer for Lω1,ω: they provide, for

each positive k ∈ ω, an example of a sentence ψk in Lω1,ω categorical in ℵ0,ℵ1, · · · ,ℵk
but not eventually categorical: there exists some cardinal greater than ℵk where categoric-

ity fails.

That important example has later been referred to as the Hart-Shelah example. In

many ways, the existence of such sentences points to an interesting failure of the “cate-

goricity transfer” (Morley’s theorem for �rst order logic, for countable theories) at small
cardinalities, in the absence of further set theoretical hypotheses. Our work extends those

results.

The present paper shows that a similar example also exists for the stronger logic

L(2λ)+,ω. A corollary of our result is that any extension of the results from [2] and [3] to

stronger logics will require to assume categoricity at all cardinalities λ, λ+, . . . , λ+n, . . .

for all n < ω.

Later, the �rst author has attempted an extension of the main result from [2] and [3]

to Abstract Elementary Classes. These are more general than classes axiomatized by the

logic L(2λ)+,ω.

Our construction provides, for each in�nite cardinal λ and each k ∈ (2,ω), a sentence

ψk of L(2λ)+,ω that is categorical in λ, λ+, . . . , λ+k but is not categorical in any cardinality

µ ≥ ik+1(λ)+.

The shift of focus from in�nitary logic to abstract elementary classes entails in many

cases using Galois (orbital) types instead of syntactic types; although this shift is natural,

compactness and locality properties in general do not transfer to Galois types. In partic-

ular, tameness and type-shortness do not hold in general for Galois types. Tameness was

isolated by Grossberg and VanDieren [4]; later, Baldwin and Shelah [5] constructed an ex-

ample of failure of tameness, based on an almost free non-Whitehead group. More recently,

Boney and Unger have provided serious set theoretic reasons for the failure of tameness

in AECs [6].

In [7], Baldwin and Kolesnikov study again the Hart-Shelah example: they prove that

for the sentence ψk of Lω1,ω of the example, the corresponding AEC (for k ≥ 3)

KHS(ω1, k) = (Mod(ψk),≺ω1,ω)

• has disjoint amalgamation,

• is Galois stable exactly in ℵ0,ℵ1, . . . ,ℵk−1,

• is (< ℵ0,≤ ℵk−1)-tame.
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Moreover, the AEC axiomatized by their sentenceψk fails (ℵk−1,ℵk)-tameness. This is an

immediate consequence of the failure of categoricity transfer and the upward categoricity

theorem for tame AECs due to Grossberg and VanDieren [8].

Baldwin and Kolesnikov really study a slight variant of the Hart-Shelah example, pre-

sented in the language of group actions and revealing the �liation to the early Baldwin-

Lachlan example of an ℵ1-categorical theory which is not almost strongly minimal.

More recently, Boney [9] has continued this study of the behavior of the Hart-Shelah

example; he has proved that the class KHS(ω1, k) has a “good ℵm-frame” for allm ≤ k−1
but cannot have a good frame above by the failure of stability. Then, Boney and Vasey [10]

continue this study and show �rst that the frame at ℵk−1 cannot be “successful”. They

study good frames in connection with the Hart-Shelah example: for frames around the

ℵn’s (n < ω) the Hart-Shelah example is a natural place to look for “boundary properties”:

being “successful up to some point” but failing to be successful above.

Our generalization of the Hart-Shelah example addresses the question of how neces-

sary an assumption similar to “few models in all the ℵn’s” is for categoricity transfer in

the case of stronger logics. Here of course the corresponding assumption would be of the

form “few models in all the λ+n (n < ω)”.

We build a sentenceψλk in L(2λ)+,ω, categorical in λ, λ+, . . . , λ+k but not categorical in

ik+1(λ)+. Here are two important di�erences between our approach and earlier ones:

• The sentences are constructed in all cases by �rst building a “standard model” and

then extracting the sequence from it. In the Hart-Shelah example, one predicate Q

“ties together” various copies of groups in a way that ends up linking the “dimension”

of the predicate to the length of induction in the proof of categoricity. In our example,

we need a large family of predicates Qs, s ∈ S = [λ]<ℵ0 .

• The “failure of categoricity” argument at cardinals greater than or equal to ik+1(λ)+
here is done by using a regular �lter D.

A natural question arises, on the “gap” between categoricity and failure of categoricity

ofψλk. Here, we can guarantee categoricity in the interval [λ, λ+k] and failure of categoric-

ity. . . at ik+1(λ)+. Admittedly, this is a very large gap, relatively much wider than what

Baldwin and Kolesnikov have for their version of the Hart-Shelah sentence. The question

remains open whether this gap may be reduced.

In our concluding remarks, we raise some questions connected with the tameness and

frames, inspired by the paper [10]. In particular, we ask whether the methods from that

paper (that worked for the Hart-Shelah sentence) may be generalized to our sentence ψλk.

A note on indexing: the previous papers dealing with constructing examples of sen-

tences where categoricity “stops” are [1], [7] (which proved more model theoretic facts on

a variant of the original example and studied the abstract elementary class determined by

the example; in particular, Galois (=orbital) types, the amalgamation and tameness spectra
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associated with the class), [9] and [10], in which the connection to frames is worked out

(analyzing the Hart-Shelah example enables Boney and Vasey to study limitations to the

existence of good frames). Now, for [1], the “critical” cardinality (the last cardinality of

categoricity) is ℵk. In [7], because of the way they analyze the construction, it is more

natural to work with k ≥ 3 and with k−2 as the critical cardinality. The two other papers

follow this.

Since our paper is directly a generalization of [1], it is more natural for us to revert to

the choice of critical cardinality from there, of course adapted to our context. So, the last

cardinality where we will have categoricity is λ+k−1.

Our notation is standard.

We thank John Baldwin, Will Boney, Rami Grossberg, Alexei Kolesnikov, Sebastien

Vasey and Boban Velickovic for several remarks and valuable discussions concerning (di-

rectly or less directly) this work, as well as for pressing us to provide some clari�cation

of the big construction. The second author is particularly indebted to John Baldwin for

very interesting conversations of the connections between this example and the original

group covers in the strongly minimal context, due to Baldwin and Lachlan [11]. We also

thank Péter Komjath for helpful discussion on the negative partition relation in [12] useful

in our theorem. We also thank the anonymous referee of an earlier version of this paper

for extremely insightful and helpful comments. They (hopefully) led to our improving this

paper. We also thank a second anonymous referee of the version prior to this for remarks

that led to a substantial rewriting and what we believe is a much better presentation of the

results.

1. Construction of the sentence ψλk, in L(2λ)+,ω

Context 1.1. For the rest of the paper, we �x an in�nite cardinal λ and a natural number
k ≥ 2.

We build in this section a new sentence ψλk in the logic L(2λ)+,ω. Our construction

of ψλk requires �rst building a model we will call “canonical”, MI, for an arbitrary index

set I and later taking a conjunction of the �rst order theory of MI along with several

in�nitary sentences describing the behavior of various components of MI. The sentence

ψλk has some similarity to the Hart-Shelah sentence and may be seen as a generalization,

but important di�erences are also present and will be apparent later (the regular group G

and the regular �lter on λ, D). However, it is important to stress that prior knowledge of

the Hart-Shelah is not necessary for an understanding of our construction, as we make it

self-contained.

We will build the model MI around a “spine” I, essentially by coding interactions be-

tween k-element subsets of (k + 1)-element subsets of I, in some combinatorial ways.

Namely, we will de�ne various groups and encode in the model their actions on those k
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and (k + 1)-element subsets of I, focusing especially on the way di�erent k-subsets of a

given (k + 1)-subset of I interact. Finally, a collection of predicates (called Qs) will “tie”

those combinatorial interactions.

De�nition 1.2. Notation and general construction tools. We �x the following basic
objects to use in the construction later.

• S = Sλ := [λ]<ℵ0 = {u ⊂ λ|u is �nite},

• D = Dλ := {A ⊂ S|∃uA ∈ S ∀v ∈ S(uA ⊂ v → v ∈ A)}, the regular �lter on S
generated by sets of the form 〈u〉 = {v ∈ S|u ⊂ v},

• G+ = G+
λ := S(Z2), as a group with the natural operation (f+g)(v) = f(v)+Z2 g(v),

• G = Gλ := {f ∈ S(Z2)| ker(f) = {u ∈ S|f(u) = 0} ∈ D}, as a subgroup of G+ (G ≤
G+ since, if f, g ∈ G, then ker(f), ker(g) ∈ D, so ker(f+ g) ⊃ ker(f)∩ ker(g) ∈ D,
hence ker(f+ g) ∈ D and f+ g ∈ G.

Note that |G| = 2λ.

1.1. The modelMI

Fix a set I for the rest of this section.

We de�ne the group HI and then describe the modelMI.

De�nition 1.3 (The group HI). For our (�xed) I, we let HI := [[I]k]<ℵ0 . So, HI is the set
of �nite subsets of [I]k, with the group operation F1 + F2 := F1∆F2 (symmetric di�erence).
Equivalently, HI may be seen as the set of functions [I]k → Z2 with �nite support. In this
case, F ∈ HI is coded by the function hF : [I]k → Z2 with hF(u) = 1 i� u ∈ F and the group
operation is given by (h1 + h2)(u) = h1(u) +Z2 h2(u).

We now start the (lengthy) description of MI: the universe, basic predicates, projec-

tions between them, other partial functions coded by relations and, crucially, the family
of predicates Qs (for s ∈ S).

De�nition 1.4 (Universe ofMI). The universe ofMI is the union of seven di�erent sorts:

|MI| = I ∪ [I]k ∪ [I]k+1 ∪ ([I]k × S×HI) ∪ ([I]k × S× Z2) ∪HI ∪ ([I]k+1 ×G).

The following remarks on the universe ofMI are important:

• The natural way to think about the universe ofMI is as

|MI|
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consisting of two parts: the “support of the model” (I, [I]k, [I]k+1) and many copies

of (the domains of) the three groups HI, Z2 and G, indexed by elements of S and of

the support part:

‘support part’︷ ︸︸ ︷
I ∪ [I]k ∪ [I]k+1 ∪

HI and copies of the domains of HI, Z2 and G︷ ︸︸ ︷
([I]k × S×HI) ∪ ([I]k × S× Z2) ∪HI ∪ ([I]k+1 ×G) .

• Notice that the intersection between all the pieces of the model is empty.

• The universe of MI depends directly on I and on G, as is clear from the various

pieces. In particular, when the cardinality of I is ≥ λ, the cardinality of MI will be

equal to |I|+ 2λ.

• The universe depends on k as well. Of course in our standard model this dependence

is immediate, as seen from the superindices k and k + 1. In general models later,

we will need projection functions among the predicates in the model in order to

axiomatize the connections between pieces corresponding to abstract versions of I,

[I]k, etc. This dependence on k will be crucial in the “dimension” analysis later.

• The universe also depends on λ, through the appearance of S and G among the

pieces.

De�nition 1.5 (Relations, functions ofMI - the predicatesQs). The structure ofMI consists
of the following items:

• λ-many predicates PM0 , P
M
1,1, P

M
1,2, P

M
2 , (P

M
2,s)s∈S, P

M
3 , (P

M
3,s)s∈S, P

M
4 , P

M
5 ,

• k-many projections π0` : P
M
1,1 → PM0 (` < k) and k + 1-many projections π1` : P

M
1,2 →

PM0 ,

• 2λ-many additional functions FM2 , F
M
3 , F

M
4 , F

M
5 , (F

M
3,g∗)g∗∈G,

• a (3k+ 4)-ary predicate Qs, for each s ∈ S.

Each of these predicates and functions will be discussed in detail in the following paragraphs.

1.1.1. Descriptions of basic relations, functions, and the Qs-predicates
Basic Relations: these consist of a family of λ-many predicates

PM0 , P
M
1,1, P

M
1,2, P

M
2 , (P

M
2,s)s∈S, P

M
3 , (P

M
3,s)s∈S, P

M
4 , P

M
5

de�ned by
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• PM0 = I,

• PM1,1 = [I]k,

• PM1,2 = [I]k+1,

• PM2 = [I]k × S×HI,
• for s ∈ S, PM2,s = {(u, s, h) ∈ PM2 |u ∈ [I]k, h ∈ HI} = [I]k × {s}×HI,
• PM3 = [I]k × S× Z2 (a copy of Z2 for each b ∈ [I]k, s ∈ S),

• for s ∈ S, PM3,s = {(u, s, i) ∈ PM3 |u ∈ [I]k, i ∈ Z2} = [I]k × {s}× Z2,

• PM4 = HI,

• PM5 = [I]k+1 ×G

Remark 1.6. The meaning of PM0 , P
M
1,1, P

M
1,2, P

M
2 , PM3 , PM4 is clear. In the

case of PM2,s, the idea is that we stack “copies” ofHI for eachb ∈ [I]k and each
s ∈ S, and similarly for PM3 , PM3,s. Another way of seeing this is thinking of
the predicates as codifying families, as follows:

• PM2 corresponds to (Hv,s)v∈[I]k,s∈S,

• PM3 corresponds to ((Z2)v,s)v∈[I]k,s∈S,

• PM5 corresponds to (Gu)u∈[I]k+1 .

Projections: We also include, for ` < k, all the projections π0` : P
M
1,1 → PM0 :

π0` (ā) = a`,

and for ` < k+ 1, the projections π1` : P
M
1,2 → PM0 :

π1` (ā) = a`.

The role of these projections is to tie the predicates PM1,1 and PM1,2 to PM0 making them

behave as the corresponding sets of ktuples or k+ 1-tuples.

Other Partial Functions: We also include 2λ-many functions inMI,

FM2 , F
M
3 , F

M
4 , F

M
5 , (F

M
3,g∗)g∗∈G :

• A unary function FM2 with domain PM2 , given by

FM2 (u, s, h) = u,
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• A unary function FM3 with domain PM3 , given by

FM3 (u, s, i) = u,

• for g∗ ∈ G, a unary function FM3,g∗ with domain PM5 , given by

FM3,g∗(u, g) = (u, g∗ + g),

• A binary function FM4 with domain PM2 × PM4 , given by

FM4

(
(v, s, h), h1

)
= (v, s, h+H h1)

• A unary function FM5 with domain PM5 , given by

FM5 (u, g) = u,

A (3k+ 4)-ary predicate Qs, for each s ∈ S. This is the crux of the construction of

the modelMI. The predicate will encode interactions between the di�erent parts of

the model, in a way that will involve dimensional interactions between them. This

predicate on the one hand enables later to move up in the proof of categoricity by

induction k − 1 times from λ to λk and on the other blocks the proof from moving

up to λk+1. It is interpreted inMI as the set of tuples

〈a0, . . . , ak, u0, . . . , uk, x0, . . . , xk−1, yk, z〉

satisfying (for �xed s ∈ S!!) for all hk ∈ HI, i` ∈ Z2(` < k), g ∈ G:

(α) a` ∈ I with no repetitions (` ≤ k),

(β) u` = 〈am|m 6= `〉 ∈ PM1,1 (` ≤ k),

(γ) yk = (uk, s, hk) ∈ PM2 ,

(δ) x` has the form (u`, s, i`) ∈ PM3 (` < k) so i` ∈ Z2,

(ε) z is of the form (u, g) ∈ PM5 , where u = (a0, . . . , ak) ∈ [I]k+1 and

(ζ) (main point)
Z2 |=

∑
`<k

i` = hk(u0) + g(s).

Some general remarks on this de�nition of the modelMI are in point, before giving a

speci�c description for the case k = 2.

Remark 1.7. • (ζ) is the crucial part of the de�nition of the predicates Qs. It provides
the connection between k copies of Z2, one copy of HI, one copy of G and the (k+ 1)-
many k-element subsets of a set of size k+ 1 in I.
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• The role of FM2 is to project PM2 (essentially (Hv,s)v∈[I]k,s∈S) onto its �rst coordinate; to
trace the k-element subset of I it corresponds to. Similarly for FM3 and FM5 .

• The functions FM3,g∗ and F
M
4 encode the actions of the groups G and HI on the corre-

sponding “�bers” over u ∈ [I]k+1 or (v, s) ∈ [I]k × S. The modelMI does not really
include the group operations corresponding to G and HI; it only has the e�ect of the
group actions on the appropriate �bers.

• Notice that +H is de�nable - so in this case there is no need to add an analogue of F4
for copies of Z2:

FM4 (FM4 ((u, s, h), h1), h2) = F
M
4 ((u, s, h), h3)⇔ H |= h1 + h2 = h3.

1.1.2. Illustration of the de�nition ofMI, when k = 2

As an example to visualize the situation, we momentarily �x k = 2. We also �x s ∈ S
and choose some u ∈ [I]k+1 = [I]2+1, u = 〈a0, a1, a2〉. This determines automatically

(using the projections) in the models we have described so far a0, a1, a2 andu0 = 〈a1, a2〉,
u1 = 〈a0, a2〉, u2 = 〈a0, a1〉.

We then have

• copies of Z2 over both u0 and u1,

• a copy of the domain of HI over u2, together with the action of HI on this copy,

• a copy of G over u, again with the action of G over this copy.

Furthermore, we have the predicateQs: it is in this case 3 ·2+4 = 10-ary. The 10-uple

associated with our u is then of the form

(a0, a1, a2, u0, u1, u2, x0, x1, y2, z),

with x0 = (u0, s, i0), x1 = (u1, s, i1), y = (u2, s, h2) and z = (u, g) for some i0, i1 ∈ Z2,
h2 ∈ HI and g ∈ G.

We want to describe when this tuple belongs toQs. The following triangle summarizes

the relevant information:

g

u

h 2
: [
I]
2
→ Z 2

i
1 (0/1)

i0 (0/1)

u 2 u
1

u0
a2

a1

a0
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The tuple (a0, a1, a2, u0, u1, u2, x0, x1, y2, z) belongs to Qs if and only if

Z2 |= i0 + i1 = h2(u0) + g(s).

Therefore, on top of the triangle u we have (when k = 2) four pieces of information

playing: two elements (i0, i1) of Z2 associated to two sides of the triangle, one element h

of HI associated to the third side of the triangle (and the value of h at u0) and �nally one

element g of G associated to the triangle u itself - and the value of g at. . .s.

1.2. The language, the sentence ψλk and the AEC K∗(λ, k)

We now build the sentence ψλk.

De�nition 1.8. We deal with two vocabularies:

• Let τ− be the vocabulary of all the construction above, except the predicates {Qs|s ∈ S}
and

• let τ be the full vocabulary used in the construction ofMI.

Speci�cally,

let τ− = 〈P0, P1,1, P1,2, P2, (P2,s)s∈S, P3, (P3,s)s∈S, P4, P5,

π00, . . . , π
0
k−1, π

1
0, . . . , π

1
k, F2, F3, F4, F5, (F3,g∗)g∗∈G〉

and let τ = τ− ∪ {Qs|s ∈ S}.

Notice that |τ| = |Gλ|+ |S|+ℵ0 = 2
λ
, since |Gλ| = 2

λ
.

De�nition 1.9 (The sentence ψλk). The sentence ψλk ∈ L(2λ)+,ω(τ) is the conjunction

ψλk ≡
∧
T0 ∧ψG ∧ψZ2 ∧ψH

of the �rst order theory T0 ofMI (for in�nite I) and the in�nitary sentences

• ψG ≡ ∀z1z2([P5(z1)∧ P5(z2)∧ F5(z1) = F5(z2)]→ ∨
g∗∈G F3,g∗(z1) = z2),

• ψZ2 ≡ ∀y(P2(y)↔ ∨
s∈S P2,s(y)),

• ψH ≡ ∀y(P3(y)↔ ∨
s∈S P3,s(y)).

We describe in more detail some parts of the previous de�nition.

ψG says that G acts transitively (through the functions F3,g∗ ) on copies of G (�bers of

P5).
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ψH says that there are no “non-standard �bers” in P2: every element of P2 is in some P2,s.

ψZ2 says that there are no “non-standard �bers” in P3: every element of P3 is in some

P3,s

Note that, although there are 22
λ

sentences in the logic, we are only using 2λ of them, as

witnessed by |G| = 2λ.

We will also use the following variant on the standard model: for a set I and a function

f : [I]k+1 × S→ Z2,

we will now build modelsMI,f andM−
I,f.

De�nition 1.10. [The modelsMI,f andM−
I,f] Let f : [I]k+1 × S → Z2 and I a set. Then

MI,f is the τ-model constructed just likeMI, with only one di�erence: the interpretation of
Qs, for s ∈ S, now is the set of tuples

〈a0, . . . , ak, u0, . . . , uk, x0, . . . , xk−1, yk, z〉

(see page 8) with condition (ζ) replaced by

(ζ)∗f Z2 |=
∑
`<k

i` = hk(u0) + g(s) + f(u, s).

The τ−-modelM−
I,f is then de�ned asMI,f � τ−.

We will use the models MI,f later as canonical ways of describing variants in the

choices of elements of the groups when studying models of the sentence ψλk.

We call a τ-structure strongly standard ifM � τ− =MI � τ− for I = PM0 .

De�nition 1.11. (Some abstract classes related to ψλk)

1. Let K1 := {M|M ≈MI,f for some in�nite set I, for some f as in 1.10}. Then K1 is a

class of τ-models.

2. Let K∗(λ, k) := Mod (ψλk) with the strong substructure relation

≺K∗(λ,k):=≺L(2λ)+,ω .

3. M from K∗(λ, k) is standard if PM1,1 = [PM0 ]k and PM1,2 = [PM0 ]k+1 and the πt`’s

correspond to the actual projections sending u ∈ [I]k to its `’th coordinate in I.

Claim 1.12. For anyMI |= ψ
λ
k,MI ≈MI,0, for the function 0 : [I]k+1×S→ Z2 of constant

value 0.
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The proof is immediate from the de�nition.

Claim 1.13. Every N |= ψλk is isomorphic to a strongly standardM.

Proof Let N |= ψλk and let I := PN0 . Then N � τ− ≈MI � τ− (following the de�nition

of the sorts of the vocabulary τ−). Then de�ne the interpretations of the relevant predicates

Qs onN by mapping directly from their de�nition on the strongly standard modelMI. �

Next, a straightforward observation.

Claim 1.14. MI,f is strongly standard.

Proposition 1.15. (K∗(λ, k),≺K∗(λ,k)) is an abstract elementary class with Löwenheim-
Skolem number 2λ.

We do not investigate properties of this AEC in this paper; however, we propose some

conjectures at the end of the paper on their properties and on their connection with good

frames and the work of Boney and Vasey [10].

2. Categoricity of ψλk below λ
+k

In this section we study the categoricity spectrum of ψλk. The strategy consists of the

following steps:

• Since the complexity of models of ψλk hinges on the predicates Qs, and these ulti-

mately depend on choices of elements of the copies of the groups above the “sup-

ports” (in the standard case, k-element subsets of (k + 1)-sets of the index set), we

will develop a language of choice functions to deal with these.

• Furthermore, comparing di�erent models will amount to dealing with correction
functions associated to the choice functions. We also set up a language for these.

• Later (Lemma 2.5) we establish that for every model N of ψλk and global choice for

Nwith correction function f there are an index set I and an isomorphism h between

N andMI,f.

• Therefore, establishing categoricity in a cardinality κ amounts to showing that for

everyN |= ψλk of cardinality κ there is a global choice forNwith correction function

0 (for κ < λ+k; see Theorem 2.14).

• The rest of the section is devoted to showing that if M |= ψλk and |M| < λ+k then

there is a global choice function forMwith correction function 0 - with the cardinal-

ity restriction in place, we may conclude thatψλk is categorical in λ+, λ++, . . . , λ+k−1.

This part requires several lemmas on extending choice functions while keeping the

correction function 0; these lemmas depend crucially on the cardinality being of the

form λ+m form a natural number below k. This is why the proof in this section only

provides categoricity up to λ+k−1.
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2.1. Solutions, choices and correction functions
We will now de�ne choice functions and correction functions. These will be used to

study models of ψλk of cardinality λ+, . . . , λ+k−1.

Expanding choices from partial to global ones is the crucial issue.

De�nition 2.1 (Partial M-(J0, J1, J2)-choice). ForM |= ψλk, we say (x̄, ȳ, z̄) is a partial
M-(J0, J1, J2)-choice if

(a) J0, J1 ⊂ PM1,1, J2 ⊂ PM1,2,
(so, in the case of standard models, J0, J1 ⊂ [I]k, J2 ⊂ [I]k+1)

(b) x̄ = 〈xu,s|s ∈ S, u ∈ J0〉, where

xu,s ∈ (PM3,s)
−1(u) ⊂ PM3,s.

(c) ȳ = 〈yu,s|s ∈ S, u ∈ J1〉,

yu,s ∈ HMu,s := (PM2,s)
−1(u) ⊂ PM2,s.

(d) z̄ = 〈zu|u ∈ J2〉,
zu ∈ GMu := (FM5 )−1(u) ⊂ PM5 .

Therefore x̄ essentially chooses an element i in the corresponding copy of Z2, ȳ chooses

a h in the corresponding copy of HI, z̄ chooses a g in the corresponding copy of G, for

each relevant (u, s).
So, xu,s is some element in the ‘�ber’ of u via FM3 , and analogously for ȳ and z̄.

De�nition 2.2. We call (x̄, ȳ, z̄) a partialM-J-choice if it is anM-(J, J, JM∗ )-choice, where

JM∗ :=
{
a ∈ PM1,2

∣∣∣ ∧
m≤k
∃b ∈ J[

∧
`<m

(π1` (a) = π
0
` (b)∧

∧
`∈[m,k[

π0` (b) = π
1
`+1(a)]

}
.

Similarly, we say that (x̄, ȳ, z̄) is a globalM-choice if it is a partialM-PM1,1-choice. We will
sometimes just say “M-choice” (if clear from context).

The previous is a way of describing, in our language of projections, that (in the standard

case) JM∗ consists of the k + 1-element sets such that all their (k + 1-many) k-element

subsets are in J).

So, whenM is standard, we have that

JM∗ =
{
〈a`|` ≤ k〉

∣∣∣ ∧
m≤k
〈a`|` 6= m〉 ∈ J

}
.
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De�nition 2.3. Fix a standard M and a M-(J0, J1, J2)-choice (x̄, ȳ, z̄). Then we let the
correction function f forM and (x̄, ȳ, z̄) be the function such that

1. Dom (f) is the set of pairs (u, s) such that

(α) u = 〈a`|` ≤ k〉 ∈ J2 ⊂ PM1,2,
(β) if um := 〈a`|` ≤ k, ` 6= m〉, u` ∈ J0 for ` < k, uk ∈ J1 ⊂ PM1,1,

2. rng (f) ⊂ Z2, and
3. (recall xu`,s, yuk,s, zuk are from the choice)

f(u, s) = 0⇔ 〈a0, . . . , ak, u0, . . . , uk, xu0,s, . . . , xuk−1,s, yuk,s, zuk〉 ∈ QMs .
The next claim is a general observation on correction functions and choices.

Claim 2.4. For everyM ∈ Mod (ψλk), there is anM-choice (x̄, ȳ, z̄).

Proof Immediate: just construct the tuples. There the demands are on each choice

separately. There are no demands connecting di�erent choices. �
The next lemma is a crucial step. It shows how to build possible isomorphisms from

an arbitrary model N of ψλk to standard modelsMI,f.

Lemma 2.5. Let N ∈ Mod (ψλk) and let (x̄, ȳ, z̄) be a global N-choice with correction
function f. Then, there exist a set I and an isomorphism

h : N→MI,f.

Furthermore, the isomorphism behaves as follows on the global N-choice (x̄, ȳ, z̄):

h(xu,s) = (h(u), s, 0Z2), h(yu,s) = (h(u), s, 0HI), h(zu) = (h(u), 0G).

Proof Let N |= ψλk, and �x a global N-choice (x̄, ȳ, z̄) with correction function f. We

build I and h as in the statement.

First, we extract the predicates for the model M = MI,f: let I := PN0 . Clearly, PM0 =
PN0 .

We now de�ne h, following the predicates of the domain of N (remember that the

domain of N is the disjoint union

PN0 ∪ PN1,1 ∪ PN1,2 ∪ PN2 ∪ PN3 ∪ PN4 ∪ PN5

and the predicates PN2 and PN3 are each partitioned into classes PN2,s, P
N
3,s (s ∈ S)).

• h is the identity on PN0 = I = PM0 .

• if x ∈ PN1,1, ` < k, π0` (x) = x` (∈ PN0 ), then h(x) := (h(x0), . . . ,h(xk−1)).
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• similarly, if x ∈ PN1,2, ` < k+1, π1` (x) = x` (∈ PN0 ), then h(x) := (h(x0), . . . ,h(xk)).

• if x ∈ PN2,s then h(x) = (h(FN2 (x)), s,−) ∈ [I]k × S × HI. For now we only know

the third coordinate must be an element of HI. Also, as soon as we know the

third coordinate of the image of one element x0 of a �ber inside the predicate PN2,s,

we also know the third coordinate for all other elements x of that �ber: since the

action given by FN4 is transitive (as encoded by T0), there is some h0 ∈ PN4 such that

FN4 (x0, h0) = x. Then (if we also have a de�nition of h on elements of PN4 ), we have

that h(x) = h(FN4 (x0, h0)) = F
N
4 (h(x0),h(h0)).

• Similarly, if x ∈ PN3,s, then h(x) = (h(FN3 (x)), s,−) ∈ [I]k×S×Z2 and just as before

the value of h on one element of the �ber will determine the rest.

• And similarly, if x ∈ PN5 , then h(x) = (FN5 (x),−) ∈ [I]k+1 × G. Again, since

N |= ψG, the action (“of G”) encoded by the family of functions FN3,g∗ is transitive,

and therefore knowing a second coordinate for one element of a �ber of PN5 implies

knowing it for all elements of the corresponding �ber that predicate.

It therefore remains, in order to complete the de�nition, to make choices of images

of elements of PN4 (images in HI - but this is easy, as HI is de�nable in our structure) and

selecting, for each s ∈ S, one image in each one of the relevant �bers. We now use the

correction function f and the predicates Qs.

So �x s ∈ S. Checking the equivalence we are looking for, namely

QNs (a0 . . . aku0 . . . ukx0 . . . xk−1ykz)

m
QMI,fs (h(a0) . . .h(ak)h(u0) . . .h(uk)h(x0) . . .h(xk−1)h(yk)h(z)),

amounts to answering the question

Z2 |=
∑
`<k

i` = hk(u0) + g(s) + f(u, s)

m ?

Z2 |=
∑
`<k

h(i`) = hk(h(u0)) + g(h(s)) + f(h(u),h(s))

Now letting
h(xu,s) = (h(u), s, 0Z2),
h(yu,s) = (h(u), s, 0H),
h(zu) = (h(u), 0G)
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works for these equations: we are assigning 0 on the missing coordinates (third or second)

– exactly to those elements of the �bers (xu,s, yu,s, z(u)) that had already been picked by

the choice function.

Why is this enough?

Well, our de�nition turns the equation (at the choices) into

Z2 |= 0 =
∑
`<k

0 = 0(?) + 0(?) + f(?).

But, since f was a correction function for the choice function (x̄, ȳ, z̄),

f(u, s) = 0⇔ 〈a0, . . . , ak, u0, . . . , uk, xu0,s, . . . , xuk−1,s, yuk,s, zuk〉 ∈ QNs ,
and therefore our de�nition of h works. �

De�nition 2.6 (Canonical choice). FixM = MI,f, and let (x̄, ȳ, z̄) be theM-choice given
by

xu,s = (u, s, 0Z2),

yu,s = (u, s, 0HI),

zu = (u, 0G).

This is by de�nition the canonicalM-choice.

Claim 2.7. 1. If (x̄, ȳ, z̄) is a global M-choice, M |= ψλk, and f is the M-correction
function for (x̄, ȳ, z̄), and f is identically zero, thenM ≈MI for some I.

2. If f above is zero on PM1,1, P
M
1,2 and f = f

′ � J2 × S, thenM ≈MP1,f ′ .

Proof Part (1) is a consequence of 2.5. Part (2) is clear. �

Corollary 2.8. The correction function forMI,f with the canonicalM-choice (x̄, ȳ, z̄) is f.

Proof Similar to the previous: add zeroes to f as in 2.7. �

2.2. Models of cardinality below λ+k

The rest of the section contains several extension lemmas for models ofψλk of cardinal-

ities λ, λ+, etc.: the crucial issue is to build a choice function with null correction function.

This may be started �rst at cardinality λ, and then pushed up. But each step up exacts an

“amalgam of choices” possible only up to cardinality λ+k−1.

The next lemma is the �rst step in the categoricity proof. It provides a speci�c kind

of extension of choice: from an M-J-choice with correction function zero to a global M-

choice with correction function zero when J consists of k-subsets of the “support part” of
M that omit some �xed setW of at most k-many elements. Also, it is worth stressing the

lemma is about standardM.
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For instance, when m = 2 < k = 3, the lemma would mean we start with a choice

function (x̄, ȳ, z̄) for all “triangles” and “tetrahedra” omitting some �xed pair {a, b} . . . and

then would extend the choice function (with correction function zero) to all triangles and

tetrahedra.

Lemma 2.9. [Extension property forW of sizem < k, |PM0 | ≤ λ]
Assume m < k,M |= ψλk,M is strongly standard, |PM0 | ≤ λ,W ⊂ PM0 ,W = {b`|` < m}

with no repetition, J = {u ∈ PM1,1|W 6⊂ u} (note that u ∈ [PM0 ]k, asM is standard), (x̄, ȳ, z̄)
is anM-J-choice with correction function f0, identically zero. Then, we can extend (x̄, ȳ, z̄)
to anM-choice with correction function identically zero.

Proof

Part A: Without loss of generality, by 1.13, since M is strongly standard, I = PM0 . Let

〈āα|α < β∗〉 list PM1,1 with 〈āα|α < α∗〉 listing J (we have also used u for naming

these āα’s). Let 〈¯bγ|γ < γ∗〉 list {ā ∈ [I]k+1|āwith no repetition andW ⊂ rng (ā)}
and γ∗ < λ+.

Our hypothesis is then that we have choice functions for all u ∈ PM1,1 such that

u 6⊃W, with correction function zero.

We list these choice functions as follows: Let, for α < α∗,

xāα,s = (āα, s, iα,s) ∈ (Z2)āα,s, iα,s ∈ Z2,

yāα,s = (āα, s, hα,s) ∈ Hāα,s, hα,s ∈ HI,
z¯bγ = (¯bγ, gγ), gγ ∈ G.

We now have to extend these choice functions to those u such that u ⊃W.

We will now choose xāα,s = (āα, s, iα,s), yāα,s = (āα, s, hα,s), z¯bγ = (¯bγ, gγ) for

α∗ ≤ α < β∗ and appropriate γ.

Without loss of generality, β∗ ≤ α∗ + λ, γ∗ ≤ λ. (Remember S = [λ]<ℵ0 .)

Part B: First, we choose iα,s = 0Z2 for α∗ ≤ α < β∗, s ∈ S. This provides the choices

xāα,s for α∗ ≤ α < β∗.
Second, we choose the relevant h functions. We try a value for hα,s for α∗ ≤ α <

β∗ and s ∈ S so that

(*) if γ ∈ s ⊂ λ,
¯bγ = 〈bγ` |` ≤ k〉, u

γ
n = 〈bγ` |` ≤ k, ` 6= n〉, let ε(γ, n) < β∗

be such that u
γ
n = āε(γ,n) then

hε(γ,k),s(ā
ε(γ,0)) = 0m

〈bγ0 , . . . , b
γ
k , u

γ
0 , . . . , u

γ
k , xε(γ,0),s, . . . , xε(γ,k−1),s, (ā

ε(γ,k), s, 0H), (u
γ, 0G)〉 ∈ QMs .
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Note that all the elements in the bottom part of the previous have already been

de�ned previously.

Let t(γ, s) be 0 if the bottom statement is true, 1 otherwise. For our �xed s ∈ S,

let As be the (�nite) set {ε(γ, k) | γ ∈ s}; we now de�ne hα,s for our �xed s and at

the relevant u. If α /∈ As, then let hα,s(u) = 0 for all u. If α ∈ As, we proceed as

follows. First we consider the set sα := {γ ∈ s | ε(γ, k) = α} and we then de�ne

hα,s(u) =

{
t(γ, s), if u = aε(γ,0) for some γ ∈ sα,
0, otherwise.

Notice that these decisions are made for each s separately, and that as we �x s we

really deal with one α ∈ [α∗, β): when we choose hα,s we only have to consider

γ < γ∗ such that ε(γ, `) ∈ s. There are only �nitely many such γ’s. Moreover, if

γ1 6= γ2 ∈ s and ε(γ1, k) = α = ε(γ2, k) then necessarily ε(γ1, 0) 6= ε(γ2, 0), as

¯bγ is reconstructible from α and ε(γ1, 0).

So, our de�nition of the functions hε(γ,k),s does not have contradictory demands;

since the set sα is �nite, the function de�ned has �nite support.

Part C: Having extended the choices x and y, it only remains to extend the z part. Let

us now �x γ and �nd a g ∈ G that will provide a choice (with correction function

zero) for the corresponding
¯bγ. [Recall that if

¯b ∈ [I]k+1 is such that
¯b ⊃ W, then

¯b = ¯bγ for some γ < γ∗.]

But then the set

S∗γ =
{
s ∈ S

∣∣∣M |= Qs
(
b
γ
0 , . . . , b

γ
k , ā

ε(γ,0), . . . , āε(γ,k),

xuγ0 ,s
, . . . , xuγk−1,s

, yuγk ,s
, (uγ, 0G)

)}
belongs to D. This last point holds by the regularity of D: if s0 ∈ S∗γ then the tuple(

b
γ
0 , . . . , b

γ
k , ā

ε(γ,0), . . . , āε(γ,k), xuγ0 ,s0
, . . . , xuγk−1,s0

, yuγk ,s0
, (uγ, 0G)

)
belongs to Qs0 ; now, if s ⊃ s0, the corresponding tuple(

b
γ
0 , . . . , b

γ
k , ā

ε(γ,0), . . . , āε(γ,k), xuγ0 ,s
, . . . , xuγk−1,s

, yuγk ,s
, (uγ, 0G)

)
will belong to Qs.

Next choose z¯bγ := (¯bγ, g) with g given by

g(s) =

{
0 if s ∈ S∗γ
1 if s 6∈ S∗γ

Now then, with these x, y and z, the equation holds.
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�2.9
We now deal with systems of choices, trying to obtain extensions with correction

function zero at cardinalities above λ. In what follows, as usual, P−(m2) denotes P(m2) \
{m2}.

De�nition 2.10 (Compatible system of choices). LetM |= ψλk be strongly standard, A∅ ⊂
PM0 ,m1 +m2 < k and a0, . . . , am2−1 di�erent elements of PM0 \A∅. Then

〈As, (x̄, ȳ, z̄)s|s ∈ P−(m2)〉

is a compatible λ+m1-P−(m2)-system of choices i�

1.

⋃
s∈P−(m2)

As = A∅ ∪ {a0, . . . , am2−1}, |A∅| ≤ λ+m1 , As = A∅ ∪ {at|t ∈ s}.
2. (x̄, ȳ, z̄)s is aM-[As]k-choice, for each s ∈ P−(m2).
3. For every s, t ∈ P−(m2), s ⊂ t⇒ (x̄, ȳ, z̄)s ⊂ (x̄, ȳ, z̄)t

4.

Lemma 2.11. If 〈As, (x̄, ȳ, z̄)s|s ∈ P−(m2)〉 is a compatible λ-P−(m2)-system withm2 <

k (with correction function zero for each s ∈ P−(m2)), then there is anM-
⋃
s∈P−(m2)

As-
choice (x̄, ȳ, z̄) extending all the (x̄, ȳ, z̄)s, for s ∈ P−(m2), with correction function zero.

Proof Let m2 < k and let 〈As, (x̄, ȳ, z̄)s|s ∈ P−(m2)〉 be a compatible λ-P−(m2)-
system, each choice in the system with correction function zero. Notice that

u ∈ [
⋃

s∈P−(m2)

As]
k \

⋃
s∈P−(m2)

[As]
k,

if and only if {a0 . . . am2−1} ⊂ u.

We �rst notice that by compatibility, the union of the choices (x̄, ȳ, z̄)s along P−(m2) is

anM-choice for

⋃
s∈P−(m2)

[As]
k
. It remains to extend that choice to anM-

⋃
s∈P−(m2)

As-

choice (x̄, ȳ, z̄) with correction function zero.

We may apply Lemma 2.9 (here, the setW of cardinalitym2 < k is {a0, . . . , am2−1} and the

lemma provides the extension from aM-

⋃
s∈P−(m2)

[As]
k
-choice with correction function

zero to a M-

⋃
s∈P−(m2)

As-choice (x̄, ȳ, z̄) with correction function zero - we extend the

choice from those k-sets omittingW to all of them). �2.11

Lemma 2.12. Let m1 + m2 < k. If 〈As, (x̄, ȳ, z̄)s|s ∈ P−(m2)〉 is a compatible λ+m1-
P−(m2)-system of choices with correction function zero, then there is a

⋃
s∈P−(m2)

As-choice
(x̄, ȳ, z̄) with correction function zero such that (x̄, ȳ, z̄)s ⊂ (x̄, ȳ, z̄) for every s ∈ P−(m2).

4

here, of course, we are abusing notation - by (x̄, ȳ, z̄)s ⊂ (x̄, ȳ, z̄)t we mean x̄s ⊂ x̄t, ȳs ⊂ ȳt and

z̄s ⊂ z̄t.
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Proof By induction on m1. For m1 = 0, this is lemma 2.11. For m1 > 0, suppose

As = A∅ ∪ {bj|j ∈ s}. Enumerate A∅ as 〈aβ|β < λ+m1〉. Let Aα∅ = {aβ|β < α} and

Aαs = Aα∅ ∪ {bj|j ∈ s} for every s ∈ P−(m2). Finally, let (x̄, ȳ, z̄)αs be the restriction of the

choice we have (x̄, ȳ, z̄)s from the compatible system (with correction function zero) to an

M-Aαs -choice (also immediately with correction function zero).

The plan is to obtain an M-

⋃
s∈m2 A

α
s -choice (x̄, ȳ, z̄)α with correction function zero

for each α < λ+m1 , such that α < β < λ+m1 implies (x̄, ȳ, z̄)α ⊂ (x̄, ȳ, z̄)β.

We build (x̄, ȳ, z̄)α by another induction, on α < λ+m1 . For α = 0, the empty choice

function is anM-∅-choice (A0s = ∅ for each s). When α is a limit ordinal, the union of the

chain of choices ((x̄, ȳ, z̄)β)β<α is a M-

⋃
s∈m2 A

α
s -choice with correction function zero.

Finally, for α = β + 1, we proceed as follows: we already have, by induction hypothesis,

an M-

⋃
s∈P−(m2)

A
β
s -choice with correction function zero, (x̄, ȳ, z̄)β; consider also the

choices (x̄, ȳ, z̄)αs for s ∈ P−(m2). Since the cardinalities of all their domains are < λ+m1 ,

we may without loss of generality regard the previous choices as forming a compatible

λ+m1−1-P−(m2+1)-system of choices with correction function zero: the set {bi | i ∈ s}∪
{β} has cardinality m2 + 1. Since (m1 − 1) + (m2 + 1) = m1 +m2 < k, we may apply

the induction hypothesis; we obtain (x̄, ȳ, z̄)α anM-

⋃
s∈P−(m2)

Aαs -choice with correction

function zero.

Having constructed this chain (x̄, ȳ, z̄)α for α < λ+m1 , we just let

(x̄, ȳ, z̄) :=
⋃

α<λ+m1

(x̄, ȳ, z̄)α.

This is a

⋃
s∈P−(m2)

-choice with correction function zero, extending all the choices in the

system.

�2.12
We may now obtain our general extension property.

Lemma 2.13. (Full extension)
Let M |= ψ be strongly canonical, J1 ⊂ J2 ⊂ PM0 , with |J2| < λ+k−1 and (x̄, ȳ, z̄) an
M-J1-choice with correction function identically zero. Then (x̄, ȳ, z̄) can be extended to an
M-J2-choice with correction function identically zero.

Proof Without loss of generality, J2 = J1 ∪ {b}. If J1 has size ≤ λ, this is lemma

2.9. Now suppose |J1| = λ+m1 < λ+k−1 (therefore m1 < k − 1) and enumerate J1 as

〈aβ|β < λ+m1〉. Let Jα1 = {aβ|β < α}, and let (x̄, ȳ, z̄)α be the restriction of (x̄, ȳ, z̄) to an

M-Jα1 -choice. We de�ne by induction M-Jα1 choices with correction function identically

zero (x̄, ȳ, z̄) ′α ⊃ (x̄, ȳ, z̄)α.

We may use here lemma 2.12 for m2 = 2 to extend (x̄, ȳ, z̄) ′α ∪ (x̄, ȳ, z̄)α+1 to an M-

Jα+11 ∪ {b}-choice with correction function identically zero: since m1 < k − 1, along the

induction the cardinality is< λ+m1 , say λ+m
′
1 for somem ′1 < m1. Since we also have that

m1 < k− 1, thenm ′1 + 2 < k and we can usem2 = 2 when invoking lemma 2.12.
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At limits take unions; �nally,( ⋃
α<λ+m1

x̄ ′α,
⋃

α<λ+m1

ȳ ′α,
⋃

α<λ+m1

z̄ ′α

)
is anM-J2-solution extending (x̄, ȳ, z̄). �

Theorem 2.14. IfM |= ψλk is strongly standard and |M| < λ+k then there is anM-choice
with correction function identically zero.

Proof We apply Lemma 2.13 (starting from the empty choice function, and taking

unions at limits): the lemma gives an extension of a choice function with correction func-

tion zero from J1 ⊂ PM1,1 to J2 with J1 ⊂ J2 ⊂ PM1,1 provided |J2| < λ
+k−1

. Here |M| may

be equal to λ+k−1 (at “worst”); if (in that case) we enumerate PM1,1 as

{
aβ | β < λ+k−1

}
then given α < λ+k−1, | {aβ | β < α} | < λ+k−1 and we can apply Lemma 2.13 to get an

extension of the choice with correction function zero to {aβ | β < α}. �

Theorem 2.15. (Categoricity and amalgamation up to λ+k)

1. Form < k, Mod (ψλk) has a unique strongly standard modelM, |PM0 | = λ+m, modulo
isomorphism.

2. Form < k− 1, if 2λ ≤ λ+m, then K∗(λ, k) has amalgamation in λ+m.
3. Ifm < k, λ+m ≥ 2λ, then K∗(λ, k) is categorical in λ+m.

Proof

1. Let N |= ψλk be a strongly standard model with λ ≤ |PN0 | < λ+k. By Lemma 2.5,

once we have (x̄, ȳ, z̄) a globalN-choice with correction function f, thenN ≈MI,f

for I = PM0 . Now, since N is standard and |PN0 | ∈ [λ, λ+k−1], Theorem 2.14 gives a

global N-choice (x̄, ȳ, z̄) with correction function identically zero (as N is strongly

standard). So, N ≈MI.

2. In the proofs of the previous lemmas, amalgamation of choices (along systems) with

correction function zero is carried out in detail. These give rise to the corresponding

embeddings and amalgams of models, if the size of these is controlled by the size

of their PM0 parts. The only part of a standard model where this cardinality may

increase is given by the coding of the action ofG (remember |G| = 2λ). If 2λ ≤ λ+m,

the modelM will have the same size as PM0 .

3. Let m < k, λ+m ≥ 2λ and let M be a model in K∗(λ, k) of size λ+k. Then by

Lemma 1.13,M is isomorphic to a strongly standard modelN; also, since 2λ ≤ λ+m,

|PM0 | = λ+m. Thus by part (1)M ≈ N ≈MI for some I of size λ+m.

�
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3. Failure of categoricity of ψλk at ik+1(λ)

We have proved in 2.15 that ψ is categorical in λ+m if m < k and 2λ < λ+m. We

now prove that our sentence is not categorical in any cardinality κ ≥ µ = ik+1(λ)+. (It

is also possible to show that ψλk has the maximal number of models possible in µ for each

µ ≥ ik+1(λ)+. We do not do that in this paper.)

As before, we use our terminology of “solutions and corrections functions” to count

the number of models.

3.1. Combinatorial criteria for (failure of) isomorphism
In this section we prove a combinatorial criterion for non-isomorphism between two

models of the formMI,f.

Before giving the purely combinatorial criterion, we prove the following lemma (a

criterion for isomorphism in terms of choices and correction functions).

Lemma 3.1. If M1 and M2 are strongly standard, and (x̄, ȳ, z̄)` is an M`-choice for M`

(` = 1, 2), PM10 = PM20 with correction function f` for ` = 1, 2 then the following are
equivalent:

(a) there is an isomorphism fromM1 ontoM2 over the identity on PM10 ∪ PM11

(b)1 there is anM2-choice (x̄, ȳ, z̄) whose correction function is f1,

(b)2 there is anM1-choice (x̄, ȳ, z̄) whose correction function is f2,

(c) there are functions g1, g2, g3 (“to correct the choice of zeros”), with

1. g1 : [I]
k × S→ Z2 (like the xu,s’s above),

2. g2 : [I]
k × S→ HI (like the yu,s’s above),

3. g3 : [I]
k+1 → G (like the zu’s above),

4. if 〈a0 . . . aku0 . . . ukx0 . . . xk−1yk, z〉 are like in De�nition 1.1.1 forM1, orM2

then

Z2 |=
∑
`<k

i` − hk(u0) − g(s) =
∑
`<k

g1(u`, s) − g2(uk, s)(u0) − g3(u)(s)

Proof

(a)→ (b)1 Recall that M1 � τ− =M2 � τ−, so M1 and M2 have the same universes. Fix

F : M1
≈
−→

P
M1
0 ∪PM11

M2. We have, since f1 is a correction function for M for the

choice (x̄, ȳ, z̄)1, that

f1(u, s) = 0⇔ 〈a0 . . . aku0 . . . ukx1u0s . . . x1uk−1sy1uksz1u〉 ∈ QM1s .
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But the right hand side holds i�

〈a0 . . . aku0 . . . ukF(x1u0s) . . . F(x
1
uk−1s

)F(y1uks)F(z
1u)〉 ∈ QM2s ,

since F is an isomorphism �xing PM10 ∪ PM11 , and a0, . . . , ak ∈ PM10 . This gives

us the M2-choice for which f1 is a correction function: given u` ⊂ u, u` ∈ [I]k,

u ∈ [I]k+1, let x ′u`,s = F(x
1
u`,s

), y ′u,s = F(y
1
uk,s

), z ′u = F(z1u).

(a)→ (b)2 Same.

(b)`→ (c) (` = 1, 2) The point of (c) is that we may �nd concrete representationsg1, g2, g3,

that act independently fromM1 orM2 as ‘corrected choice functions’ for the zeros

for f1 and f2. So, suppose we have a M2-choice (x̄, ȳ, z̄) with correction function

f1. Then for any u ∈ PM20 and any s ∈ S, if 〈a0 . . . aku0 . . . ukx0 . . . xk−1yk, z〉 are

like in De�nition 1.1.1

〈a0 . . . aku0 . . . ukxu0s . . . xuk−1syukszu〉 ∈ Q
M2
s

m
f1(u, s) = 0.

But since f1 is also a correction function for theM1-choice (x̄, ȳ, z̄)1,

f1(u, s) = 0

m
〈a0 . . . aku0 . . . ukx1u0s . . . x

1
uk−1s

y1uksz
1
u〉 ∈ QM1s .

So, we have both Z |=
∑
`<k i` = hk(u0)+g(s) and Z |=

∑
`<k i

1
` = h

1
k(u0)+g

1(s),
so setting

g1(u`, s) = i
1
` , g2(uk, s) = h

1
k, g3(u) = g

1

yields

Z2 |=
∑
`<k

i` − hk(u0) − g(s) =
∑
`<k

g1(u`, s) − g2(uk, s)(u0) − g3(u)(s).

Since f1 does this for all possible (k+1)-tuples, we have all the compability we need.
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(c)→ (a) If the predicates are the same modulo g1, g2 and g3 then obtaining (a) becomes

a matter of building F :M1
≈
−→

P
M1
0 ∪PM11

M2. Clearly we can start by F � PM10 = id,

and then extend its de�nition to all the other portions of the model. The only strong

restriction to the extension of this to the whole model is given by the relationsQM1s
andQM2s . But part (4) of (c) provides this: the functions g1, g2, g3 provide the de�ni-

tion of the isomorphism. Precisely, let 〈a0 . . . aku0 . . . ukx0 . . . xk−1yk, z〉 be a tuple

from M1; we use (4) to �nd simultaneously F(x`), F(yk) and F(z). Compute (in Z2)
the value

∑
`<k i`−hk(u0) − g(s) corresponding to the tuple. For every s ∈ S, this

value is 0 i� the tuple belongs to Qs. By (4), this value is equal to

∑
`<k g1(u`, s) −

g2(uk, s)(u0) − g3(u)(s). But also by (4), this value also corresponds to a corre-

sponding tuple 〈a0 . . . aku0 . . . ukx ′0 . . . x ′k−1y ′k, z ′〉 inM2. This provides the values

F(x`) = x ′`, F(yk) = y ′k and F(z) = z ′: 〈a0 . . . aku0 . . . ukx0 . . . xk−1yk, z〉 ∈ QM1s
if and only if 〈a0 . . . aku0 . . . ukx ′0 . . . x ′k−1y ′k, z ′〉 ∈ Q

M2
s .

�

Remark 3.2. Counting the number of isomorphism types here is akin to the study ofExt(G,Z)
in the work of the �rst author and Väisänen in [13]5.

Lemma 3.3. IfMI1,f1 andMI2,f2 are models of ψ, and h : I1 → I2 is one-to-one and onto,
then the following are equivalent:

(a) there is an isomorphism fromMI1,f1 ontoMI2,f2 extending h.

(b)1 there is anMI2,f2-choice (x̄, ȳ, z̄) whose correction function is f1,

(b)2 there is anMI1,f1-choice (x̄, ȳ, z̄) whose correction function is f2,

(c) there are functions g1, g2, g3 (“to correct the choice of zeros”), with

1. g1 : [I]
k × S→ Z2 (like the xu,s’s above),

2. g2 : [I]
k × S→ HI (like the yu,s’s above),

3. g3 : [I]
k+1 → G (like the zu’s above),

4. if 〈a0 . . . aku0 . . . ukx0 . . . xk−1yk, z〉 are like in De�nition 1.1.1 for MI1,f1 , or
MI2,f2 then

Z2 |=
∑
`<k

i` − hk(u0) − g(s) =
∑
`<k

g1(u`, s) − g2(uk, s)(u0) − g3(u)(s)

5

Here I(λ,ψ) is counted by the group of correction functions, derived from some g1, g2, g3:

I(λ,ψλk) =
{
f a correction function

∣∣∣f(u, s) =∑
`<k

g1(u`, s) − g2(u0, s) − g3(u)
}
.
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Proof The proof is almost the same as that of the previous lemma (3.1). The main

change is that now the identity on I is replaced by a bijection from I1 onto I2; the rest of

the proof amounts to a renaming via the bijection F � I1. �
An important special case of the previous lemma happens when I1 = I = I2 but the

isomorphism is not the identity on I. In this case, the restriction of the isomorphism between

MI,f1 and MI,f2 is a permutation of I. Our combinatorial criterion for non-isomorphism

will focus on this case.

Recall D is the regular �lter on S generated by sets of the form 〈u〉 = {v ∈ S|u ⊂ v},
where S = [λ]<ℵ0 :

D = Dλ := {A ⊂ S|∃uA ∈ S∀v ∈ S(uA ⊂ v→ v ∈ A)}

(see de�nition 1.2).

The notion of an I-function, which we de�ne next, is central to our combinatorial

criterion.

De�nition 3.4. f : [I]k+1 × S→ Z2 is an I-function i�

{s ∈ S|fu(s) 6= 0} ∈ D, for all u ∈ [I]k+1,

where fu : S→ Z2 is given by fu(s) = f(u, s).

Lemma 3.5. Let f : [I]k+1 × S → Z2 be an I-function. Then, the following is a su�cient
condition for

MI,f 6≈MI :

(?) for every F1 : [I]k → [I]≤λ, F2 : [I]k → S(Z2) and π a permutation of I, there exists
u = {t0, . . . , tk} ∈ [I]k+1 (i.e., with no repetitions) such that

(α) tk 6∈ F1({t0 . . . tk−1}),
(β) fπ{t0,...,tk} −

∑
`<k F2({t0, . . . , tk} \ {t`}) 6∈ G.

Before proving Lemma 3.5, we note:

• First, (?) is a purely combinatorial statement; this will enable us to focus solely on

combinatorial principles to prove the failure of categoricity.

• Also, by the de�nition of G, (β) says that for D-few elements s ∈ S do we have

fπ(t0,...,tk)(s) =
∑
`<k

F2({t0, . . . , tk} \ {t`})(s).
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Notice the role of the permutation π of I in the combinatorics that follows.

Proof of 3.5. Assume that MI,f ≈ MI. Then, since MI ≈ MI,0 (the null correction

function) we may apply Lemma 3.3 and (by (b)2 of that lemma) assume that (x̄, ȳ, z̄) wit-

nessesMI,f ≈MI,0, with correction function identically zero.

We construct F1, F2 such that (?) of 3.5 does not hold (for the permutation π induced

by the isomorphism betweenMI,f andMI).

We �rst let F1 : [I]
k → [I]≤λ be

F1(v) =
⋃

{w ∈ [I]k| for some s1 ∈ S, yv,s1(w) 6= 0}.

This is well de�ned, as F1(u) is a union of |S|-many �nite sets. Also, let

F2(v) = 〈xv,s|s ∈ S〉.

We will show that no u ∈ [I]k+1 satis�es both (α) and (β) of condition (?).
Suppose otherwise; let then u = {t0, . . . , tk} ∈ [I]k+1 satisfy (α) + (β). Let as usual

u` = u \ {t`}. By (α), for each s,

yuk,s(u0) = 0.

[Why? Just notice that by (α),

tk /∈ F1(uk) =
⋃

{v ∈ [I]k| for some s1 ∈ S, yu,s1(v) 6= 0},

so for all v ∈ [I]k, if tk ∈ v, then for all s1 ∈ S we have yuk,s1(v) = 0. In particular, as

tk ∈ u0, yuk,s1(u0) = 0.]
Now, since (x̄, ȳ, z̄) is anMI,f-choice with correction function identically zero, for each

s ∈ S we have that

〈a0, . . . , ak, u0, . . . , uk, xu0,s, . . . , xuk−1,s, yuk,s, zu〉

belongs to QMI,fs if and only if (by the de�nition of this predicate in the modelMI,f)

Z2 |=
∑
`<k

xu`,s = yuk,s(u0) + zu(s) + fπ(u)(s).

But

But we also have that zu(s) = 0 for the D-majority of s ∈ S (by the de�nition of G);

since we also have that yuk,s(u0) = 0 for our particular u,

(*) For the D-majority of s ∈ S ∑
`<k

xu`,s = fπ(u)(s).
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But this contradicts (β). �

Remark 3.6. We can then regard F2 as

F2 : [I]
k → S(Z2)/G.

Corollary 3.7. If f1, f2 are I-functions, and f = f1 − f2 (coordinatewise) satis�es (?), then
MI,f1 6≈MI,f2 .

Proof We already know that since f satis�es (?), MI,f 6≈ MI. Now suppose we have

an isomorphism F : MI,f1
≈
−→ MI,f2 . As before, π = F � I is a permutation of I, and the

automorphism lifts in a natural way to all components ofMI,f in the vocabulary τ−. Now,

the remaining part of τ: if s ∈ S, then a tuple

〈a0, . . . , ak, u0, . . . , uk, xu0,s, . . . , xuk−1,s, yuk,s, zu〉 belongs to Qs in MI,f if and only if

(for the corresponding indices)

Z2 |=
∑
`<k

i` = hk(u0) + g(s) + f(u, s)

but this holds if and only if

Z2 |=
∑
`<k

i` = hk(u0) + g(s) + f1(u, s) − f2(u, s).

Now, since F is an isomorphism, this is true if and only the tuple

〈F(a0), . . . , F(ak), F(u0), . . . , F(uk), F(xu0,s), . . . , F(xuk−1,s), F(yuk,s), F(zu)〉 belongs toQs
inMI, this is if and only if

Z2 |=
∑
`<k

i ′` = h
′
k(u

′
0) + g

′(s)

where the primes denote the values corresponding to the F-images of components of the

long tuple. But this witnesses that F is also an isomorphism between MI,f1 and MI,f2 ,

which contradicts the hypothesis. �

We now have what we need for a proof of failure of categoricity at some µ above the

categoricity cardinals. Notice we do not give an optimal (minimal) such µ; this is left for

(possible) later work.

Theorem 3.8. For some µ > λ+k, the sentence ψλk is not categorical in µ.

Proof Let µ be a cardinal with the following properties:

⊗1 µ→ (ω)k
2λ

,
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⊗2 µ 6→ (ω)k+1
2λ

,

⊗3 µ regular.

The existence of such a µ uses the Erdös-Rado theorem (the partition

ik(λ)+ → (
(2λ)+

)k
2λ

is an instance) for ⊗1 and the negative partition relation ik+1(λ) 6→ (k+ 2)k+1
2λ

(a conse-

quence of [12, Lemma 24.1(e)]) for ⊗2; we may therefore take µ as ik(λ)+.

Let then I have cardinality µ and let f : [µ]k+1 → G+/G be an I-function witnessing

⊗2 (recall that G+
denotes the group

SZ2). We use our criterion 3.5 to show thatMI,f and

MI can not be isomorphic from which we conclude that the sentenceψλk is not categorical

in µ.

Let F1 : [I]
k → [I]≤λ, F2 : [I]

k → G+
and π a permutation of I.

Now �nd E ⊂ µ club such that

α0 < · · · < αk ∈ E =⇒ { F1(α0, . . . , αk−1) ⊂ αk,

π(α0), . . . , π(αk−1) < αk.

This is possible by the regularity of µ.

Now apply ⊗1 to F2 � E: since µ → (ω)k
2λ

, there must be an in�nite ω-sequence

T = {α0 < α1 < . . . αn < . . . } such that F2 � [T ]k is constant. Therefore we have, for

u = {α0, . . . , αk} and u` = u \ {α`}:

• αk /∈ F1({α0, . . . , αk−1}) (since these are elements from the club E) and

• the equation fπ{α0,...,αk}(s) =
∑
`<k F2(u`)(s) holds for D-few elements s: as F2 is

constant on u` from the monochromatic sequence, the sum on the right hand side

will be 0 when k is even (and 1 when k is odd) whereas the value on the left hand

side will not be constant, by ⊗2 applied to f.

The previous two properties correspond to (α) and (β) of the criterion from Lemma 3.5.

Therefore,MI,f 6≈MI and the sentence ψλk is not categorical in µ. �
The result also holds for all κ ≥ ik+1(λ)+ (we will show monotonicity of the crucial

criterion).

Conclusion 3.9. The sentence ψλk is not categorical in any κ ≥ ik+1(λ)+.

Proof Let κ ≥ µ = ik+1(λ)+. If κ = µ, Theorem 3.8 shows how to get two non-

isomorphic models. If κ > µ then let J be a set of cardinality κ.
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We show that as κ > µ we may pick a J-function f : [J]k+1 × S → Z2 satisfying the

criterion (?) of Lemma 3.5 (which will enable us to conclude that MJ,f 6≈ MJ, and thus

conclude failure of categoricity at κ).

Let �rst F1 : [J]k → [J]≤λ, F2 : [J]k → SZ2 and π a permutation of J. Let I ⊂ J with

|I| = µ, I closed under π and such that F1 � [I]k : [I]k → [I]≤λ. [Such an I exists by closing

�rst under iterating taking the unions of F1-images of k-tuples from I and taking the union

of µ many sets of cardinality ≤ λ < µ - after an ω−iteration the result is closed under

F1-images. Similarly, we close under images and preimages under the permutation π and

alternate these closure operationsω many times.]

Let now f : [J]k+1 × S→ Z2 be a J-function that witnesses ⊗2 on the set I; as |I| = µ,

this is possible.

Furthermore, for the set I, the functions F1 � I, F2 and π � I are in the situation of

Lemma 3.5. The proof of Theorem 3.8 applies then, as |I| = µ. We then obtain u =
{t0, . . . , tk} ∈ [I]k+1 such that (α) and (β) of the criterion hold. But these properties are

also true of the original F1, F2, π. Therefore,MJ,f 6≈MJ. �

Remark 3.10. Here are some important di�erences between the structure of this proof and
that of [1]:

1. The use of the �lter D is central here - it is not needed there.
2. The way the group itself is used is slightly di�erent at the end of the proof.

We conjecture that the class has the maximal number of models at all µ > ik+1(λ)+.

4. Further directions

After our generalization of the original Hart-Shelah example to the stronger logic

L(2λ)+,ω, we have the following situation:

• Any generalization of the early results from 1983 for the logic L(2λ)+,ω must nec-

essarily use as hypothesis few models in all cardinalities λ, λ+, . . . , λ+k, . . . for all

k < ω. The �rst author has written several papers in this direction (see [14]), in the

(wider) context of AECs.

• On the other hand, the necessity of an interval of ℵ0-many cardinals with few mod-

els to start the machinery for categoricity transfer seems interesting per se; and even

more so the fact that this would happen along all strengthenings of Lω1,ω (inside

L∞,ω).

• Finally, we conjecture that our sentence may be analyzed in terms of building frames,

in the spirit of the work of Boney and Vasey [10]. Speci�cally, we conjecture that

our abstract elementary class

K∗(λ, k) = (Mod(ψλk),≺(2λ)+,ω)
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is (< λ, λ+k−1)-tame, (< λ, λ+k−1)-typeshort over models of size λ+k−2, and that

1. for each m ≤ k − 1 there is a frame s∗(λ, k)m that is type-full and λ+m-good

onMod(ψλk),

2. The (type-full and λ+k−1-good) frame s∗(λ, k)k−1 is not weakly successful.
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