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Abstract. Let R be any real closed field expanded by some o-minimal structure.
Let f : A −→ Rd be a definable and continuous mapping defined on a definable,
closed, bounded subset A of Rn. Let E be a finite family of definable subsets of Rn

contained in A. Let p be any positive integer. We prove that then there exists a
finite simplicial complex T in Rn and a definable homeomorphism h : |T | −→ A,
where |T | := ∪T , such that for each simplex ∆ ∈ T , the restriction of h to its relative

interior
◦
∆ is a Cp-embedding of

◦
∆ into Rn and moreover both h and f ◦h are of class

Cp in the sense that they have definable Cp-extensions defined on an open definable
neighborhood of |T | in Rn. Then we call a pair (T , h) a strict Cp-triangulation of A.
In addition this triangulation can be made compatible with E in the sense that for

each E ∈ E, h−1(E) is a union of some
◦
∆, where ∆ ∈ T . We also give an application

to approximation theory.
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1.Introduction and Main Theorem.

We will work with an arbitrary fixed o-minimal expansion of any real closed
field R; e.g. the field of real numbers R with semialgebraic subsets of spaces Rn,
where n ∈ N. O-minimal geometry (see [C] or [vdD] for fundamental notions and
results) is a far-going generalization of semialgebraic and subanalytic geometries
(presented in [BCR], [ÃL], [Ga], [H], [BM], [S]). We will deal only with subsets of Rn

and mappings f : A −→ Rm, where A ⊂ Rn, which are definable in this structure
(mapping f is called definable if the graph of f is a definable subset of Rn+m).
Therefore we will principally skip the adjective definable.

We adopt the following general definition. If K is any family of subsets of a set
X, then by a refinement of K we understand any family L of subsets of X such
that each L ∈ L is contained in some K ∈ K and each K ∈ K is the union ∪L′ of
some subfamily L′ ⊂ L. The term refinement will be also used in a different sense;
namely, if F is a family of functions defined on a set X we will say that a family G
of functions defined on X is a refinement of F if simply F ⊂ G.

If K is any family of subsets of a set X, then we will denote by |K| the union of
all subsets K belonging to K.

The interior of a subset A of a topological space will be in general denoted intA,

but sometimes we find the Bourbaki notation
◦
A more handy, while for the closure

of A we will use either A or clA.

We adopt a standard definition of a simplex of dimension k in Rn as the convex
hull of k + 1 points a0, . . . , ak affinely independent in Rn; i.e.

∆ = [a0, . . . , ak] := {
k∑

i=0

αiai : αi > 0 (i ∈ {0, . . . , k}),
k∑

i=0

αi = 1}.

If 0 6 i0 < i1 < · · · < il 6 k, then the simplex [ai0 , . . . , ail
] is called a face of ∆ of

dimension l. The points a0, . . . , ak are called vertices of ∆. The boundary ∂∆ of a
simplex ∆ is the union of all faces of ∆ of dimension < k. Its relative interior is by
definition

◦
∆ := ∆ \ ∂∆ = (a0, . . . , ak) := {

k∑

i=0

αiai : αi > 0 (i ∈ {0, . . . , k}),
k∑

i=0

αi = 1}.

It will be convenient for us to use a more general notion of a convex polyhedron, or
simply polyhedron, in Rn which is defined as the convex hull of any finite subset of
Rn. It is clear that the notions of dimension, faces, boundary, vertices and relative
interior generalize to all polyhedra and that polyhedra are subsets definable in
PL-geometry.

By a polyhedral complex in Rn we will understand a finite family P of polyhedra
in Rn such that for each P ∈ P all faces of P belong to P and for each pair
P1, P2 ∈ P, P1 ∩ P2 is a common face of both P1 and P2. A polyhedral complex
consisting of simplexes is called a simplicial complex. Observe that if we restrict
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our consideration to polyhedral complexes P such that |P| is of constant dimension
n, then a polyhedral complex can be defined as a finite family of polyhedra of
dimension n such that the intersection any two of them is their common face. We
will use this identification concerning simplicial complexes as well.

Let p be any positive integer and let A be any definable, bounded and closed
subset of Rn. A Cp-triangulation of A is a pair (T , h), where T is a simplicial
complex in Rn and h is a definable homeomorphism of |T | onto A such that for

each simplex ∆ ∈ T the restriction h|
◦
∆ is a Cp-embedding of

◦
∆ into Rn. If E

is any finite family of definable subsets of A we say that a triangulation (T , h) is

compatible with E if for each E ∈ E the inverse image h−1(E) is a union of some
◦
∆,

where ∆ ∈ T . A Cp-triangulation of A will be called a strict Cp-triangulation of A
if the mapping h : |T | −→ Rn is of class Cp in the sense that it admits a definable
extension h̃ : Ω −→ Rn of class Cp defined on an open definable neighborhood Ω
of |T | in Rn.

Main Theorem. Let R be any real closed field expanded by some o-minimal struc-
ture. Let f : A −→ Rd be a definable and continuous mapping defined on a definable,
closed, bounded subset A of Rn. Let E be a finite family of definable subsets of Rn

contained in A. Let p be any positive integer.

Then there exists a strict Cp-triangulation (T , h) of A compatible with the family
E and such that f ◦ h is of class Cp.

The proof of the Main Theorem is an interplay between PL- and o-minimal ge-
ometries. The general idea comes from our earlier paper about Cp-parametrizations
of sets definable in o-minimal structures [K-CPV]. In that paper we parametrized
definable sets by (Cp-mappings defined on) cubes (similarly as in the classical an-
alytic rectilinearization theorem for subanalytic sets [H],[BM]), which inevitably
spoils injectivity of the parametrization. Similarly, blowing-up operations evidently
spoil injectivity. Instead of cubes or blowings-up we use simplexes as in the classical
triangulation theorem [vdD, Chapter 8], which gives existence of Cp-triangulations.
All the problem is to make a triangulating homeomorphism Cp-smooth. Our pro-
cedure of smoothing is based on the case of dimension one; it means on the Main
Theorem for n = 1, the proof of which we will shortly explain now, assuming
for simplicity that d = 1. Without any loss of generality we can assume that
f : [a, b] −→ R is a continuous definable function defined on a bounded, closed
interval. There exists a finite sequence c0 = a < c1 < · · · < cs+1 = b such
that for each i ∈ {0, . . . , s}, the restriction f |(ci, ci+1) is of class Cp+1 and either
|f ′| 6 1 on (ci, ci+1) or |f ′(x)| > 1 on (ci, ci+1). Now we use a simple but beau-
tiful trick of Coste-Reguiat [CR] reducing the problem to that where |f ′| 6 1 on
[a, b]\{c0, . . . , cs+1}. Namely, define g : [a, b] −→ R by an inductive formula. First,
put g(a) = g(c0) = f(a). Then we define g on [ci, ci+1] depending on two following
cases:

Case I: if |f ′| 6 1 on [ci, ci+1], then we put g(x) := g(ci) + x − ci, for each
x ∈ [ci, ci+1], and

Case II: if |f ′| > 1 on [ci, ci+1], then we put g(x) := g(ci) + |f(x) − f(ci)|, for
each x ∈ [ci, ci+1].
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Put di = g(ci) for i ∈ {0, . . . , s + 1}. Observe that g : [c0, cs+1] −→ [d0, ds+1]
is a strictly increasing homeomorphism such that g′(x) > 1 for x ∈ [c0, cs+1] \
{c0, . . . , cs+1}. Take now the inverse h := g−1 : [d0, ds+1] −→ [c0, cs+1]. Then
0 < h′(y) 6 1 and |(f ◦ h)′(y)| 6 1, for each y ∈ (di, di+1), where i ∈ {0, . . . , s}.
Now we use a trick of Yomdin-Gromov (see Lemma 4.1 and Corollary 4.2 below
and compare with [Y1], [Y2] and [G]). There exists ε > 0 such that each of the
derivatives h(ν) and (f ◦ h)(ν), where ν ∈ {2, . . . , p + 1}, has a constant sign. It
follows that substituting y = ϕ(u) = (u − d0)q + d0, where q is any fixed odd
integer grater than p, we get two functions h◦ϕ and f ◦h◦ϕ defined on an interval
[d0, d

′
s+1], which are of class Cp at d0 and p-flat at d0. Let d′1 := ϕ−1(d1). Now

substituting u = ψ(w) := (w−d′1)
q +d′1 we get two functions h◦ϕ◦ψ and f ◦h◦ϕ◦ψ

defined on an interval [d′′0 , d′′s+1] which are of class Cp both at d′′0 and at d′′1 = d′1
and p-flat at these points. Continuing this process we finally get a homeomorphism
H : [ã, b̃] −→ [a, b] of class Cp such that f ◦H is of class Cp. In the case n > 1 we use
the same smoothing procedure but with parameters. In order to make it possible
we introduce two devices: capsules which are cells without vertical line segments in
the boundary (see Section 2) and detectors which are special differentiable functions
of choice (see Section 3).

The advantage of our method of desingularization is that it works for arbitrary
o-minimal structure, including in particular the following two examples:

(1) the o-minimal structure of R-subanalytic sets and mapping; i.e. the structure
generated on the ordered field of real numbers R by real analytic bounded subsets of
Rn (n ∈ N) and all power functions (0,∞) 3 t 7−→ tα ∈ (0,∞) with real irrational
α (for a Cp-rectilinearization and uniformization theorems in this structure see [Pi]),

(2) an o-minimal structure of Le Gal and Rolin [LR] which does not admit C∞
cell decompositions.

These examples explain why in our Main Theorem we deal with finite classes
of differentiability rather than with C∞. Besides, the C∞-analogue of the theorem
is not true even in the semialgebraic case as can be easily checked; consider for
example the continuous semialgebraic function

f(x1, x2) :=





x3
2

x2
1 + x2

2

, for (x1, x2) ∈ [−1, 1]2 \ {(0, 0)}
0, for (x1, x2) = (0, 0).

The case p = 1 has already been proved in a slightly weaker form for semial-
gebraic category by Ohmoto and Shiota [OS], who used strict C1-triangulations to
develop the theory of integration on sets with sinularities. Our Main Theorem for
p = 1 in full extent has been proved by Czapla and PawÃlucki [CP].

Throughout the paper we use the following notation for linear projections

πn
m : Rn 3 (x1, . . . , xn) 7−→ (x1, . . . , xm) ∈ Rm

where m 6 n.
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We end this introduction by a useful observation that without any loss of gener-
ality we can assume in the Main Theorem that instead of A we have to triangulate a
big polyhedron P containing A, because by the Tietze Theorem (cf. [vdD, Chapter
8, (3.10)]) the mapping f can be extended to a continuous mapping defined on P .

2. Capsules.

We define two special notions which will play essential role in the proof of the
Main Theorem. These are capsules studied in the present section and detectors to
which the next section is devoted.

A capsule in Rn+1 is a subset K of Rn+1 of the form

K = {(x, t) ∈ D ×R : α(x) 6 t 6 β(x)},

where D is a subset of Rn such that D = intD, intD is bounded, connected and
α, β : D −→ R are continuous functions such that α < β on intD and α = β on
∂D. The subset {(x, t) ∈ K : x ∈ ∂D} of K will be called the rim of the capsule
K.

Proposition 2.1. For any subset E of Rn+1 the following conditions are equiva-
lent

(2.1.1) E is a finite union of capsules in Rn+1.

(2.1.2) E = intE is bounded and ∂E does not contain any nontrivial line segment
parallel to the t-axis.

(2.1.3) E is a finite union of capsules in Rn+1 whose interiors are pairwise
disjoint.

Proof. Obviously (2.1.1) implies (2.1.2). Assume now (2.1.2) satisfied. Let π :
Rn+1 3 (x, t) 7−→ x ∈ Rn. Since intE is bounded and π(E) is closed,

π(E) = π(intE) = π(intE) ⊂ intπ(E) ⊂ π(E),

hence π(E) = intπ(E). Take a cell decomposition of Rn+1 compatible with intE
and with ∂E (cf. [vdD, Chapter 3, (2.11)]). This allows us to represent intE as a
finite union of pairwise disjoint cells of the form

(ϕ,ψ) = {(x, t) : x ∈ S, ϕ(x) < x < ψ(x)},

where S ⊂ π(intE), ϕ,ψ : S −→ R are continuous, ϕ < ψ on S and the graphs1

of ϕ and ψ are contained in ∂E. Using classical triangulation applied to π(intE)
and all S (cf. [vdD, Chapter 8, (1.7)) we can additionally assume that S = π(ϕ,ψ)
satisfies the following ÃLojasiewicz’s (s)-condition (cf. [ÃL, Section 25]): each point
a ∈ S \ S admits a neighborhood basis U in Rn such that the trace U ∩ S of each
U ∈ U on S is connected. Then the set of all limit values of ϕ at each point a ∈ S\S
can be identified with

ϕ ∩ ({a} ×R) = {a} ×
⋂
{ϕ(U) : U ∈ U},

1We identify mappings with their graphs denoting both by the same letter.
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which is a nonempty, connected subset of the vertical line {a} × R and of ∂E at
the same time; hence, a singleton. Consequently, both ϕ and ψ have continuous
extensions ϕ,ψ : S −→ R to S and next, by the Tietze Theorem (cf. [vdD, Chapter
8, (3.10)]), to the whole π(E). Using all these extensions and functions min and
max we can find a sequence of continuous functions

α1 6 · · · 6 αp : π(E) −→ R,

such that

(2.1.4) for each x ∈ π(intE) the fiber (intE)x

is a union of some intervals (αi(x), αj(x)), where i < j,

and

(2.1.5) π−1(π(intE)) ∩ ∂E ⊂
⋃

i

αi.

Refining the sequence α1, . . . , αp by some extra functions we can assume that all
the sets

(αi, αi+1) := {(x, t) : x ∈ π(E), αi(x) < t < αi+1(x)}
are connected and nonempty. It follows from (2.1.5) that if (αi, αi+1) ∩ intE 6= ∅,
then (αi, αi+1) ⊂ intE. Let {i1 < · · · < is} = {i : (αi, αi+1) ⊂ intE}. Then by
(2.1.4)

(αi1 , αi1+1) ∪ · · · ∪ (αis , αis+1)

is dense in intE; hence in E. Let Pν := π(αiν , αiν+1). Now if x ∈ Pν \ Pν and
x ∈ π(intE), then of course αiν (x) = αiν+1(x) and if x ∈ Pν \ Pν and x /∈ π(intE),
then {x} × [αiν (x), αiν+1(x)] ⊂ ∂E, hence again αiν (x) = αiν+1(x). However
(αiν , αiν+1) may not be a capsule yet because the condition intPν = Pν may not
be a priori satisfied. To solve this problem we prove the following lemma.

Lemma. Let P be a bounded open subset of Rn and let α, β : P −→ R be two
continuous functions such that α < β on P and α = β on ∂P . Then (α, β) can be
represented as a finite union of capsules with pairwise disjoint interiors.

Proof of Lemma. Without any loss of generality we can assume that α ≡ 0. Next,
using classical triangulation we reduce the problem to PL-geometry. Then the sub-
set A := (intP )\P is contained in a finite number H1, . . . , Hq of affine hyperplanes,
q minimal. We argue by induction on q. By affine change of coordinates in Rn, we
can assume that Hq = {(x1, . . . , xn) : xn = 0}. Then the function γ(x) := Mxn,
with |M | big enough, cuts the cell (0, β) into two (0, γ) and (γ, β) for each of which
q′ < q.

This ends the proof of Proposition 1.

Remark 2.2. If E fulfills the conditions of Proposition 1 and λj : π(E) −→ R
(j ∈ {1, . . . , r}) is a given finite family of continuous functions, then there exists a
finite family of continuous functions

α1 6 · · · 6 αs : Rn −→ R

such that E is a union of some capsules of the form (αi, αi+1) which are compatible
with every λj in the sense that either λj(x) 6 t, for each (x, t) ∈ (αi, αi+1), or
λj(x) > t, for each (x, t) ∈ (αi, αi+1).
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Remark 2.3. If K0,K1, . . . , Kp are capsules in Rn+1 and Kν ⊂ K0 when 1 6 ν 6
p, then there exists a finite family of continuous functions

α1 6 · · · 6 αs : Rn −→ R

such that (αi, αi+1), (i ∈ {0, . . . , s− 1}) is a family of capsules which is a refine-
ment of K0, . . . ,Kp.

Corollary 2.4. For any finite family K of capsules in Rn+1 there exists a finite
family L of capsules in Rn+1 which is a refinement of K and the interiors of capsules
from L are pairwise disjoint.

Proposition 2.5. Let K be any capsule in Rn+1 and let V be a finite family of
open subsets of intK covering the whole intK. Then there exists a finite family L
of capsules in Rn+1 whose interiors are pairwise disjoint, ∪L = K and for each
L ∈ L there exists V ∈ V such that intL ⊂ V .

Proof. Put K = {(x, t) ∈ D × R : α(x) 6 t 6 β(x)}. There are two parts of the
proof.

Part I. We first prove by induction on k that if A is any subset of intD of dimension
k, then there exists a finite family of capsules in Rn+1 such that for each L ∈ L
there exists V ∈ V containing intL and for each a ∈ A there exists L ∈ L and ε > 0
such that {a} × (α(a), α(a) + ε) ⊂ intL.

Applying triangulation to D compatible with A, we can assume that A is an
open subset of Rk = {(x1, . . . , xn) : xk+1 = · · · = xn = 0}. Partitioning A, using
induction hypothesis and cell decomposition, we can assume that A is connected,
there exists one V ∈ V and a function

η : A −→ (0,∞)

such that {a} × (α(a), α(a) + η(a)] ⊂ V , for each a ∈ A. Replacing η by η̃(a) :=
min{η(a), d(a,A \ A)}, we can assume that η(a) → 0, when d(a,A \ A) → 0. For
each t ∈ [α(a), α(a) + η(a)] put ρ(a, t) := 1

2d((a, t), K \ V ). Since for each a ∈ A,
ρ(a, α(a)) = 0 and ρ(a, t) > 0, when t > α(a), we can modify η in such a way that

(α(a), α(a) + η(a)] 3 t 7−→ ρ(a, t) ∈ (0,∞)

is strictly increasing. Again by partitioning A and using induction hypothesis we
can assume that η is continuous and replacing η by η̃(a) := min{η(a), d(a,A \A)},
we can assume that η(a) → 0, when d(a,A \A) → 0. It follows from the definition
of ρ that for each a ∈ A and t ∈ (α(a), α(a) + η(a)]

{(x1, . . . , xn, t) : a = (x1, . . . , xk), (x2
k+1 + · · ·+ x2

n)
1
2 6 ρ(a, t)} ⊂ V.

Now we define the wanted capsule. Put

E := {(x1, . . . , xn) : a = (x1, . . . , xk) ∈ A, (x2
k+1 + · · ·+ x2

n)
1
2 6 ρ(a, α(a) + η(a))}
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and L := {(x1, . . . , xn, t) : (x1, . . . , xn) ∈ E,

ρ−1(x1, . . . , xk, (x2
k+1 + · · ·+ x2

n)
1
2 ) 6 t 6 α(x1, . . . , xk) + η(x1, . . . , xk)},

where ρ−1 denotes the inverse of ρ with respect to the last variable.

Part II. According to Part I, there exists a finite family L of capsules in Rn+1

such that for each L ∈ L there exists V ∈ V containing intL and for each a ∈ D
there exists L ∈ L and ε > 0 such that {a} × (α(a), α(a) + ε) ⊂ intL and there
exists M ∈ L and θ > 0 such that {a} × (β(a), β(a)− θ) ⊂ intM .

By Corollary 2.3 there exists a finite family L′ of capsules in Rn+1 which is
refinement of the family L∪{K} and the interiors of which are pairwise disjoint. It
follows that if L′ ∈ L′ and L′ is not contained in any of the capsules from L, then
L′ is of the form

L′ = {(x, t) : x ∈ Q, γ(x) 6 t 6 δ(x)},
where V is an open covering of L′|intQ = {(x, t) : x ∈ intQ, γ(x) 6 t 6 δ(x)}.
Thus to finish the proof it suffices to prove the following.

If K = {(x, t) ∈ D × R : α(x) 6 t 6 β(x)} is a capsule in Rn+1,K∗ :=
K ∩ (∂D×R), V is a finite family of open subsets of Rn+1 such that K \K∗ ⊂ ∪V
and A is a subset of intD of dimension k, then there exists a finite family L of
capsules in Rn+1 contained in K such that ∪L \K∗ is a neighborhood of K|A in
K \K∗ and for each L ∈ L there exists V ∈ V such that L \K∗ ⊂ V .

We proceed again by induction on k. Take a cell decomposition C of the set ∪V
compatible with each of V ∈ V and with K|A. Let

{B1, . . . , Bs} = {π(C) : C ∈ C, C ⊂ K|A, dim π(C) = k}.
Now we apply the induction hypothesis to E := A \ (B1 ∪ · · · ∪ Bs). There ex-
ists a finite family L of capsules in Rn+1 contained in K such that ∪L \ K∗ is a
neighborhood of K|E in K \K∗ and for each L ∈ L there exists V ∈ V such that
L \K∗ ⊂ V . Fix one Bµ = B. Then

K|B = [γ0, γ1] ∪ · · · ∪ [γm−1, γm],

where γν : B −→ R (ν ∈ {0, . . . ,m}) are continuous, γ0 < · · · < γm, γ0 =
α|B, γm = β|B and each of [γν , γν+1] is contained in some V ∈ V. There is an open
subset T0 of B such that T 0∩intD ⊂ B and ∪L\K∗ is a neighborhood of K|(B\T0).
Take also open subsets T1, T2 of B such that T i ∩ intD ⊂ Tj ⊂ T j ∩ intD ⊂ B if
0 6 i < j 6 2. By Tietze Theorem for each ν ∈ {1, . . . , m} there exists a continuous
function

γ̃ν : T 2 −→ R

such that γ̃ν |T 1 = γν |T 1, γ̃ν |∂T2 = γν−1|∂T2 and γν−1 6 γ̃ν 6 γν on T 2. Then
m⋃

ν=1

[γν−1|T 2, γ̃ν ] \K∗

is a neighborhood of K|T 0 ∩ intD in K \K∗. A similar neighborhood we built over
every Bµ. Applying Proposition 2.1 we finish the proof.

In the proof of Proposition 8.2 in Section 8 we will need the following lemma.
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Lemma 2.6. Every PL-capsule in Rn+1 is a finite union of convex PL-capsules,
whose interiors are pairwise disjoint.

Proof. The boundary ∂S of any PL-capsule S is contained in a finite number of
graphs of affine functions

∂S ⊂ ϕ1 ∪ · · · ∪ ϕs,

where s is the smallest possible. We argue by induction on the number q of ϕν such
that S is not contained in just one closed half-space cut by ϕν . If q = 0, clearly S
is convex. Otherwise there is ν such that

T1 := cl{(x, y) ∈ intS : y < ϕν(x)} and T2 := cl{(x, y) ∈ intS : y > ϕν(x)},

are finite unions of PL-capsules, for which the number q is smaller. The lemma
follows.

3. Detectors.

In this section we will need Cp-partitions of unity. Although it is well-known that
Cp-partitions of unity exist in any o-minimal structure, however for the reader’s
convenience and making the paper self-contained, we give a short proof in the first
two lemmas.

Lemma 3.1. Let Ω be an open subset of Rn and let A and B be two closed, disjoint
subsets of Ω. Then there exists a Cp-function ϕ : Ω −→ [0, 1] such that ϕ = 1 on A
and ϕ = 0 on B.

Proof. By the Whitney extension theorem in the version from [KP], there exists a
Cp-function ψ : Ω −→ R such that ψ = 1 on A and ψ = 0 on B. Now it suffices
to put ϕ := λ ◦ ψ, where λ : R −→ [0, 1] is a Cp-function such that λ(0) = 0 and
λ(1) = 1.

Lemma 3.2. Let Ω be an open subset of Rn and let A1, . . . , Am be a finite fam-
ily of closed and pairwise disjoint subsets of Ω. Then there exist Cp-functions
ϕj : Ω −→ [0, 1] (j ∈ {1, . . . ,m}) such that

m∑

j=1

ϕj(x) = 1, for each x ∈ Ω

and for each j ∈ {1, . . . ,m} ϕj = 1 on Aj.

Proof. Induction on m. Let m > 1. By the induction hypothesis there are
ψ1, . . . , ψm−1 : Ω −→ [0, 1] of class Cp such that

m−1∑

i=1

ψi(x) = 1, for each x ∈ Ω

and ψi = 1 on Ai. By Lemma 3.1 there exists a Cp-function σ1 : Ω −→ [0, 1]
such that σ1 = 1 on Am and σ1 = 0 on A1 ∪ · · · ∪ Am−1. There exists an open
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neighborhood U of A1 in Ω such that σ1 > 0 on U and U ⊂ Ω \ (A1 ∪ · · · ∪Am−1).
By Lemma 3.1 there exists a Cp-function σ2 : Ω −→ [0, 1] such that σ2 = 1 on Ω\U
and σ2 = 0 on Am. Then the Cp-function

σ1 + σ2 : Ω −→ [0, 2]

is positive on Ω, so we can built the following Cp-function on Ω

ρ1(x) :=
σ1(x)

σ1(x) + σ2(x)
and ρ2(x) :=

σ2(x)
σ1(x) + σ2(x)

.

Of course, ρ1(x) + ρ2(x) ≡ 1, ρ1 = 0 on A1 ∪ · · · ∪ Am−1, while ρ2 = 0 on
Am; hence ρ1 = 1 on Am and ρ2 = 1 on A1 ∪ · · · ∪ Am−1. Finally we put
ϕ1 := ψ1ρ2, . . . , ϕm−1 := ψm−1ρ2 and ϕm := ρ1.

Proposition 3.3. Let Ω be an open subset of Rn,E a closed subset of Ω of dimen-
sion k and C a convex, closed bounded subset of Rm. Let f : E × C −→ [0,∞) be
a continuous function and define

g(x) := sup
y∈C

f(x, y), for each x ∈ E.

Assume that g(x) > 0, for each x ∈ E. Let p ∈ N.

Then there exists a family ωj : Ω −→ intC (j ∈ {0, . . . , k}) of Cp-mappings
such that

1
2
g(x) < sup

j
f(x, ωj(x)), for each x ∈ E.

The mappings ωj will be called detectors of class Cp for f over E.

Proof. Induction on k. If k = 0 it suffices to know that there exists a Cp-mapping
ω : Ω −→ C which has prescribed values at a finite number of points; an immediate
consequence of existence of definable Cp-partitions of unity (Lemma 3.2).

Suppose now that k > 0. By the definable choice there exists a mapping
ωk : E −→ intC such that

(3.3.1)
1
2
g(x) < f(x, ωk(x)), for each x ∈ D.

There exists a closed subset E1 of E of dimension l < k such that E \ E1 is a
Cp-submanifold of Rn of dimension k and ωk|E \ E1 is a Cp-mapping. Moreover,
by [KP] we can assume that E \ E1 can be represented as a finite union

(3.3.2) E \ E1 =
⋃
ν

Γν

of pairwise disjoint k-dimensional Cp-submanifolds each of which, in some linear
coordinate system is the graph of a Cp-mapping

Γν = {(x1, . . . , xk, γν
k+1(x1, . . . , xk), . . . , γν

n(x1, . . . , xk)) : (x1, . . . , xk) ∈ Dν},
10



of a Cp-mapping γν = (γν
k+1, . . . , γ

ν
n) : Dν −→ Rn−k defined on some open subset

Dν ⊂ Rk.

By natural projection

Dν ×Rn−k 3 (x1, . . . , xn) 7−→ (x1, . . . , xk, γν(x1, . . . , xk)) ∈ Γnu

ωk|Γν can be extended to a Cp-mapping to a neighborhood of Γν ; hence ωk|E\E1 can
be extended to a Cp-mapping defined on a neighborhood of E \ E1. Consequently,
ωk|E \ E1 extends to a Cp-Whitney field defined on E \ E1. By the induction
hypothesis, there exist Cp-mappings ωj : Ω −→ intC (j ∈ {0, . . . , k1}) such that

(3.3.3.)
1
2
g(x) < sup

j
f(x, ωj(x)), for each x ∈ E1

There exists an open neighborhood W of E1 in Ω such that (3.3.3) holds true
for each x ∈ W ∩ E. Then E \ W is a closed subset of Ω contained in E \ E1.
By the Whitney Extension Theorem, there exists a Cp-mapping F : Ω −→ Rm

which extends ωk|E \W . Then U := F−1(intc) is an open neighborhood of E \W
in Ω. By Lemma 3.2, there exists Cp-functions ϕ1, ϕ2 : Ω −→ [0, 1] such that
ϕ1 + ϕ2 ≡ 1, ϕ1 = 1 on E \W and ϕ2 = 1 on Ω \ U . Choose any c0 ∈ intC and
put ω̃k := ϕ1F + ϕ2c0. Then ω0, . . . , ωk−1, ω̃k is the desired sequence for E.

Example 3.2 The following example shows the assumption g(x) > 0, for each
x ∈ E, in Proposition 3.1 cannot be omitted. Put

E := {(x1, x2) ∈ R2 : x2
1 + x2

2 6 1
4
} and C = [0, 1].

Consider f : E × C −→ [0,∞) defined in the following way:

f(x1, x2, y) = 0, when x2
1 + x2

2 > 0 and y 6 |x1||x2|
2(x2

1 + x2
2)

;

f(x1, x2, y) = y − |x1||x2|
2(x2

1 + x2
2)

, when x2
1 + x2

2 > 0 and

|x1||x2|
2(x2

1 + x2
2)

6 y 6 |x1||x2|
2(x2

1 + x2
2)

+ x2
1 + x2

2;

f(x1, x2, y) = 2(x2
1 + x2

2)−
(
y − |x1||x2|

2(x2
1 + x2

2)

)
, when x2

1 + x2
2 > 0 and

|x1||x2|
2(x2

1 + x2
2)

+ x2
1 + x2

2 6 y 6 |x1||x2|
2(x2

1 + x2
2)

+ 2(x2
1 + x2

2);

f(x1, x2, y) = 0, when x2
1 + x2

2 > 0 and
|x1||x2|

2(x2
1 + x2

2)
+ 2(x2

1 + x2
2) 6 y 6 1;

f(x1, x2, y) = 0, when x2
1 + x2

2 = 0.

Clearly, g(x1, x2) = x2
1 +x2

2 and f does not admit event continuous detectors over
E.
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4. Yomdin-Gromov trick and a smoothing homeomorphism ω.

This paragraph concerns a method of smoothing functions of one variable mim-
icking Yomdin and Gromov (cf. [Y1, Y2] and [G; Section 4.1]) which appeared useful
to get smooth parametrizations of subsets definable in o-minimal structures (cf. [K-
CPV]). It is crucial in the proof of our basic Lemma 5.1.

Lemma 4.1. Let λ : (a, b) −→ R be a definable Cp+1-function, where p ∈ N, p > 1,
defined on an open interval (a, b) ⊂ R such that, for each ν ∈ {2, . . . , p+1}, λ(ν) > 0
on (a, b) or λ(ν) 6 0 on (a, b). Then, for any closed interval [t − r, t + r] ⊂ (a, b),
where r ∈ R and r > 0,

|λ(p)(t)| 6 2(p+2
2 )−2 sup

[t−r,t+r]

|λ| 1
rp

.

Proof. Induction on p (see [K-CPV; Lemma 2.1] for details).

Applying Lemma 4.1 to λ′ in the place of λ and µ− 1 in the place of p, we have
the following

Corollary 4.2. Under the assumptions of Lemma 4.1,

|λ(µ)(t)| 6 Cp sup
(a,b)

|λ′| 1
|t− a|µ−1

,

for each t ∈ (
a, a+b

2

]
and µ ∈ {2, . . . , p}, where Cp := 2(p+1

2 )−2. In particular, if λ′

is bounded; i. e. |λ′| 6 M , where M ∈ R and M > 0, then

(4.2.1) |λ(µ)(t)| 6 CpM
1

|t− a|µ−1
, for each t ∈ (

a,
a + b

2
]
, µ ∈ {2, . . . , p}.

Lemma 4.3. Let λ : (a, c] −→ R be a definable Cp-function, where a, c ∈ R, a < c
such that

(4.3.1) |λ(µ)(t)| 6 L
1

|t− a|µ−1
, for each t ∈ (a, c], µ ∈ {1, . . . , p}

where L ∈ R is a positive constant. Fix m ∈ N, m > p + 1. Fix any α ∈ R. Put
ϕ(τ) := λ(a + (τ − α)m), for each τ ∈ (α, β], where β = α + m

√
c− a.

Then there exists a positive constant M depending only on L and m such that
|ϕ(µ)(τ)| 6 L|τ − α|m−µ, for each τ ∈ (α, β] and µ ∈ {1, . . . , p}. Consequently, ϕ
has a unique extension to a Cp-function ϕ : [α, β] −→ R p-flat at α.

Proof. Without any loss of generality we can assume that a = 0 = α. Then
ϕ(τ) = λ(τm). For each µ ∈ {1, . . . , p}, ϕ(µ)(τ) =

a1µτm−µλ′(τm)+a2µτ2m−µλ′′(τm)+a3µτ3m−µλ(3)(τm)+ · · ·+aµµτµm−µλ(µ)(τm),

where aiµ are positive integers defined inductively by the following formulae

a1µ =
m!

(m− µ)!
, aiµ = ma(i−1)(µ−1) + (im− µ + 1)ai(µ−1), aµµ = mµ.
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By (4.3.1), it follows that |ϕ(µ)(τ)| 6

a1µτm−µL + a2µτ2m−µ L

τm
+ a3µτ3m−µ L

τ2m
+ · · ·+ aµµτµm−µ L

τ (µ−1)m
=

L(a1µ + · · ·+ aµµ)τm−µ.

It will be convenient to have the p-flatness of a parametrization of the segment
[a, c] at the right end as well. It is why we use the following increasing parametriza-
tion of the segment [α, β] p-flat at right end:

τ := α + m
√

c− a− (γ − s)m,

where γ ∈ R is arbitrary, s ∈ [γ, δ] and δ = γ + 2m
√

c− a. This leads us to the
following.

Corollary 4.4. Let λ : (a, b) −→ R be a Cp+1-function, where p ∈ N, p > 1,
defined on an open interval (a, b) ⊂ R such that λ′ is bounded and, for each
ν ∈ {2, . . . , p + 1}, λ(ν) > 0 on (a, b) or λ(ν) 6 0 on (a, b). Let m ∈ N, m > p + 1.
Let γ0 ∈ R be fixed arbitrarily, γ1 := γ0 + 2m

√
(b− a)/2, γ2 := γ1 + 2m

√
(b− a)/2 =

γ0 + 2 2m
√

(b− a)/2. Put

ω(a, b; s) :=

{
a +

[
m
√

(b− a)/2− (γ1 − s)m
]m

, if s ∈ [γ0, γ1]

b− [
m
√

(b− a)/2− (s− γ1)m
]m

, if s ∈ [γ1, γ2].

Then ω : [γ0, γ2] −→ [a, b] is an increasing homeomorphism such that ω(γ0) =
a, ω(γ1) = a+b

2 , ω(γ2) = b and λ ◦ ω extends uniquely to a Cp function
λ ◦ ω : [γ0, γ2] −→ R p-flat at points γ0, γ1 and γ2.

Corollary 4.5. Let y0 6 y1 6 · · · 6 yr be (at most) r + 1 points in R. Let
λ : [y0, yr] −→ R be a continuous function such that, for each i ∈ {0, . . . , r−1}, if
yi < yi+1, then λ|(yi, yi+1) satisfies the assumptions of Corollary 4.4. Let m ∈ N,
m > p + 1. Let the sequence of points in R

γ0 6 γ1 6 γ2 6 · · · 6 γ2r

be defined inductively by: γ0 ∈ R fixed arbitrarily, γ2i+1 := γ2i + 2m
√

(yi+1 − yi)/2,
γ2i+2 := γ2i+1 + 2m

√
(yi+1 − yi)/2 (i ∈ {0, . . . , r − 1}). Put ω(y0, . . . , yr; s) :=

{
yi +

[
m
√

(yi+1 − yi)/2− (γ2i+1 − s)m
]m

, if s ∈ [γ2i, γ2i+1]

yi+1 −
[

m
√

(yi+1 − yi)/2− (s− γ2i+1)m
]m

, if s ∈ [γ2i+1, γ2i],

for i ∈ {0, . . . , r − 1} and

ω(y0, . . . , yr; s) :=
{

y0 − (γ0 − s)m, if s ∈ (−∞, γ0],
yr + (s− γ2r)m, if s ∈ [γ2r,∞).

Then ω : R −→ R is an increasing homeomorphism of class Cp such that ω(γ2i) = yi

and ω(γ2i+1) = yi+yi+1
2 (i ∈ {0, . . . , r − 1}), and λ ◦ ω : [γ0, γ2r] −→ R is of class

Cp, p-flat at points γ0, . . . , γ2r.
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5. Basic lemmata.

Lemma 5.1. Let D be a bounded subset of Rn−1 such that D = intD, let m, p be
positive integers such that m > p + 1. Let

α0 6 α1 6 · · · 6 αr : D −→ R

be a finite sequence of continuous functions such that K :=
{
(αi, αi+1) : i ∈

{0, . . . , r − 1}} is a family of capsules in Rn. Let K1 ⊂ K and put A := |K|
and A1 := |K1|.

Let f = (f1, . . . , fd) : A1 −→ Rd be a continuous mapping such that for each
K ∈ K1 there exists continuous partial derivatives

∂σ(f |
◦
K)

∂xσ
n

(σ ∈ {1, . . . , p + 1}).

Then there exists a finite sequence of continuous functions

δ0 6 δ1 6 · · · 6 δk : D −→ R

and a homeomorphism
Φ : [δ0, δk] −→ [α0, αr]

such that:

(5.1.1) Φ is of the form Φ(x′, ξn) = (x′, ϕ(x′, ξn)), where x′ = (x1, . . . , xn−1).

(5.1.2) For each j ∈ {0, . . . , k − 1} the derivatives

∂σϕ

∂ξσ
n

(σ ∈ {1, . . . , p + 1})

exist continuous in (δj , δj+1) and have continuous extensions by zero to (δj , δj+1);
moreover

∂ϕ

∂ξn
> 0 on (δj , δj+1).

(5.1.3) The sequence θj(x′) := ϕ(x′, δj(x′)), where x′ ∈ D and j ∈ {0, . . . , k},
is a refinement of α0, . . . , αr; in particular, α0 = θ0 and αr = θk.

(5.1.4) L := {(δj , δj+1) : j ∈ {0, . . . , k − 1}} is a family of capsules in Rn such
that {Φ(L) : L ∈ L} is a family of capsules which is a refinement of K.

(5.1.5) Put L1 := {L ∈ L : Φ(L) ⊂ K, for some K ∈ K1}. For each L ∈ L1,
there exist continuous partial derivatives

∂σ(f ◦ Φ|
◦
L)

∂ξσ
n

(σ ∈ {1, . . . , p + 1})
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and these for σ ∈ {1, . . . , p} extend continuously by zero to L.

(5.1.6) On each capsule L ∈ L the function ϕ is either of the form

ξ2m
n + a1(x′)ξ2m−1

n + · · ·+ a2m(x′), where a1, . . . , a2m : D → R are continuous

(it is so in particular, when L /∈ L1)
or of the form

±f−1
κ (x′,±ξ2m

n + a1(x′)ξ2m−1
n + · · ·+ a2m(x′)), where a1, . . . , a2m : D → R

are continuous and where κ ∈ {1, . . . , d} and f−1
κ denotes the inverse of fκ with

respect to the variable xn on the capsule Φ(L) on which

∣∣∣∂fκ
∂xn

∣∣∣ > c−1, with some constant c > 1.

Proof. Fix any c > 1. By Proposition 2.5, passing perhaps to a refinement of K
one can assume that for each K ∈ K we have either

(5.1.7)
∣∣∣∂fκ
∂xn

∣∣∣ 6 c, in
◦
K for each κ ∈ {1, . . . , d},

or

(5.1.8)
∣∣∣∂fκ
∂xn

∣∣∣ > c−1, in
◦
K for some κ ∈ {1, . . . , d},

and in the second case among fκ satisfying (5.1.8) there is one, denote it by fK ,
such that

(5.1.9)
∣∣∣∂fκ
∂xn

∣∣∣
/∣∣∣∂fK

∂xn

∣∣∣ 6 cd, in
◦
K for each κ ∈ {1, . . . , d}.

Now we define a function λ : [α0, αr] −→ R inductively as follows. Put first

λ(x′, α0(x′)) := α0(x′), for each x′ ∈ D.

We define λ on [αi, αi+1] according to the following two cases.

Case I. If (αi, αi+1) /∈ K1 or if (αi, αi+1) ∈ K1 and (5.1.7) is satisfied on
(αi, αi+1), then put

λ(x′, xn) := λ(x′, αi(x′)) + xn − αi(x′), for each (x′, xn) ∈ [αi, αi+1].

Case II. If K = (αi, αi+1) ∈ K1 and (5.1.8) is satisfied on (αi, αi+1), then put

λ(x′, xn) := λ(x′, αi(x′)) + |fK(x′, xn)− fK(x′, αi(x′))|,
for each (x′, xn) ∈ [αi, αi+1].
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Put Λ(x′, xn) := (x′, λ(x′, xn))). Then Λ is a homeomorphism of [α0, αr] onto
[β0, βr], where βi(x′) := λ(x′, αi(x′)) (x′ ∈ D, i ∈ {0, . . . , r}) and (βi, βi+1) (i ∈
{0, . . . , r − 1}) are capsules in Rn.

The partial derivatives

∂σλ

∂xσ
n

(σ ∈ {1, . . . , p + 1})

exist and are continuous in every (αi, αi+1) and ∂λ
∂xn

≡ 1 or ∂λ
∂xn

> c−1 on
(αi, αi+1); hence λ : [α0, αr] −→ R is continuous, strictly increasing with respect
to xn. Let

Ψ : [β0, βr] 3 (x′, ζn) 7−→ (x′, ψ(x′, ζn)) ∈ [α0, αr]

denote the inverse homeomorphism to Λ. Then

0 <
∂ψ

∂ζn
(x′, ζn) =

1
∂λ

∂xn
(x′, ψ(x′, ζn))

6 max{1, c} = c

on every (βi, βi+1). Fix now any K = (αi, αi+1) ∈ K.

If K is of type as in Case I, then for each (x′, ζn) ∈ (βi, βi+1)

βi(x′) + ψ(x′, ζn)− αi(x′) ≡ ζn; hence ψ(x′, ζn) = ζn − βi(x′) + αi(x′);

consequently, if K ∈ K1, then for each κ ∈ {1, . . . , d}
∣∣∣∂(fκ ◦ Ψ)

∂ζn
(x′, ζn)

∣∣∣ =
∣∣∣∂fκ
∂xn

(x′, ψ(x′, ζn)
∣∣∣ 6 c.

If K ∈ K1 is of type as in Case II, then for each (x′, ζn) ∈ (βi, βi+1)

βi(x′) + |fK(x′, ψ(x′, ζn))− fK(x′, αi(x′))| ≡ ζn,

hence ψ(x′, ζn) = f−1
K

(
x′,±(ζn − βi(x′)) + fK(x′, αi(x′)

)
;

consequently, for each κ ∈ {1, . . . , d}
∣∣∣∂(fκ ◦ Ψ)

∂ζn
(x′, ζn)

∣∣∣ =
∣∣∣∂fκ
∂xn

(x′, ψ(x′, ζn))
∣∣∣
/∣∣∣∂fK

∂xn
(x′, ψ(x′, ζn))

∣∣∣ 6 cd.

By Proposition 2.4, passing to a refinement (γj , γj+1) (j ∈ {0, . . . , s − 1}) of
capsules (βi, βi+1) , where the sequence γ0 6 γ1 6 · · · 6 γs is a refinement of the
sequence β0 6 . . . βr, we can additionally assume that for each j ∈ {0, . . . , s − 1}
and each σ ∈ {2, . . . , p + 1} we have either

(5.1.10)
∣∣∣∂

σψ

∂ζσ
n

(x′, ζn)
∣∣∣ 6 c, on (γj , γj+1)

or

(5.1.11)
∣∣∣∂

σψ

∂ζσ
n

(x′, ζn)
∣∣∣ > c−1, on (γj , γj+1)
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and, similarly, for each κ ∈ {1, . . . , d}, either

(5.1.12)
∣∣∣∂

σ(fκ ◦ Ψ)
∂ζσ

n

(x′, ζn)
∣∣∣ 6 c, on (γj , γj+1)

or

(5.1.13)
∣∣∣∂

σ(fκ ◦ Ψ)
∂ζσ

n

(x′, ζn)
∣∣∣ > c−1, on (γj , γj+1).

Notice that the condition (5.1.13) implies a constant sign of the partial derivative
involved on (γj , γj+1).

Finally, we modify the homeomorphism Ψ with respect to the variable ζn by
means of the smoothing homeomorphism ω with a parameter (Corollary 4.5):

Φ(x′, ξn) := Ψ
(
x′, ω(γ0(x′), . . . , γs(x′); ξn)

)
,

where (x′, ξn) ∈ [δ0, δ2s] and where δ0 6 · · · 6 δ2s : D −→ R is a sequence of
continuous functions.

Lemma 5.2. Let ∆ ⊂ Rn be a simplex of dimension n, p a positive integer and
let

β0 6 β1 6 . . . βk : ∆ −→ R

be Cp-functions such that for every face S of ∆ and each j ∈ {0, . . . , k − 1} either

βj+1 − βj 6= 0 on
◦
S or βj+1 − βj ≡ 0 on S and let in the latter βj+1 − βj be p-flat

on S.

Let
λ0 6 λ1 6 · · · 6 λk : ∆ −→ R

be continuous PL-functions such that for every face S of ∆ and j ∈ {0, . . . , k}
λj |S is affine and

(5.2.1) βj ≡ βj+1 on S ⇐⇒ λj ≡ λj+1 on S (j ∈ {0, . . . , k − 1})

Then the formula

Ψ(u, ζ) =

{ (
u,

ζ−λj(u)
λj+1−λj(u) (βj+1(u)− βj(u)) + βj(u)

)
, if λj(u) < λj+1(u),

(u, βj(u)), if λj(u) = λj+1(u),

for (u, ζ) ∈ [λj , λj+1], defines a homeomorphism [λ0, λk] onto [β0, βk], such that
Ψ(u, λj(u)) = (u, βj(u)), for u ∈ ∆, j ∈ {0, . . . , k} and for each j ∈ {0, . . . , k − 1}
Ψ |[λj , λj+1] is of class Cp.

Proof. Assume that λj < λj+1 on
◦
∆. By a linear change of coordinates we can

assume that

∆ = {u ∈ Rn : uν 6 0 (ν ∈ {1, . . . , n})
n∑

ν=1

uν 6 1}
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and S := {u ∈ ∆ : λj(u) = λj+1(u)}

= {u ∈ ∆ : βj(u) = βj+1(u)} = {u ∈ ∆ : ul+1 = · · · = un = 0}.

Then for each u ∈ ∆

λj+1(u)− λj(u) =
n∑

ν=l+1

cνuν , where cν > 0 (ν ∈ {l + 1, . . . , n}).

We want to check that

∂|σ|+ρ

∂uσ∂ζρ

[ ζ − λj(u)
λj+1(u)− λj(u)

(βj+1(u)− βj(u))
]
−→ 0,

when (λj , λj+1) 3 (u, ζ) → (u0, λj(u0)) ∈ S×R, σ ∈ Nn, ρ ∈ N and |σ|+ρ 6 p.

In view of the Leibnitz formula, it suffices to check that

(ζ − λj(u))Dσ
[ 1
λj+1 − λj

]
(u)Dρ(βj+1 − βj)(u) −→ 0,

when σ, ρ ∈ Nn, |σ|+ |ρ| 6 p and (u, ζ) → (u0, λj(u0)), and

Dσ
[ 1
λj+1 − λj

]
(u)Dρ(βj+1 − βj)(u) −→ 0,

when σ, ρ ∈ Nn, |σ|+ |ρ| 6 p− 1 and (u, ζ) → (u0, λj(u0)).

In the first case, by the Taylor formula

(ζ−λj(u))Dσ
[ 1
λj+1 − λj

]
(u)Dρ(βj+1−βj)(u) = (ζ−λj(u))

C

(λj+1(u)− λj(u))|σ|+1

∑

|δ|=p−|ρ|

1
δ!

(u− π(u))δDρ+(0,δ)(βj+1 − βj)(π(u) + θ(u− π(u))),

where C > 0, π(u) = (u1, . . . , ul, 0, . . . , 0) and θ ∈ (0, 1). Consequently, with some
constant C ′ > O,

∣∣∣(ζ − λj(u))Dσ
[ 1
λj+1 − λj

]
(u)Dρ(βj+1 − βj)(u)

∣∣∣ 6

C ′
( ∑n

ν=l+1 cνuν

)|σ|
( n∑

ν=l+1

uν

)p−|ρ| sup
|µ|=p
θ∈[0,1]

|Dµ(βj+1 − βj)(π(u) + θ(u− π(u)))|,

which tends to 0, when u tends to u0. Similarly in the second case.

We will also need some Cp-extension result based on the following C1-extension
theorem (cf. [Pa, Proposition 2]).
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Theorem 5.3 (C1-Extension Theorem). Let f : S −→ R be a C1-function de-
fined on a cell

S = {(x′, xn) ∈ Rn : x′ ∈ G, ϕ(x′) < xn < ψ(x′)}
in Rn such that G is an open subset of Rn−1 and ϕ < ψ : G −→ R are of class C1.

Assume that
∂f

∂xn
has a finite limit value2 at (almost) each point of ϕ ( for

example, when
∂f

∂xn
is bounded ).

Then there is a closed nowhere dense subset Z of ϕ such that f extends to a
C1-function

f : S ∪ (ϕ \ Z) −→ R

to S ∪ (ϕ \ Z) as a C1-submanifold of Rn with boundary ϕ \ Z.

Proof. With no loss of generality we can assume that ϕ ≡ 0; i.e. ϕ = G× {0}. For
each a ∈ G the set

Lim
x→(a,0)

∂f

∂xn
(x)

of all finite limit values of
∂f

∂xn
at point (a, 0) is a closed non-empty interval, because

S satisfies the ÃLojasiewicz (s)-condition at points of ϕ. Since

⋃

a∈G

{a} × Lim
x→(a,0)

∂f

∂xn
(x) =

∂f

∂xn
\ ∂f

∂xn

is of dimension n− 1, it follows that there exists a closed nowhere dense subset E
of G such that there exists a finite limit

lim
x→(a,0)

∂f

∂xn
(x), for each a ∈ G \ E.

This implies in particular that for each x′ ∈ G \ E there exists a finite limit

(5.3.1) g(x′) := lim
xn→0

f(x′, xn) ∈ R.

There exists a closed nowhere dense subset Z of G containing E such that g is
of class C1 on G \ Z. Hence, without any loss of generality we can assume that
g ≡ 0 and Z = ∅. Repeating the previous argument with dimension we conclude
that after removing a closed nowhere dense subset from G f extends by 0 to a
continuous function on S ∪ ϕ.

Now, we will show that for any i ∈ {1, . . . , n− 1} the partial derivative ∂f/∂xi

extends by 0 to a continuous function defined on S\E, where E ⊂ ϕ and dim E < k.
With no loss of generality we assume that i = n− 1. First we will show that

(5.3.2) 0 ∈ Lim
x→(a,0)

∂f

∂xn−1
(x), for each a ∈ G.

2An element α ∈ R is a limit value of a function g : S −→ R at a ∈ S if and only if there is an
arc γ : (0, 1) −→ S such that lim

t→0
γ(t) = a and lim

t→0
g(γ(t)) = α.
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To check this fix any arbitrarily small η > 0 such that B(a, η) :=
{u ∈ Rk : |u − a| 6 η} ⊂ G and any ε > 0. There exists δ > 0 such that
|f(x′, xn)| 6 εη, when x′ ∈ B(a, η) and xn ∈ (0, δ). By the Mean Value Theorem
there exists θ ∈ (0, 1) such that

∣∣∣ ∂f

∂xn−1
(ã, an−1 + θη, xn)

∣∣∣ =
∣∣∣f(ã, an−1 + η, xn)− f(a, xn)

η

∣∣∣ 6 2ε,

where a = (ã, an−1). This ends the proof of (5.3.2). Repeating the previous argu-
ment we conclude that

(5.3.3) lim
x→(a,0)

∂f

∂xn−1
(x) = 0,

for a ∈ G \ Z, where Z is a closed subset of Z of dimension < k. This ends the
proof of the theorem.

Lemma 5.4 (basic Cp-extension lemma). Let Ω ⊂ Rk be an open subset, where
k ∈ {0, . . . , n− 1}, and let p be a positive integer.
Let

ϕk+1, ψk+1 : Ω −→ R be Cp-functions such that ϕk+1 < ψk+1;

ϕk+2, ψk+2 : [ϕk+1, ψk+1) −→ R be Cp-functions such that ϕk+2 < ψk+2

on (ϕk+1, ψk+1) and ϕk+2 = ψk+2 on ϕk+1;

ϕk+3, ψk+3 : [ϕk+2, ψk+2] −→ R be Cp-functions such that ϕk+3 < ψk+3

on (ϕk+2, ψk+2) and ϕk+3 = ψk+3 on ϕk+2|ϕk+1;

. . .

ϕn, ψn : [ϕn−1, ψn−1] −→ R be Cp-functions such that ϕn < ψn

on (ϕn−1, ψn−1) and ϕn = ψn on ϕn−1|(. . . (ϕk+2|ϕk+1)...).

Put

Σ := {(x1, . . . , xn) ∈ Ω ×Rn−k : ϕj(x1, . . . , xj−1) = xj (j ∈ {k + 1, . . . , n})}.

Let f : [ϕn, ψn] \Σ −→ R a Cp-function such that all the partial derivatives

(5.4.1)
∂pf

∂x
αk+1
k+1 . . . ∂xαn

n
(|α| = αk+1 + · · ·+ αn = p) have continuous

extensions to Σ.

Then there exists a closed subset E of Σ of dimension < k such that f extends
to a Cp-function defined on [ϕn, ψn] \ E.

Proof. First assume that p = 1. With no loss of generality we can assume that

(5.4.2) ϕk+1 ≡ 0, ϕk+2|ϕk+1 ≡ 0, . . . , ϕn|(. . . (ϕk+2|ϕk+1)...) ≡ 0;
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in other words Σ = Ω × {0}n−k.
Put y := (xk+1, . . . , xn). For any a ∈ Ω the function fa : [ϕn, ψn]a \ {0} −→

R defined by fa(y) := f(a, y) on the set [ϕn, ψn]a \ {0} := {y 6= 0 : (a, y) ∈
[ϕn, ψn]} is a C1-function with bounded first order partial derivatives near 0. Since
[ϕn, ψn]a \ {0} is quasi-convex3 near 0, this implies that the limit

g(a) := lim
y→0

fa(y)

exists in R (cf. [Pa, Proposition 1]). Since there exists a closed subset E of Ω of
dimension < k such that g is of class C1 on Ω \E, with no loss of generality we can
assume that g is C1 and then that g ≡ 0.

For each a ∈ Ω the set Lim
x→(a,0)

f(x) of all finite limit values of f at point (a, 0)

is a closed interval containing 0, because [φn, ψn] \ Σ satisfies the ÃLojasiewicz (s)-
condition at points of Σ. We want to check that Lim

x→(a,0)
f(x) = {0}, for almost all

a ∈ Ω. Suppose it is not so. Hence there exists a non-empty open subset G of Ω
and ε > 0 such that [0, ε] ⊂ Lim

x→(a,0)
f(x) (or [−ε, 0] ⊂ Lim

x→(a,0)
f(x)) for each a ∈ G.

Then G × {0}n−k ⊂ f−1(ε/2,∞). It follows by the Cell Decomposition Theo-
rem that there exists a ∈ G such that {0}n−k ⊂ f−1(ε/2,∞)a = f−1

a (ε/2,∞), a
contradiction.

It follows that we can assume that f extends by 0 to a continuous function
defined on [ϕn, ψn]. Now, we will show that for any i ∈ {1, . . . , k} the partial
derivative ∂f/∂xi extends by 0 to a continuous function defined on [ϕn, ψn] \ E,
where E ⊂ Σ and dimE < k. With no loss of generality we assume that i = k.
Suppose it is not so. Then there exists a non-empty open subset G of Ω such that

(5.4.3) Lim
x→(a,0)

∂f

∂xk
(x) 6= {0}, for each a ∈ G.

It follows that there there exists a non-empty open subset G of Ω and ε > 0 such
that

G× {0}n−k ⊂
( ∂f

∂xk

)−1

[ε,∞)

or

G× {0}n−k ⊂
( ∂f

∂xk

)−1

(−∞,−ε].

By an analogue of the Whitney Wing Lemma (cf. [ÃL, Section 19]) or directly by
the Cell Decomposition Theorem there exist a non-empty open subset G′ of G and
δ > 0 such that G′ × [0, δ) ⊂ [ϕk+1, ψk+1) and a continuous mapping

(5.4.4) α : G′ × [0, δ) :−→
( ∂f

∂xk

)−1

[ε,∞),

3A subset A of Rm is called quasi-convex if there is a positive integer M such that for any
two points a1, a2 ∈ A there exists a (definable) continuous arc λ : [0, |a1 − a2|] −→ A such that
λ(0) = a1, λ(|a1 − a2|) = a2 and |λ′(t)| 6 M , for any t ∈ [0, |a1 − a2|] such that λ′(t) exists.
(Then λ is necessarily piece-wise C1.)
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such that

(5.4.5) α(u, xk+1) = (u, xk+1, αk+2(u, xk+1), . . . , αn(u, xk+1)),

where αj(u, 0) = 0, for each j ∈ {k + 2, . . . , n} and u ∈ G′, because of (5.4.2).
Since

ϕk+2(u, xk+1) < αk+2(u, xk+1) < ψk+2(u, xk+1), and

ϕj+1(u, xk+1, αk+2(u, xk+1), . . . , αj(u, xk+1)) < αj+1(u, xk+1) <

ψj+1(u, xk+1, αk+2(u, xk+1), . . . , αj(u, xk+1)), for j ∈ {k + 2, . . . ,m},
it follows that

(5.4.6) lim
xk+1→0

∂αj

∂xk+1
(u, xk+1) ∈ R, for each u ∈ G′ and j ∈ {k + 2, . . . , n}.

By Theorem 5.3, at the expense of shrinking G′ and diminishing δ ,we can assume
that αj are C1 functions on G′ × [0, δ); in particular

(5.4.7) lim
xk+1→0

∂αj

∂xk
(u, xk+1) = 0, for u ∈ G′ and j ∈ {k + 2, . . . , n}.

It follows from (5.4.1) and (5.4.6) that for each u ∈ G′ the derivative

∂(f ◦ α)
∂xk+1

(u, xk+1)

is bounded when xk+1 is near 0. Again by Theorem 5.3, after perhaps shrinking G′

and diminishing δ we can assume that (f ◦α)|G′× [0, δ) is of class C1; in particular

(5.4.8) lim
xk+1→0

∂(f ◦ α)
∂xk

(u, xk+1) = 0.

On the other hand,

∂(f ◦ α)
∂xk

(u, xk+1) =
∂f

∂xk
(u, xk+1, αk+2(u, xk+1), . . . , αn(u, xk+1))+

n∑

j=k+2

∂f

∂xj
(u, xk+1, αk+2(u, xk+1), . . . , αn(u, xk+1))

∂αj

∂xk
(u, xk+1),

which, in view of (5.4.8), (5.4.1) and (5.4.7), implies that

lim
xk+1→0

∂f

∂xk
(u, xk+1, αk+2(u, xk+1), . . . , αn(u, xk+1)) = 0,

contradicting (5.4.4). This ends the proof in the case p = 1.

Assume now that p > 1 and the lemma is true for p − 1. Since [ϕn, ψn] \ Σ is
locally quasi-convex near Σ4 it suffices to check that all the partial derivatives

(5.4.9)
∂|β|f

∂xβ1
1 . . . ∂xβn

n

(|β| := β1 + · · ·+ βn 6 p)

4It means that each point u ∈ Σ admits arbitrarily small neighborhoods U in Rn such that
U ∩ [ϕn, ψn] \Σ is quasi-convex.
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have continuous extensions to Σ \E, where E is a closed subset of Σ of dimension
< k (cf. [T, p. 80]). By the induction hypothesis, there exists a closed subset of Σ
of dimension < k such that for each j ∈ {k + 1, . . . , n} all the derivatives

∂|γ|

∂xγ1
1 . . . ∂xγn

n

( ∂f

∂xj

)
=

∂

∂xj

( ∂|γ|

∂xγ1
1 . . . ∂xγn

n

)
(|γ| = p− 1)

have continuous extensions to Σ \ E. It follows from the case p = 1, that there
exists a closed subset E′ of Σ containing E of dimension < k such that all the
derivatives (5.4.9) have continuous extensions to Σ \ E′.

6. Existence of strict Cp-triangulations orthogonally flat along sim-
plexes.

Let Γ be an open subset of Rk = {(x1, . . . , xn) ∈ Rn : xk+1 = · · · = xn =
0} ⊂ Rn and let f : D −→ Rm be a Cp-mapping defined on a non-necessarily open
but locally closed subset D of Rn such that D ⊂ intD; i. e. there exists an open
neighborhood Ω of D in Rn and a Cp-mapping f̃ : Ω −→ Rm such that f̃ |D = f .
Assume that Γ ⊂ D. We say that f is orthogonally p-flat along Γ if

∂|α|f
∂x

αk+1
k+1 . . . ∂xαn

n
(x1, . . . , xk, 0, . . . , 0) =

∂|α|f
∂x

αk+1
k+1 . . . ∂xαn

n
(u, 0) = 0

for each u = (x1, . . . , xk) ∈ Γ and α = (αk+1, . . . , αn) ∈ Nn−k such that 1 6 |α| 6
p. This definition generalizes in a natural way to the case when Γ is an open subset
of any affine subspace Aff(Γ ) of Rn of dimension k.

Remark 6.1. If f : D −→ Rm is a Cp-mapping orthogonally p-flat along Γ ⊂ D
and w1 ∈ Sn−1 is a vector orthogonal to Aff(Γ ), then for each j ∈ {0, . . . , p} and
arbitrary w2, . . . , wj ∈ Sn−1

∂jf

∂w1 . . . ∂wj

∣∣∣Γ ≡ 0.

To prove the main theorem of this section we need the following lemma.

Lemma 6.2. Let

Λ = {(x1, . . . , xk) ∈ Rk : ρi(x1, . . . , xk) > 0 (i ∈ {0, . . . , k)}

be a simplex of dimension k in Rk, where ρi are nonzero affine forms. Put

ω(u) :=
(ρ0 · . . . · ρk)(u)∑

j

(ρ0 . . . ρ̂j . . . ρk)(u)
, for each u ∈ Λ.

Then there exists constants Cα > 0 (α ∈ Nk) such that

C−1
0 d(u, ∂Λ) 6 ω(u) 6 C0d(u, ∂Λ), for each u ∈ Λ
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and
|Dαω(u)| 6 Cα

ω(u)|α|−1
, for each u ∈ Λ and α ∈ Nk \ {0}.

Proof. Put Hi := ρ−1
i (0) (i ∈ {0, . . . , k}). Then d(u, ∂Λ) = mini d(u,Hi) and

there exists C > 0 such that C−1ρi(u) 6 d(u,Hi) 6 Cρi(u), for u ∈ Λ. Hence

C−1 min
i

ρi(u) 6 d(u, ∂Λ) 6 C min
i

ρi(u).

For a fixed u ∈ Λ let j be such that ρj(u) = mini ρi(u). Then

1
ρj(u)

6 1
ρ0(u)

+ · · ·+ 1
ρk(u)

6 k + 1
ρj(u)

; thus

(6.2.1)
1

k + 1
min

i
ρi(u) 6 ω(u) =

1
1

ρ0(u) + · · ·+ 1
ρk(u)

6 min
i

ρ;

finally,
1

C(k + 1)
ω(u) 6 d(u, ∂Λ) 6 C(k + 1)ω(u).

There are constants aj (j ∈ {0, . . . , k} such that
∂ω

∂xν
=

∑

i

ai
(ρ0 . . . ρ̂i . . . ρk)∑
j(ρ0 . . . ρ̂j . . . ρk)

− (ρ0 . . . ρk)
( ∑

i 6=j

ai
1

ρiρj
ρ0 . . . ρk

) 1[ ∑
i ρ0 . . . ρ̂i . . . ρk

]2 =

∑

i

ai

ρi
· ω −

∑

i6=j

ai
1

ρiρj
ω2.

By the Leibnitz formula Dα
( ∂ω

∂xν

)
=

∑

i

ai

∑

β6α

(
α

β

)
Dβ

( 1
ρi

)
Dα−βω−

∑

i6=j

ai

∑

α=β+γ+δ+ε

α!
β!γ!δ!ε!

Dβ
( 1
ρi

)
Dγ

( 1
ρj

)
DδωDεω.

There exist constants Mβ > 0 (β ∈ Nn) such that

(6.2.2) Dβ
( 1
ρi

)
=

Mβ

ρ
|β|+1
i

.

By (6.2.1) and (6.2.2) and the induction on the degree of the derivative

∣∣Dα
( ∂ω

∂xν

)∣∣ 6
∑

i

|ai|
∑

β6α

(
α

β

) |Mβ |
ρ
|β|+1
i

|Cα−β |
ω|α|−|β|−1

+

∑

i 6=j

|ai|
∑

α=β+γ+δ+ε

α!
β!γ!δ!ε!

|Mβ |
ρ
|β|+1
i

|Mγ |
ρ
|γ|+1
j

Cδ

ω|δ|−1

Cε

ω|ε|−1
.

The lemma follows.
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Theorem 6.3. Let K be any finite simplicial complex in Rn such that |K| = int|K|.
Then there exists a homeomorphism h : Rn −→ Rn of class Cp such that

(6.3.1) h|Γ : Γ −→ Γ is a Cp-diffeomorphism, for each Γ ∈ K, and

(6.3.2) h is orthogonally p-flat along each simplex Γ ∈ K.

Proof. Take a Cp-function ϕ : [0,∞) −→ [0, 1] such that ϕ(i)(0) = 0 for each
i ∈ {0, . . . , p}, ϕ′(t) > 0 for t ∈ (0, 1) and ϕ(t) = 1 for each t ∈ [1,∞).

We will prove by induction on k ∈ {0, . . . , n − 1} that there exists such a
homeomorphism h : Rn −→ Rn of class Cp that (6.3.1) is satisfied, while (6.3.2) is
satisfied just for simplexes of dimension 6 k.

I. Let k = 0. Let {a} ∈ K and fix ra > 0 such that B(a, ra) ∩ |K| ⊂ ⋃
St{a}.

Define

ha(x) := ϕ
( |x− a|2

r2
a

)
(x− a) + a, for each x ∈ Rn.

Then ha is of class Cp and p-flat at a. Besides, ha is a homeomorphism and Cp-
diffeomorphism on Rn \ {a}, because

x = a + ψ−1(|ha(x)− a|) ha(x)− a

|ha(x)− a| , for each x ∈ Rn,

where ψ(t) := ϕ
( t2

r2
a

) · t, (t ∈ R) is an increasing homeomorphism of R onto R.

It is clear that ha(Γ ) = Γ , for each Γ ∈ K. Now, if a1, . . . , am are all vertices of
K, then we put

h := ham ◦ · · · ◦ ha1 .

II. Assume now that 0 < k 6 n − 1 and we have a Cp-homeomorphism h
satisfying (1) and (2), for simplexes of dimension < k. Let Λ ∈ K and dimΛ = k.
With no loss of generality we can assume that Λ is an open simplex in Rk =
{(x1, . . . , xn) : xk+1 = · · · = xn = 0}. Put u = (u1, . . . , uk) = (x1, . . . , xk) and
v = (v1, . . . , vn−k) = (xk+1, . . . , xn). Take ω : Λ −→ (0,∞) as in Lemma 6.2. Since
Ω :=

⋃
St(Λ) is an open neighborhood of Λ in |K|, there exists (by a kind of the

ÃLojasiewicz inequality) a constant r > 0 such that

{(u, v) ∈ Λ×Rn−k : |v| 6 rω(u)} ∩ |K| ⊂ Ω.

Put G := {(u, v) ∈ Γ ×Rn−k : |v| < rω(u)}. The mapping

g(u, v) :=

{ (
u, ϕ

( |v|2
r2ω2(u)

) · v)
; when (u, v) ∈ G,

(u, v) ; when (u, v) ∈ Rn \G

is a homeomorphism of Rn onto Rn such that g|Γ : Γ −→ Γ is a Cp-diffeomorphism,
for each Γ ∈ K. Moreover, g is of class Cp on Rn \ ∂Λ. Now define

H(u, v) := h(g(u, v)), for each (u, v) ∈ Rn.
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For any (u, v) ∈ G and ν ∈ {1, . . . , n− k}

∂

∂vν
H(u, v) =

n−k∑
µ=1

∂h

∂vµ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)
vµ

2vν

r2ω2(u)
ϕ′

( |v|2
r2ω2(u)

)
+

∂h

∂vν

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)
ϕ
( |v|2

r2ω2(u)

)
.

It follows by induction on |α| ∈ {1, . . . , p}, where α = (α1, . . . , αn−k), that
∂H

∂vα

expresses as a finite linear combination with real coefficients of the following func-
tions

∂|β|h
∂vβ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
) vγ

r2sω2s(u)

[
ϕ(0)

( |v|2
r2ω2(u)

)]ν0

. . .
[
ϕ(|α|)

( |v|2
r2ω2(u)

)]ν|α|
,

where |β| ∈ {1, . . . , |α|}, |β| + 2s − |γ| = |α|, ν0 + · · · + ν|α| = |β| and ν0 + ν1 +
2ν2 + · · ·+ |α|ν|α| 6 |α|.

Hence in particular

(6.3.3)
∂|α|H
∂vα

(u, v) = 0, when u ∈ Λ, v = 0, α ∈ Nn−k, 1 6 |α| 6 p.

Now in general, if α ∈ Nn−k and κ ∈ Nk and |α|+ |κ| 6 p, then the derivative

∂|α|+|κ|H
∂vα∂uκ

is a finite linear combination with real coefficients of functions of the form

(6.3.4)
∂|β|+|λ|h
∂vβ∂uλ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
) vγ

ωd(u)
×

[
ϕ(0)

( |v|2
r2ω2(u)

)]ν0

. . .
[
ϕ(|α|+|κ|)

( |v|2
r2ω2(u)

)]ν|α|+|κ| × (Dε1ω(u)) . . . (Dεqω(u)),

where 0 6 q 6 |α| + |κ|, d > 0, |ε1| > 0, . . . , |εq| > 0, λ + ε1 + · · · + εq = κ,
|β|+ d− |γ| = |α|+ q, ν0 >, . . . , ν|α|+|κ| > 0, d > |γ| and |β| > |κ| − |λ|.

Assume now that (u, v) ∈ G and (u, v) tends to (u0, 0) along some (definable) arc,
where u0 ∈ ∂Λ. Let Γ0 ∈ K and u0 ∈ Γ0. By an orthogonal change of coordinates
u1, . . . , uk one can assume that

d(u, ∂Λ) = d(u, Γ ) = |u1|,

where Γ ∈ K, dim Γ = k − 1, Γ ⊂ {(u1, . . . , uk) ∈ Rk : u1 = 0} and Γ0 ⊂
{(u1, . . . , uk) : u1 = · · · = ul = 0} (l ∈ {1, . . . , k}).

When α 6= 0, in a product (6.3.4) we necessarily have β 6= 0, therefore by the
Taylor Formula, ∣∣∣∂

|β|+|λ|h
∂vβ∂uλ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)∣∣∣ =
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∣∣∣∂
|β|+|λ|h

∂vβ∂uλ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)
− ∂|β|+|λ|h

∂vβ∂uλ

(
0, u2, . . . , uk, 0

)∣∣∣ =

∣∣∣
∑

σ+|ρ|=
p−|β|−|λ|

1
σ!ρ!

uσ
1

[
ϕ
( |v|2

r2ω2(u)

)
v
]ρ ∂ph

∂vβ+ρ∂uλ∂uσ
1

(
θu1, u2, . . . , uk, θϕ

( |v|2
r2ω2(u)

)
v
)∣∣∣,

where θ ∈ (0, 1). Hence

∣∣∣∂
|β|+|λ|h

∂vβ∂uλ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)∣∣∣ 6 (ω(u))p−|β|−|λ|µ(u, v),

where µ(u, v) → 0, when (u, v) → (u0, 0). Thus, there exists a constant M > 0
such that

|(6.3.4)| 6 Mωp−|β|−|λ|µ
ω|γ|

ωd
ω−|ε1|+1 . . . ω−|εq|+1 =

Mµωp−|β|−|λ|+|γ|−d+q−|ε1|−···−|εq| = Mµωp−|α|−|κ| → 0,

when (u, v) → (u0, 0).

Suppose now that α = 0 and κ 6= 0. Then, for each (u, v) ∈ G,

∂|κ|H
∂uκ

(u, v) =
∂|κ|h
∂uκ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)

+ a linear combination with real

coefficients of functions of the form (6.3.4), where β 6= 0.

It follows that

lim
(u,v)→(u0,0)

∂|κ|H
∂uκ

(u, v) = lim
(u,v)→(u0,0)

∂|κ|h
∂uκ

(
u, ϕ

( |v|2
r2ω2(u)

)
v
)

=
∂|κ|h
∂uκ

(u0, 0).

We have just checked that H is of class Cp which is orthogonally p-flat along Γ0

and (6.3.3) shows that it is orthogonally p-flat along Λ. We consecutively repeat
the above construction for every simplex of dimension k.

Corollary 6.4. If K is a finite simplicial complex in Rn such that |K| = int|K|
and f : |K| −→ A is a homeomorphism such that for each Λ ∈ K, f |Λ is of class

Cp and f |
◦
Λ is a Cp-embedding, then there exists a strict Cp-triangulation (f∗,K∗)

of A orthogonally p-flat along simplexes such that K∗ is a refinement of K and
f(Λ) = f∗(Λ), for each Λ ∈ K. In particular, if (K, f) is any strict Cp-triangulation
of A, there exists a strict Cp-triangulation (K∗, f∗) of A orthogonally p-flat along
simplexes such that K∗ is a refinement of K and f(Λ) = f∗(Λ), for each Λ ∈ K.
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7. Regular cells, (k, f, q)-proper regular cells and convex polyhedra
(k, f, q)-well situated in Rn.

We define a notion of a regular cell in Rn, its boundary cells and its boundary
inductively on n. If n = 1, a regular cell in R is either a singleton or a closed
bounded interval [a, b], where a < b, and then its boundary cells are {a} and {b},
while its boundary ∂[a, b] := {a, b}. Assume now that n > 1. A subset C of Rn is
a regular cell if it is either a graph of a continuous function

C = {(x′, xn) ∈ Rn−1 ×R : x′ ∈ C ′, xn = ϕ(x′)}

defined on a regular cell C ′ in Rn−1, and then a boundary cells of C are exactly the
graphs ϕ|D′, where D′ is a boundary cell of C ′, while its boundary ∂C is ϕ|∂C ′,
or there are two continuous functions ϕ1 6 ϕ2 : C ′ −→ R defined on a regular cell
C ′ in Rn−1 such that

C = [ϕ1, ϕ2] := {(x′, xn) ∈ Rn−1 ×R : x′ ∈ C ′, ϕ1(x′) 6 xn 6 ϕ2(x′)}

and the set {x′ ∈ C ′ : ϕ1(x′) = ϕ2(x′)} is a union of some boundary cells of C ′,
the boundary cells of C are then exactly ϕ1, ϕ2, the boundary cells of ϕ1 and those
of ϕ2 and finally all [ϕ1|D′, ϕ2|D′], where D′ is a boundary cell of C ′, while the
boundary ∂C of C is the union of all its boundary cells.

Let now C be a regular cell in Rn of dimension n, let k, q be non-negative
integers and let f : B −→ Rd be a continuous mapping defined on a subset B of Rn

containing C. Then we say that C is (k, f, q)-proper (regular) cell if either f is of
class Cq on the set5 C \⋃{D : D a boundary cell of C of dimension < k} or there
exists exactly one boundary cell Ξ(C) of C of dimension k such that f |C \ Ξ(C)
is of class Cq and the projection πn

k+1|Ξ(C) is injective. In the first case we put
Ξ(C) = ∅.

Let now P be any convex polyhedron in Rn of dimension n. Notice that it may
not be a regular cell in Rn, but it becomes a regular cell after an arbitrarily small
linear change of coordinates and then boundary cells are unions of some faces of P .
Let k, q be non-negative integers and let f : B −→ Rd be a continuous mapping
defined in a subset B of Rn containing P . We will say that a convex polyhedron
P of dimension n is (k, f, q)-well situated in Rn (relative to the canonical basis) if
either f is of class Cq on P \ P (k−1), where P (k−1) denotes the union of all faces
of P of dimension 6 k − 1, or f is not of class Cq on P \ P (k−1) but there exists
exactly one face Σ(P ) of P of dimension k such that f is of class Cq on P \Σ(P ),
and moreover

(7.1) (πn
k+1)

−1(πn
k+1(Σ(P ))) ∩ P = Σ(P )

and the restriction

(7.2) πn
k+1|Σ(P ) : Σ(P ) −→ Rk+1 is injective.

5A mapping f : E −→ Rd defined on any subset E of Rn is called of class Cq , if there exists

an extension f̃ : Ω −→ Rd of f to an open neighborhood of E in Rn which is of class Cq .
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In the first case we put Σ(P ) = ∅.
Notice that if P is (k, f, q)-well situated in Rn and if it is at the same time a

regular cell in Rn, then it is as a cell (k, f, q)-proper and Σ(P ) ⊂ Ξ(P ).

If v = (v1, . . . , vn) ∈ Vn(Rn) is any orthonormal basis in Rn, we will say that
a convex polyhedron P of dimension n is (k, f, q)-well situated in Rn relative to
the basis v if λ(P ) is (k, f ◦ λ−1, q)-well situated in Rn relative to the canonical
basis e = (e1, . . . , en), where λ stands for the linear automorphism of Rn such that
λ(vi) = ei (i ∈ {1, . . . , n}). Then we put Σ(P ) := λ−1(Σ(λ(P ))).

The following proposition is straightforward.

Proposition 7.1. Let now P be any convex polyhedron in Rn of dimension n. Let
k, q be non-negative integers and let f : B −→ Rd be a continuous mapping defined
in a subset B of Rn containing P .
Then

(7.1.1) if there exists a face Σ of P of dimension 6 k, such that f |P \Σ is of class
Cq, then there exists an orthonormal basis v ∈ Vn(Rn) such that P is (k, f, q)-well
situated in Rn relative to v;

(7.1.2) the subset of all bases v ∈ Vn(Rn) such that P is (k, f, q)-well situated in
Rn relative to v is open;

(7.1.3) if P is (k, f, q)-well situated in Rn relative to a basis v and dim Σ(P ) =
k, then changing this basis slightly we can assume additionally that for each j ∈
{n, . . . , k+2}, the set πn

j (P ) is a capsule in Rj the rim of which contains πn
j (Σ(P ))

while πn
k+1(P ) is a capsule in Rk+1 the boundary of which contains πn

k+1(Σ(P ))
and πn

k+1(Σ(P )) is a graph of a linear function restricted to a polyhedron πn
k (Σ))

of dimension k;

(7.1.4) if P is (k, f, q)-well situated in Rn relative to a basis v and Q is any
polyhedron in Rn of dimension n and Q ⊂ P , then Q is (k, f, q)-well situated in
Rn relative to a basis v and Σ(Q) ⊂ Σ(P ).

8. Main Theorem - proof in generic case.

Proposition 8.1. Assume that our Main Theorem is true in dimensions < n. Let
P be a finite polyhedral complex in Rn−1 and put D := |P|. Let q1, q ∈ Z and
q > q1 > p + 1.

Let α0 6 · · · 6 αr : D −→ R be an increasing sequence of continuous PL-
functions such that the family

K :=
{
(αi, αi+1) : i ∈ {0, . . . , r − 1}}

is a family of capsules in Rn. Let K1 ⊂ K, A := |K| and A1 := |K1|. Let

f = (f1, . . . , fd) : A1 −→ Rd be a continuous mapping such that f |
◦
K is of class Cq1

for each K ∈ K1. Let E be any finite family of subsets of D.
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Then there exist

(8.1.1) a strict Cq-triangulation (M, h) of D compatible with E such that |M| = D
and h(Γ ) = Γ , for every face of each polyhedron P ∈ P,

(8.1.2) an increasing sequence of continuous PL-functions

η0 6 · · · 6 ηk : D −→ R,

which is a refinement of α0, . . . , αr such that the family
C :=

{
(ηj , ηj+1) : j ∈ {0, . . . , k − 1}} is a family of capsules refining the family K,

(8.1.3) a homeomorphism Ψ : [α0, αr] −→ [α0, αr] of the form
Ψ(u, ζn) = (h(u), ψ(u, ζn)), for each (u, ζn) ∈ [α0, αr],

such that

(8.1.4) Ψ(u, αi(u)) = (h(u), αi(h(u))) for each u ∈ D and i ∈ {0, . . . , r};

(8.1.5) if a ∈ C ∈ C, where C ⊂ K ∈ K1 and f |K is of class Cq1 in a neighborhood
of Ψ(a) in K, then Ψ |C and f ◦ Ψ |C are of class Cq1 in a neighborhood of a in C;

(8.1.6) Ψ |
◦
C and f ◦ Ψ |

◦
C are of class Cq1 , for each C ∈ C such that C ⊂ K ∈ K1;

(8.1.7) Ψ |C is of class Cq for each C ∈ C such that C ⊂ K ∈ K \ K1 and

∂σ(ψ|C)
∂ζσ

n

= 0 on ∂C for σ ∈ {1, . . . , p};

(8.1.8) if C ∈ C and C ⊂ K ∈ K1, then the derivatives

∂σ(Ψ |
◦
C)

∂ζσ
n

and
∂σ(f ◦ Ψ |

◦
C)

∂ζσ
n

(σ ∈ {1, . . . , p})

have continuous extensions by zero to the whole C;

(8.1.9)
∂(ψ|

◦
C)

∂ζn
> 0, for each C ∈ C.

Proof. By a refinement of P one can assume that

(8.1.10) every function αi is affine on each P ∈ P, and

(8.1.11) P is compatible with each of the sets {x′ ∈ D : αi(x′) = αi+1(x′)}
(i ∈ {0, . . . , r − 1}); i.e. each of these sets is a union of some P ∈ P.

By Lemma 5.1, we get a sequence of continuous functions

δ0 6 · · · 6 δk : D −→ R
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and a homeomorphism Φ : [δ0, δk] −→ [α0, αr] with the properties (5.1.1)-(5.1.6).

Now we apply the induction hypothesis. We get a strict Cq-triangulation (M, h)
of the set D such that

(8.1.12) M is a finite simplicial complex in Rn−1 such that |M| = D;

(8.1.13) (M, h) is compatible with each E ∈ E and with each P ∈ P (the latter
follows from (8.1.14) below);

(8.1.14) h(P ) = P , for each P ∈ P; hence, each of the sets {x′ ∈ D : αi(x′) =
αi+1(x′)} (i ∈ {0, . . . , r − 1}) is h-invariant (see (8.1.11));

(8.1.15) δj ◦ h, θj ◦ h : D −→ R are of class Cq (j ∈ {0, . . . , k});

(8.1.16) for all the functions a1, . . . , am from condition (5.1.6) the compositions
a1 ◦ h, . . . , am ◦ h : D −→ R are of class Cq, and

(8.1.17) (M, h) is compatible with each of the sets {x′ ∈ D : δj(x′) = δj+1(x′)}
(j ∈ {0, . . . , k − 1}).

By passing to the barycentric subdivision we can have in addition

(8.1.18) for each j ∈ {0, . . . , k − 1} and each simplex ∆ ∈ M, if δj ◦ h 6≡ δj+1 ◦ h
on ∆, then δj(h(w)) < δj+1(h(w)), for some vertex w of ∆

and by (6.4)

(8.1.19) (M, h) is a strict Cq-triangulation orthogonally Cq-flat along simplexes.

Define the following homeomorphism

Φ∗ : [δ0 ◦ h, δk ◦ h] −→ [α0, αr]

by the formula

(8.1.20) Φ∗(u, ξn) := (h(u), ϕ(h(u), ξn)) = (h(u), ϕ∗(u, ξn)).

Then

(8.1.21) the sequence θj ◦ h (j ∈ {0, . . . , k}) is a refinement of α0 ◦ h, . . . , αr ◦ h;

(8.1.22) L∗ :=
{
(δj ◦ h, δj+1 ◦ h) : j ∈ {0, . . . , k − 1}} is a family of capsules in

Rn such that {Φ∗(L∗) : L∗ ∈ L∗} = {Φ(L) : L ∈ L} is a refinement of K.

Put L∗1 := {L∗ ∈ L∗ : Φ∗(L∗) ⊂ K, for some K ∈ K1}. Then

(8.1.23) for any L∗ ∈ L∗1, Φ∗|
◦

L∗ and f ◦ Φ∗|
◦

L∗ are of class Cq1 (by (5.1.6) and
(8.1.16)),

∂ϕ∗

∂ξn
> 0 on

◦
L∗ and all the derivatives

∂σ(Φ∗|
◦

L∗)
∂ξσ

n

,
∂σ(f ◦ Φ∗|

◦
L∗)

∂ξσ
n

,
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where σ ∈ {1, . . . , p}) have continuous extensions by zero to L∗;

(8.1.24) for any L∗ ∈ L∗ \ L∗1, Φ∗|L∗ is of class Cq (by (5.1.6) and (8.1.16)),

∂ϕ∗

∂ξn
> 0 on

◦
L∗ and the derivatives

∂σ(Φ∗|L∗)
∂ξσ

n

(σ ∈ {1, . . . , p})

are equal zero on ∂L∗;

(8.1.25) if L∗ ∈ L∗1, b ∈ ∂L∗ and Φ∗(L∗) ⊂ K ∈ K1 and f |K is of class Cp

in a neighborhood of Φ∗(b) in K, then Φ∗|L∗ and f ◦ Φ∗|L∗ are of class Cp

in a neighborhood of b in L∗.

Now we want to replace the Cq-functions δj◦h by continuous PL-functions defined
on D by using Lemma 5.2. Therefore we want to find continuous PL-functions,
affine in restriction to any simplex S ∈M

η0 6 · · · 6 ηk : D −→ R

such that for each j ∈ {0, . . . , k − 1}

(8.1.26) {u ∈ D : (δj ◦ h)(u) = (δj+1 ◦ h)(u)} = {u ∈ D : ηj(u) = ηj+1(u)}.

For any continuous function β : D −→ R define the continuous PL-function
β] : D −→ R by the formula

β](λ0v0 + · · ·+ λsvs) := λ0β(v0) + · · ·+ λsβ(vs),

where (v0, . . . , vs) ∈ M is a simplex with vertices v0, . . . , vs λ0, . . . , λs > 0 and
λ0 + · · ·+ λs = 1.

In view of (8.1.17) and (8.1.18)

(8.1.27) δj ◦ h(u) < δj+1 ◦ h(u) ⇐⇒ θj ◦ h(u) < θj+1 ◦ h(u) ⇐⇒

(θj ◦ h)](u) < (θj+1 ◦ h)](u),

for any u ∈ D and j ∈ {0, . . . , k − 1}.

By (8.1.27) (θj ◦ h)] are continuous PL-functions, affine on simplexes and sa-
tisfying (8.1.26). However they might not be a refinement of α0, . . . , αr, so some
improvement is necessary.

Of course, (θj ◦h)] (j ∈ {0, . . . , k}) are a refinement of (αi◦h)] (i ∈ {0, . . . , r}).
By (8.1.14) and (8.1.27), for each i ∈ {0, . . . , r − 1}

{u ∈ D : (αi ◦ h)](u) = (αi+1 ◦ h)](u)} = {u ∈ D : (αi ◦ h)(u) = (αi+1 ◦ h)(u)}

= {u ∈ D : αi(u) = αi+1(u)}.
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This shows that we can define the following homeomorphisms

Hi : [(αi ◦ h)], (αi+1 ◦ h)]] −→ [αi, αi+1],

Hi

(
u, τ((αi+1◦h)](u)−(αi◦h)](u))+(αi◦h)](u)

)
=

(
u, τ(αi+1(u)−αi(u))+αi(u)

)
,

where τ ∈ [0, 1], i ∈ {0, . . . , r − 1}. Gluing them together gives us a homeomor-
phism

H :=
r−1⋃

i=0

Hi : [(α0 ◦ h)], (αr ◦ h)]] −→ [α0, αr]

strictly increasing with respect to the last variable. Finally we put
ηj :=

(
H((θj ◦ h)])

)], (j ∈ {0, . . . , k}), which are a refinement of α0, . . . , αr,
according to (8.1.10).

Corollary 8.2. Assume the Main Theorem is proved in dimensions < n.
Let α0 6 · · · 6 αr : D −→ R be an increasing sequence of continuous PL-functions
such that

K :=
{
(αi, αi+1) : i ∈ {0, . . . , r − 1}}

is a family of capsules in Rn such that D = {πn
n−1(K) : K ∈ K} and [α0, αr] is a

convex polyhedron. Let P be a polyhedral complex in Rn−1 such that |P| = D. Let

V be a finite family of open subsets of Rn covering
⋃{

◦
K : K ∈ K}.

Then there exists a sequence of continuous PL-functions β0 6 · · · 6 βs : D −→ R
which is a refinement of the previous one and a homeomorphism
G : [α0, αr] −→ [α0, αr] of the form G(u, xn) = (g(u), g̃(u, xn)) such that, for each
j ∈ {0, . . . , s − 1}, G|(βj , βj+1) is of class Cq and such that G(βi, βi+1) ⊂ V ,
for some V ∈ V and G(αi|P ) = αi|P for each i ∈ {0, . . . , r} and P ∈ P. Moreover,
∂g̃/∂xn > 0 on each (βj , βj+1) and

∂σG

∂xσ
n

(u, βj(u)) = 0, for each u ∈ D, j ∈ {0, . . . , s} and σ ∈ {1, . . . , q}.

Proof. By Proposition 2.5, there is a refinement

β0 6 · · · 6 βs : D −→ R

of the sequence α0, . . . , αr such that each (βj , βj+1) is contained in some V ∈ V.
Now it suffices to use Proposition 8.1, where we put

K =
{
(βj , βj+1) : j ∈ {0, . . . , s− 1}}

and K1 = ∅.
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Proposition 8.3. Assume that the Main Theorem is proved in dimensions < n.

Let 0 6 k < n. Fix an integer q > (n− 1− k)
(

p

2

)
+ p. Assume that

αn
0 6 · · · 6 αn

rn
: Dn−1 −→ R

is a sequence of continuous PL-functions such that

Kn :=
{
(αn

i , αn
i+1) : i ∈ {0, . . . , rn − 1}}

is a family of convex PL-capsules in Rn, where Dn−1 =
⋃{πn

n−1(Kn) : Kn ∈
Kn}. Let Kn

1 ⊂ Kn. Assume that Dn−1 is a closed convex polyhedron in Rn−1 of
dimension n− 1. Put Dn := |Kn|.

Let f : |Kn
1 | −→ Rd be continuous and such that f |

◦
Kn is of class Cq for each

Kn ∈ Kn
1 . Assume that each Kn ∈ Kn

1 is (k, f, q)-well situated in Rn and that all
the derivatives

(8.3.1)
∂i(f |Kn \Σ(Kn))

∂xi
n

(i ∈ {1, . . . , q}) have continuous extensions

by zero to all Kn.

Assume that k 6 l 6 n− 1 and m ∈ {1, . . . , p}. Put

λ(l, m) :=





q, when l = n− 1

q − (n− 2− l)
(

p

2

)
− (p− 1)− · · · − (p−m), when k 6 l 6 n− 2.

Then, after some arbitrarily small linear change of coordinates in Rn−1:

(8.3.2) for each j such that l 6 j 6 n − 1 there exists a sequence of continuous
PL-functions

αj
0 6 · · · 6 αj

rj
: Dj−1 −→ R,

such that Kj :=
{
(αj

i , α
j
i+1) : i ∈ {0, . . . , rj − 1}} is a family of convex capsules in

Rj which is a refinement of {πj+1
j (Kj+1) : Kj+1 ∈ Kj+1}, Dj−1 =

⋃{πj
j−1(Kj) :

Kj ∈ Kj}, every αj+1
i is affine over each Kj ∈ Kj and there exists a homeomor-

phism Φj : Dj −→ Dj of the form

Φj(x1, . . . , xj) = (Φ̃j(x1, . . . , xj−1), ϕj(x1, . . . , xj)), such that

(8.3.3) Φ̃j : Dj−1 −→ Dj−1 is of class Cq;

(8.3.4) Φj(π
j+1
j (L)) = πj+1

j (L), for every face L of any polyhedron Kj+1 ∈ Kj+1;

(8.3.5) each Kj ∈ Kj is (k, ϕj , λ(l, m))-well situated in Rj

and Σ(Kj) ⊂ πn
j (Σ(Kn));
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(8.3.6) consider homeomorphisms Ψl, . . . , Ψn defined inductively as follows:
Ψl := idDl

, Ψj := Φj(Ψj−1, ρxj
) : (Ψj−1, ρxj

)−1(Dj) −→ Dj, for
j ∈ {l + 1, . . . , n}, where ρxj

denotes the projection of Rj onto xj-axis and Φn :=
idDn

;

(8.3.7) for j ∈ {l + 1, . . . , n}, (Ψj−1, ρxj
)−1(Dj) = Ψ−1

j (Dj) is the union of the
capsules

(αj
i ◦ Ψj−1, α

j
i+1 ◦ Ψj−1), (i ∈ {0, . . . , rj − 1}),

where αj
0 ◦ Ψj−1 6 · · · 6 αj

rj
◦ Ψj−1 : Ψ−1

j−1(Dj−1) −→ R and at the same time
it is a union of some cells of the form

Qj(il+1, . . . , ij) =

{(x1, . . . , xj) ∈ Rj : (x1, . . . , xν) ∈ (αν
iν
◦ Ψν−1, αν

iν+1 ◦ Ψν−1), when l + 1 6 ν 6 j}
for some iν ∈ {0, . . . , rν − 1}, where l + 1 6 ν 6 j;

(8.3.8) each of the cells Qn = Qn(il+1, . . . , in) such that Ψn(Qn) ⊂ Kn ∈ Kn
1 and

dim
(
Ψn(Qn) ∩Σ(Kn)

)
= k is (k, f ◦ Ψn, λ(l,m))-proper and all the derivatives

∂|κ|(f ◦ Ψn|
◦

Qn)
∂x
κl+1
l+1 . . . ∂xκn

n
, where 1 6 |κ| = κl+1 + · · ·+ κn 6 p and κl+1 6 m

have continuous extensions by zero to Ξ(Qn) and at the same time each of the cells
Qj = Qj(il+1, . . . , ij) = πn

j (Qn) (j ∈ {l + 1, . . . , n− 1}) is
(k, {Ψl+1, . . . , Ψj}, λ(l,m))-proper and all the derivatives

∂|κ|(Ψj |
◦

Qj)
∂x
κl+1
l+1 . . . ∂x

κj

j

, where 1 6 |κ| = κl+1 + · · ·+ κj 6 p and κl+1 6 m

have continuous extensions by zero to Ξ(Qj).

Proof. We will use the descending induction on l and the ascending induction on
m.

Assume first that l = n− 1. There exists a polyhedral complex P in Rn−1 such
that |P| = Dn−1, P is a refinement of

{πn
n−1(L) : L a face of some Kn ∈ Kn};

hence, all the functions αn
i (i ∈ {0, . . . , rn}) are affine over each P ∈ P. Moreover,

we assume that each P ∈ P has a face, say M , of dimension 6 k such that if
Kn ∈ Kn

1 and P ⊂ πn
n−1(Kn), then πn

n−1(Σ(Kn)) ∩ P is empty or a face of M . By
an arbitrarily small linear change of coordinates we can assume that both Dn−1

and all P ∈ P are capsules in Rn−1 and if Kn ∈ Kn
1 and P ⊂ πn

n−1(Kn), then
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πn
n−1(Σ(Kn))∩ P is contained in the rim of P if k < l = n− 1. Hence, by Remark

2.3 there exists a sequence of continuous PL-functions

(8.3.9) αn−1
0 6 · · · 6 αn−1

rn−1
: Dn−2 −→ R

such that Kn−1 :=
{
(αn−1

i , αn−1
i+1 ) : i ∈ {0, . . . , rn−1 − 1}} is a family of convex

capsules in Rn−1 which is a refinement of P and Dn−2 =
⋃{πn−1

n−2(Kn−1) : Kn−1 ∈
Kn−1}. We put Φn−1 = idDn−1 . Then the first part of (8.3.8) is satisfied due to
(8.3.1) and the second part is emptily satisfied.

Assume now that l = n−2 and m = 16. Fix any (αn−1
i , αn−1

i+1 ) and any Kn ∈ Kn
1

such that (αn−1
i , αn−1

i+1 ) ⊂ πn
n−1(

◦
Kn). Fix any κ ∈ {1, . . . , p}. The function

(αn−1
i , αn−1

i+1 ) 3 (x′, xn−1) 7−→ sup
{∣∣ ∂κf

∂xn−1∂xκ−1
n

(x′, xn−1, xn)
∣∣ :

(x′, xn−1, xn) ∈ Kn

}
∈ [0,∞),

where x′ = (x1, . . . , xn−2), is continuous. It follows that (αn−1
i , αn−1

i+1 ) can be
covered by a finite family V of open subsets, which do not depend on κ, such that
for each V ∈ V the norm over V \ πn

n−1(Σ(Kn)) of the derivative

(8.3.10)
∂κ(f |Kn \Σ(Kn))

∂xn−1∂xκ−1
n

is either bounded from above (the first case) or bounded from below (the second
case) by a positive constant. In the second case we can take detectors {ωµ}µ of class
Cq on Rn−1 \ πn

n−1(Σ(Kn)) for the derivative (8.3.10) over V \ πn
n−1(Σ(Kn)). It

follows from Corollary 8.2 (for n−1 in the place of n) that there exists a refinement
(βj , βj+1) of (αn−1

i , αn−1
i+1 ) and a homeomorphism G : Dn−1 −→ Dn−1 of class

Cq of the form G(ξ′, ξn−1) = (g(ξ′), g̃(ξ′, ξn−1)), where ξ′ := (ξ1, . . . , ξn−2), such
that every G((βj , βj+1)) is contained in some V ∈ V and G preserves the faces of
polyhedrons Kn−1

i . Then we replace our function f by

F (ξ′, ξn−1, xn) := f(g(ξ′), g̃(ξ′, ξn−1), xn).

If now G((βj , βj+1)) ⊂ V and we have the first case, then the derivative

(8.3.11)
∂κF

∂ξn−1x
κ−1
n

(ξ′, ξn−1, xn) =

∂κ(f |Kn \Σ(Kn))
∂xn−1x

κ−1
n

(g(ξ′), g̃(ξ′, ξn−1), xn)
∂g̃

∂ξn−1
(ξ′, ξn−1)

is bounded and if G((βj , βj+1)) ⊂ V and we have the second case, then
ω̃µ(ξ′, ξn−1) := ωµ(g(ξ′), g̃(ξ′, ξn−1) are detectors of class Cq for the derivative
(8.3.11) over (βj , βj+1) \ πn

n−1(Σ(Kn)).

6From the formal point of view it is not necessary to analyze this case separately, but in this
simple case it is easy to present the general idea of the proof.
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The above argument shows that coming back to the initial derivative (8.3.10), we
can assume with no loss in generality that for any (αn−1

i , αn−1
i+1 ) and any Kn ∈ Kn

1

such that (αn−1
i , αn−1

i+1 ) ⊂ πn
n−1(

◦
Kn) either (8.3.10) is bounded over (αn−1

i , αn−1
i+1 ) or

there are detectors {ωµ}µ of class Cq for (8.3.10) over (αn−1
i , αn−1

i+1 ) \ πn
n−1(Σ(Kn))

which have continuous extensions to (αn−1
i , αn−1

i+1 ) ∩ πn
n−1(Σ(Kn)). Now we apply

Proposition 8.1 in dimension n−1 in the place of n. Hence, there exists a refinement
(γn−1

j , γn−1
j+1 ) of the system of capsules (αn−1

i , αn−1
i+1 ) and a homeomorphism Φn−1 :

Dn−1 −→ Dn−1, preserving faces of Kn−1
i , satisfying (8.3.3)-(8.3.5), for j = n− 1,

and such that:

if Ln−1 = (γn−1
j , γn−1

j+1 ) ⊂ (αn−1
i , αn−1

i+1 ) ⊂ πn
n−1(Kn), where Kn ∈ Kn

1 and (8.3.10)

is bounded on (αn−1
i , αn−1

i+1 ), then Φn−1|
◦
Ln−1 is of class Cq with

(8.3.12)
∂(ϕn−1|

◦
Ln−1)

∂ζn−1
extending continuously by zero to ∂Ln−1;

consequently, when ζ ∈
◦
Ln−1 and (Φn−1(ζ), xn) ∈

◦
Kn

∂κ

∂ζn−1∂xκ−1
n

f(Φn−1(ζ), xn) =
∂κf

∂xn−1∂xκ−1
n

(Φn−1(ζ), xn)
∂ϕn−1

∂ζn−1

extends continuously by zero to {(ζ, xn) ∈ C ×R : (Φn−1(ζ), xn) ∈ Kn};

if Ln−1 = (γn−1
j , γn−1

j+1 ) ⊂ (αn−1
i , αn−1

i+1 ) ⊂ πn
n−1(Kn), where Kn ∈ Kn

1 and (7.3.10)

is unbounded on (αn−1
i , αn−1

i+1 ), then Φn−1|
◦
Ln−1, ωµ ◦ Φn−1|

◦
Ln−1 and

∂κ−1f

∂xκ−1
n

(Φn−1, ωµ ◦ Φn−1)|
◦
C are of class Cq−(p−1) and all the derivatives,

∂(Φn−1|
◦
Ln−1)

∂ζn−1
,

∂(ωµ ◦ Φn−1|
◦
C)

∂ζn−1
and

∂

∂ζn−1

[∂κ−1f

∂xκ−1
n

(Φn−1, ωµ ◦ Φn−1)|
◦
C

]
,

extend continuously by zero to Ln−1; it follows that if (Φn−1(ζ), xn) ∈
◦

Kn

∣∣∣ ∂κ

∂ζn−1∂xκ−1
n

f(Φn−1(ζ), xn)
∣∣∣ =

∣∣∣ ∂κf

∂xn−1∂xκ−1
n

(Φn−1(ζ), xn)
∂ϕn−1

∂ζn−1

∣∣∣ 6

2 sup
µ

∣∣∣ ∂κf

∂xn−1∂xκ−1
n

(Φn−1(ζ), ωµ(Φn−1(ζ))
∂ϕn−1

∂ζn−1

∣∣∣ 6

2 sup
µ

∣∣∣ ∂

∂ζn−1

[∂κ−1f

∂xκ−1
n

(Φn−1, ωµ◦Φn−1)
]∣∣∣+2 sup

µ

∣∣∣∂
κf

∂xκn
(Φn−1, ωµ◦Φn−1))

∂(ωµ ◦ Φ)
∂ζn−1

∣∣∣,

which extends continuously by zero to {(ζ, xn) ∈ C ×R : (Φn−1(ζ), xn) ∈ Kn};

finally, if Ln−1 = (γn−1
j , γn−1

j+1 ) 6⊂ πn
n−1(Kn), for any Kn ∈ Kn

1 , then Φn−1|C is
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of class Cq. Now Ln−1 = {(γn−1
j , γn−1

j+1 )}j is a new family of capsules in dimension
n− 1. In a similar way, as in the case l = n− 1, after some arbirarily small linear
change of coordinates in Rn−2, we get a system of convex PL-capsules Kn−2 which
is a refinement of {πn−1

n−2(C) : C a face of some Ln−1 ∈ Ln−1}.

Assume now that we have our proposition proved for some l such that k 6 l < n−1
and for some m ∈ {1, . . . , p− 1}. Fix any

Qn = Qn(il+1, . . . , in) = {(x1, . . . , xn) ∈ Rn :

(x1, . . . , xν) ∈ (αν
iν
◦ Ψν−1, αν

iν+1 ◦ Ψν−1), when l + 1 6 ν 6 n},
such that Qn ⊂ Kn ∈ Kn

1 .
Put

Qj = Qj(il+1, . . . , ij) = {(x1, . . . , xj) ∈ Rj :

(x1, . . . , xν) ∈ (αν
iν
◦ Ψν−1, αν

iν+1 ◦ Ψν−1), when l + 1 6 ν 6 j}.

For any κ = (κl+1, . . . ,κn) ∈ Nn−l such that |κ| 6 p and κl+1 = m + 1 the
functions

(αl+1
il+1

, αl+1
il+1+1) 3 (x′, xl+1) 7−→ sup

{∣∣∣ ∂|κ|(Ψj |Qj)
∂x
κl+1
l+1 . . . ∂x

κj

j

(
x′, xl+1, . . . , xj)

∣∣∣ :

(x′, xl+1, . . . , xj) ∈ Qj
}
∈ [0,∞)

and

(αl+1
il+1

, αl+1
il+1+1) 3 (x′, xl+1) 7−→ sup

{∣∣∣∂
|κ|(f ◦ Ψn|Qj)

∂x
κl+1
l+1 . . . ∂xκn

n

(
x′, xl+1, . . . , xn)

∣∣∣ :

(x′, xl+1, . . . , xn) ∈ Qn
}
∈ [0,∞),

where x′ = (x1, . . . , xl), are continuous. It follows that (αl+1
il+1

, αl+1
il+1+1) can be

covered by a finite family V of open subsets such that for each V ∈ V the norm
over V \ πj

l+1(Ξ(Qj)) of each of the derivatives

(8.3.13)
∂|κ|(Ψj |Qj \ πj

l+1(Ξ(Qj)))
∂x
κl+1
l+1 . . . ∂x

κj

j

(
x′, xl+1, . . . , xj) (|κ| 6 p, κl+1 = m + 1)

and, similarly, the norm over V \ πn
l+1(Ξ(Qn)) of each of the derivatives

(8.3.14)
∂|κ|(f ◦ Ψn|Qn \ πn

l+1(Ξ(Qn)))
∂x
κl+1
l+1 . . . ∂xκn

n

(
x′, xl+1, . . . , xn)

(|κ| 6 p, κl+1 = m + 1)

is either bounded from above (the first case) or bounded from below (the second
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case) by a positive constant. In the second case we can take detectors {ωj
µ}µ

(respectively {ωµ}µ) of class Cq on Rl+1 \ πj
l+1(Ξ(Qj)) (respectively of class Cq

on Rl+1 \ πn
l+1(Ξ(Qn))) for the derivative (8.3.13) (respectively (8.3.14)) over V \

πj
l+1(Ξ(Qj)) (respectively over V \πn

l+1(Ξ(Qn))). It follows from Corollary 8.2 (for

l+1 in the place of n) that there exists a refinement (βjl+1 , βjl+1+1) of (αl+1
il+1

, αl+1
il+1+1)

and a homeomorphism G : Dl+1 −→ Dl+1 of class Cq of the form G(ξ′, ξl+1) =
(g(ξ′), g̃(ξ′, ξl+1)) such that every G((βjl+1 , βjl+1+1)) is contained in some V ∈ V
and G preserves all faces of any Kl+1 ∈ Kl+1. Then we replace the functions Ψj by

Ψ̃j(ξ′, ξl+1, xl+2, . . . , xj) := Ψj(g(ξ′), g̃(ξ′, ξl+1), xl+2, . . . , xj).

and f ◦Ψn by F := f ◦ Ψ̃n. If now G((γjl+1 , γjl+1+1)) ⊂ V and we have the first case,
then for each (ξ′, ξl+1) ∈ (γjl+1 , γjl+1+1) such that (G(ξ′, ξl+1), xl+2, . . . , xn) ∈ Qn

(8.3.15)
∂|κ|Ψ̃j

∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂x

κj

j

(
ξ′, ξl+1, xl+2, . . . , xj) =

∂|κ|Ψj

∂x
κl+1
l+1 x

κl+2
l+2 . . . ∂x

κj

j

(
G(ξ′, ξl+1), xl+2 . . . , xj

)( ∂g̃

∂ξl+1

)m+1

+ a bounded function

and/or, similarly

(8.3.16)
∂|κ|F

∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂xκn

n

(
ξ′, ξl+1, xl+2, . . . , xn) =

∂|κ|(f ◦ Ψn)
∂x
κl+1
l+1 ∂x

κl+2
l+2 , . . . ∂xκn

n

(
G(ξ′, ξl+1), xl+2, . . . , xn

)( ∂g̃

∂ξl+1

)m+1

+a bounded function

is bounded and if G((βjl+1 , βjl+1+1)) ⊂ V and we have the second case, then putting
ω̃j

µ(ξ′, ξl+1) := ωj
µ(g(ξ′), g̃(ξ′, ξl+1)) and ω̃µ(ξ′, ξl+1) := ωµ(g(ξ′), g̃(ξ′, ξl+1)), by

(8.3.15), we have for each (ξ′, ξl+1) ∈ (βjl+1 , βjl+1+1) such that
(G(ξ′, ξl+1), xl+2, . . . , xn) ∈ Qn

(8.3.17)
∣∣∣ ∂|κ|Ψ̃j

∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂x

κj

j

(ξ′, ξl+1, xl+2, . . . , xj)
∣∣∣ 6

2 sup
µ

∣∣∣ ∂|κ|Ψ̃j

∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂xκn

n
(ξ′, ξl+1, ω̃

j
µ(ξ′, ξl+1))

∣∣∣ + a bounded function

and/or, similarly

(8.3.18)
∣∣∣ ∂|κ|F
∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂xκn

n
(ξ′, ξl+1, xl+2, . . . , xn)

∣∣∣ 6

2 sup
µ

∣∣∣ ∂|κ|F
∂ξ
κl+1
l+1 ∂x

κl+2
l+2 . . . ∂xκn

n
(ξ′, ξl+1, ω̃µ(ξ′, ξl+1))

∣∣∣ + a bounded function.
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(Notice, that now ω̃j
µ are not necessarily detectors in the previous sense, but

still will play the role of detectors as we will see in a moment.) It follows that
coming back to the initial family of capsules we can assume without any loss in
generality that for each (αl+1

il+1
, αl+1

il+1+1) ⊂ πn
l+1(Q

n) and j ∈ {l + 1, . . . , n} each
of the derivatives (8.3.13) is either bounded (the first case) or there exists a fi-
nite family {ωj

µ} of continuous maps on (αl+1
il+1

, αl+1
il+1+1) which are of class Cq on

(αl+1
il+1

, αl+1
il+1+1) \ πj

l+1(Ξ(Qj)) and such that

(8.3.19)
∣∣∣ ∂|κ|Ψj

∂x
κl+1
l+1 . . . ∂x

κj

j

(
x′, xl+1, . . . , xj)

∣∣∣ 6

2 sup
µ

∣∣∣ ∂|κ|Ψj

∂x
κl+1
l+1 . . . ∂x

κj

j

(
x′, xl+1, ω

j
µ(x′, xl+1))

∣∣∣ + a bounded function

(the second case).
Similarly, each of the derivatives (8.3.14) is either bounded on Qn (the first

case) or (in the second case) there exists a finite family {ωµ} of continuous maps
on (αl+1

il+1
, αl+1

il+1+1) which are of class Cq on (αl+1
il+1

, αl+1
il+1+1) \ πn

l+1(Ξ(Qn)) and such
that

(8.3.20)
∣∣∣ ∂|κ|(f ◦ Ψn)
∂x
κl+1
l+1 . . . ∂xκn

n

(
x′, xl+1, . . . , xn)

∣∣∣ 6

2 sup
µ

∣∣∣ ∂|κ|(f ◦ Ψn)
∂x
κl+1
l+1 . . . ∂xκn

n

(
x′, xl+1, ωµ(x′, xl+1))

∣∣∣ + a bounded function.

In this way, to every capsule (αl+1
il+1

, αl+1
il+1+1), there corresponds a finite number of

continuous maps ωj
µ, ωµ (depending also on the choice of cell Qn, which is not

reflected in the notation in order not to overcharge it), which are of class Cq on
(αl+1

il+1
, αl+1

il+1+1). Now, we apply Proposition 8.1 to all the functions

(8.3.21)
∂|κ|−m−1Ψj

∂x
κl+2
l+2 . . . ∂x

κj

j

(
x′, xl+1, ω

j
µ(x′, xl+1))

and

(8.3.22)
∂|κ|−m−1(f ◦ Ψn)
∂x
κl+2
l+2 . . . ∂xκn

n

(
x′, xl+1, ωµ(x′, xl+1)),

which are continuous on (αl+1
il+1

, αl+1
il+1+1) and of class Cλ(l,m)−(p−m−1) = Cλ(l,m+1)

on (αl+1
il+1

, αl+1
il+1+1). Hence, there exists a refinement Ll+1 = {(γl+1

jl+1
, γl+1

jl+1+1)}jl+1 of

Kl+1 = {(αl+1
il+1

, αl+1
il+1+1)}il+1 and a homeomorphism Φl+1 : Dl+1 −→ Dl+1 of the

form
Φl+1(ζ1, . . . , ζl, ζl+1) = (Φ̃l+1(ζ1, . . . , ζl), ϕl+1(ζ1, . . . , ζl, ζl+1)),
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where Φ̃l+1 : Dl −→ Dl is a homeomorphism of class Cq, Φl+1(S) = S, for every face
of any Kl+1 ∈ Kl+1 and if Ll+1 ⊂ Kl+1 ⊂ πn

l+1(Q
n), then Ll+1 is (k, ϕl+1, λ(l, m +

1))-well situated in Rl+1 with Σ(Ll+1) ⊂ Σ(Kl+1),

(8.3.23)
∂(ϕl+1|

◦
Ll+1)

∂ζl+1
, . . . ,

∂m+1(ϕl+1|
◦
Ll+1)

∂ζm+1
l+1

extend continuously by zero to ∂Ll+1;

consequently, when (8.3.13) (respectively, (8.3.14)) is bounded on
◦

Qj (respectively

on
◦

Qn), which is the first case, then obviously

(8.3.24)
∂|κ|

∂ζ
κl+1
l+1 x

κl+2
l+2 . . . ∂x

κj

j

Ψj(Φl+1(ζ ′, ζl+1), xl+2, . . . , xj)

(|κ| 6 p, κl+1 = m + 1)

extend continuously by zero to the cell

(8.3.25) {(ζ, x2, . . . , xj) ∈ Ll+1 ×Rj−l−1 : (Φl+1(ζ), x2, . . . , xj) ∈ Qj}

(respectively,

(8.3.26)
∂|κ|

∂ζ
κl+1
l+1 x

κl+2
l+2 . . . ∂xκn

n
(f ◦ Ψn)(Φl+1(ζ ′, ζl+1), xl+2, . . . , xn)

(|κ| 6 p, κl+1 = m + 1)

extend continuously by zero to the
cell

(8.3.27) {(ζ, x2, . . . , xn) ∈ Ll+1 ×Rn−l−1 : (Φl+1(ζ), x2, . . . , xn) ∈ Qn}.)

In the second case, we can have not only (8.3.23) extending continuously by zero
to Ll+1, but also the derivatives

(8.3.28)
∂

∂ζl+1
(ωj

µ ◦ Φl+1)|
◦
Ll+1, . . . ,

∂m+1

∂ζm+1
l+1

(ωj
µ ◦ Φl+1)|

◦
Ll+1

and

(8.3.29)
∂m+1

∂ζm+1
l+1

[ ∂|κ|−m−1Ψj

∂x
κl+2
l+2 . . . ∂x

κj

j

(
Φl+1, ω

j
µ ◦ Φl+1

)]∣∣∣
◦
Ll+1

(
respectively, the derivatives

(8.3.30)
∂

∂ζl+1
(ωµ ◦ Φl+1)|

◦
Ll+1, . . . ,

∂m+1

∂ζm+1
l+1

(ωµ ◦ Φl+1)|
◦
Ll+1
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and

(7.3.31)
∂m+1

∂ζm+1
l+1

[∂|κ|−m−1(f ◦ Ψn)
∂x
κl+2
l+2 . . . ∂xκn

n
(Φl+1, ωµ ◦ Φl+1)

]∣∣∣
◦
Ll+1

)
.

By the induction hypothesis, (8.3.8), (8.3.23), (8.3.19) and (8.3.29) we have on the
cell (8.3.25)

∣∣∣ ∂|κ|

∂ζ
κl+1
l+1 x

κl+2
l+2 . . . ∂x

κj

j

Ψj(Φl+1(ζ ′, ζl+1), xl+2, . . . , xj)
∣∣∣ 6

∣∣∣ ∂|κ|Ψj

∂x
κl+1
l+1 . . . ∂x

κj

j

(
Φl+1(ζ ′, ζl+1), xl+2 . . . , xj)

∣∣∣
∣∣∣∂ϕl+1

∂ζl+1

∣∣∣
m+1

+

+ a continuous function equal 0 at the boundary of (8.3.25) 6

2 sup
µ

∣∣∣ ∂|κ|Ψj

∂x
κl+1
l+1 . . . ∂x

κj

j

(
Φl+1(ζ ′, ζl+1), ωj

µ(Φl+1(ζ ′, ζl+1))
∣∣∣
∣∣∣∂ϕl+1

∂ζl+1

∣∣∣
m+1

+

+ a continuous function equal 0 at the boundary of (8.3.25) 6

2 sup
µ

∣∣∣ ∂m+1

∂ζm+1
l+1

[ ∂|κ|−m−1Ψj

∂x
κl+2
l+2 . . . ∂x

κj

j

(
Φl+1, ω

j
µ ◦Φl+1

)]
+ a cont. funct. equal 0 at ∂Ll+1

∣∣∣

+ a continuous function equal 0 at the boundary of (8.3.25),

which finally is a function extending by zero to the boundary of (8.3.25).

Similarly, by the induction hypothesis (8.3.8), (8.3.23) and (8.3.20), we have on
the cell (8.3.27)

∣∣∣ ∂|κ|

∂ζ
κl+1
l+1 x

κl+2
l+2 . . . ∂xκn

n
(f ◦ Ψn)(Φl+1(ζ ′, ζl+1), xl+2, . . . , xn)

∣∣∣ 6

∣∣∣ ∂|κ|(f ◦ Ψn)
∂x
κl+1
l+1 . . . ∂x

κj

j

(
Φl+1(ζ ′, ζl+1), xl+2 . . . , xn)

∣∣∣
∣∣∣∂ϕl+1

∂ζl+1

∣∣∣
m+1

+

+ a continuous function equal 0 at the boundary of (8.3.27) 6

2 sup
µ

∣∣∣ ∂|κ|(f ◦ Ψn)
∂x
κl+1
l+1 . . . ∂xκn

n

(
Φl+1(ζ ′, ζl+1), ωµ(Φl+1(ζ ′, ζl+1))

∣∣∣
∣∣∣∂ϕl+1

∂ζl+1

∣∣∣
m+1

+

+ a continuous function equal 0 at the boundary of (8.3.27) 6

2 sup
µ

∣∣∣ ∂m+1

∂ζm+1
l+1

[∂|κ|−m−1(f ◦ Ψn)
∂x
κl+2
l+2 . . . ∂xκn

n

(
Φl+1, ωµ ◦Φl+1

)]
+a cont.funct.equal 0 at ∂Ll+1

∣∣∣

+ a continuous function equal 0 at the boundary of (8.3.27),

which finally is a function extending by zero to the boundary of the cell (8.3.27).

To finish the proof it suffices now to assume that we have proved our proposition
for some l ∈ {k +1, . . . , n−2} and m = p and to derive it for l′ = l−1 and m′ = 1.
We start as in the case l = n − 2 and m = 1 and then continue as for the case
when l ∈ {k, . . . , n − 2} and m ∈ {1, . . . , p − 1} is augmented by 1, by a simple
modification.
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Proposition 8.4. Assume that the Main Theorem is proved in dimensions < n.

Let 0 6 k < n. Fix an integer q > (n− 1− k)
(

p

2

)
+ p. Assume that

αn
0 6 · · · 6 αn

rn
: Dn−1 −→ R

is a sequence of continuous PL-functions such that

Kn :=
{
(αn

i , αn
i+1) : i ∈ {0, . . . , rn − 1}}

is a family of convex PL-capsules in Rn, where Dn−1 =
⋃{πn

n−1(Kn) : Kn ∈
Kn}. Let Kn

1 ⊂ Kn. Assume that Dn−1 is a closed convex polyhedron in Rn−1 of
dimension n− 1 and A is a finite family of subsets of Dn−1. Put Dn := |Kn|.

Let f : |Kn
1 | −→ Rd be continuous and such that f |

◦
Kn is of class Cq for each

Kn ∈ Kn
1 . Assume that each Kn ∈ Kn

1 is (k, f, q)-well situated in Rn and that all
the derivatives

(8.4.1)
∂i(f |Kn \Σ(Kn))

∂xi
n

(i ∈ {1, . . . , q}) have continuous extensions

by zero to all Kn.

Let q̃ be any integer > q.

Then there exists a strict C q̃-triangulation (T , h) of Dn compatible with all sets
Dn ∩ (A × R) (A ∈ A), such that T is a simplicial complex in Rn which is a
refinement of Kn,h(Γ ) = Γ , for any face Γ of any Kn ∈ Kn, and each ∆ ∈ T such
that ∆ ⊂ Kn ∈ Kn

1 is (k − 1, f ◦ h, p)-well situated in Rn.

Proof. Apply first Proposition 8.3 for l = k. Hence, by Lemma 5.4, for every Qn

such that Ψn(Qn) ⊂ Kn ∈ Kn
1 there exists a closed subset E(Qn) of Ξ(Qn) of

dimension < k such that consecutively all mappings

Ψk+1|Qn \Ξ(Qk+1), . . . , Ψn|Qn \ Ξ(Qn) and f ◦ Ψn|Qn \Ξ(Qn)

extend respectively to Cp-mappings

Ψk+1|Qn \ πn
k+1(E(Qn)), . . . , Ψn|Qn \ E(Qn) and f ◦ Ψn|Qn \ E(Qn).

By induction hypothesis there exists a strict C q̃-triangulation (Tk+1, hk+1) of Dk+1

compatible with all πn
k+1(E(Qn)) such that Tk+1 is a refinement of Kk+1, hk+1

preserving all faces of any Kk+1 ∈ Kk+1 and such that all αk+2
ik+2

◦Ψk+1 ◦hk+1 are of
class C q̃. By using Corollary 6.4 and Lemma 5.2 this allows us to define a polyhe-
dral complex Pk+2 in Rk+2, which is a refinement of Kk+2 and a homeomorphism
Hk+2 : Dk+2 −→ Ψ−1

k+2(Dk+2), such that Ψk+2 ◦Hk+2 is preserving all faces of any
Kk+2 ∈ Kk+2 and for each Pk+2 ∈ Pk+2, Hk+2|Pk+2 is of class C q̃. Now we take a
strict C q̃-triangulation (Tk+2, hk+2) of Dk+2 such that Tk+2 is a refinement of Pk+2

and such that all αk+3
ik+3

◦Ψk+2 ◦Hk+2 ◦hk+2 are of class C q̃. Again, by Corollary 6.4
and Lemma 5.2 this allows us to define a polyhedral complex Pk+3 in Rk+3, which
is a refinement of Kk+3 and a homeomorphism Hk+3 : Dk+3 −→ Ψ−1

k+3(Dk+3),
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such that Ψk+3 ◦ Hk+3 is preserving all faces of any Kk+3 ∈ Kk+3 and for each
Pk+3 ∈ Pk+3, Hk+3|Pk+3 is of class C q̃. We continue this process, finally obtain-
ing a strict C q̃-triangulation (Tn−1, hn−1) of Dn−1, which is compatible with all
πn

n−1(E(Qn)), such hn−1 is preserving all faces of any Kn−1 ∈ Kn−1, and such that
Ψn−1 ◦ hn−1 and all αn

in
◦ Ψn−1 ◦ hn−1 are of class C q̃. Again, due to Corollary 6.4

and Lemma 5.2 with allows us to define a polyhedral complex Pn in Rn, which is
a refinement of Kn−1 and a homeomorphism Hn : Dn −→ Ψ−1

n (Dn) of the form
Hn(x′, xn) = (hn−1(x′), H̃n(x′, xn)) such that Pn is a refinement of Kn, Ψn ◦ Hn

is preserving all faces of each Kn ∈ Kn and such that for each Pn ∈ Pn, both
Hn−1|P is of class C q̃. Then h := Ψn ◦Hn = (Ψn−1 ◦ hn−1, H̃n−1) is of class C q̃ at
the restriction to any Pn ∈ Pn. Passing to a simplicial subdivision of Pn and using
once more Corollary 6.4 finishes the proof.

Proposition 8.5. Assume that the Main Theorem is proved in dimensions < n.

Let 0 6 k < n. Fix an integer q > (n − 1 − k)
(

p

2

)
+ p + 1. Let P be a polyhedral

complex in Rn, such that |P| is a convex polyhedron and each P ∈ P of dimension
n is a capsule in Rn and let P1 ⊂ P. Assume that f : |P1| −→ Rd is a continuous
mapping such that each P ∈ P1 is (k, f, q)-well situated in Rn. Let q̃ be any integer
> q.

Then there exists a Cp-triangulation (T , h) of |P| such that T is a refinement of
P, each ∆ ∈ T of dimension n such that ∆ ⊂ P ∈ P1 is well (k − 1, (f ◦ h, h), p)-
situated in Rn, for each ∆ ⊂ P ∈ P \ P1 the restriction h|∆ is of class C q̃ and
h(Γ ) = Γ , for any face Γ of any polyhedron P ∈ P.

Proof. Since all P ∈ P are PL-capsules, by Remark 2.3 and Lemma 2.6, there exists
a sequence of continuous PL-functions

α0 6 · · · 6 αr : D −→ R,

where D = πn
n−1(|P|) such that

K :=
{
(αi, αi+1) : i ∈ {0, . . . , r − 1}}

is a family of convex PL-capsules in Rn, which is a refinement of P. Put K1 := {K ∈
K : K ⊂ P ∈ P1}. It is clear that all K ∈ K1 are (k, f, q + 1)-well situated in Rn.
By Proposition 8.1, there exists an increasing sequence of continuous PL-functions

η0 6 · · · 6 ηs : D −→ R,

which is a refinement of α0, . . . , αr such that the family C :=
{
(ηj , ηj+1) : j ∈

{0, . . . , s − 1}} is a family of capsules which is a refinement of the family K and
moreover there exists a homeomorphism Ψ : |P| −→ |P| preserving all faces of each
K ∈ K and such that each C ∈ C1 := {C ∈ C : C ⊂ K ∈ K1} is (k, (f ◦Ψ, Ψ), q)-well
situated in Rn, the derivatives

∂σ(Ψ |
◦
C)

∂xσ
n

and
∂σ(f ◦ Ψ |

◦
C)

∂xσ
n

(σ ∈ {1, . . . , q})

have continuous extensions by zero to the whole C and, finally, for each C ∈ C \C1,
Ψ |C is of class C q̃. Now the conclusion follows from Proposition 8.4.
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9. Main Theorem - proof in general case.

Proposition 9.1. Assume that the Main Theorem is proved in dimensions < n.

Let 0 6 k < n. Fix an integer q > (n − 1 − k)
(

p

2

)
+ p + 1. Let P be a poly-

hedral complex in Rn such that |P| is a convex polyhedron of dimension n. Let
f : |P| −→ Rd be a continuous mapping such that for each P ∈ P, the restriction
f |P \ P (k) is of class Cq.

Then there exists a Cp-triangulation (T , h) of |P| such that T is a refinement of
P, h(Γ ) = Γ , for each face Γ of any polyhedron P ∈ P and for each ∆ ∈ T of
dimension n, h|∆ \∆(k−1) and f ◦ h|∆ \∆(k−1) are of class Cp.

Proof. By a barycentric subdivision we reduce the situation to the case where each
P ∈ P has only one face Σ of dimension 6 k, such that f |P \ Σ is of class Cq.
By Proposition 7.1, there exists a finite number of orthonormal bases v1, . . . , vs ∈
Vn(Rn) such that each P ∈ P is (k, f, q)-well situated in Rn relative to some vi,
where i ∈ {1, . . . , s}. Hence we can represent (the set of polyhedra of dimension n
belonging to) P as a pair-wise disjoint union

P = P1 ∪ · · · ∪ Ps,

where each P ∈ Pi is (k, f, q)-well situated in Rn relative to vi (i ∈ {1, . . . , s}).
By Proposition 8.5 there exists a Cp-triangulation (T1, h1) of |P| such that T1 is
a refinement of P, for each ∆1 ∈ T1 of dimension n, if ∆1 ⊂ P ∈ P1, then the
restrictions h1|∆1 \∆

(k−1)
1 and f ◦ h1|∆1 \∆

(k−1)
1 are of class Cp, and if ∆1 ⊂ P ∈

P \ P1 the restriction h1|∆1 is of class Cq and h1(Γ ) = Γ , for any face Γ of any
polyhedron P ∈ P. Put

T1i := {∆1 ∈ T1 : dim ∆1 = n, ∆1 ⊂ P ∈ Pi} (i ∈ {1, . . . , s}).

Observe now that if ∆1 ∈ T1i (i > 2), then ∆1 is (k, (f ◦ h1, h1), q)-well situated
in Rn relative to vi and then Σ(∆1) ⊂ h−1

1 (Σ(P )) = Σ(P ), where ∆1 ⊂ P ∈ Pi.
By Proposition 8.5, there exists a Cp-triangulation (T2, h2) of |P| such that T2 is
a refinement of T1, for each ∆2 ∈ T12 of dimension n, if ∆2 ⊂ ∆1 ∈ T12, then the
restrictions h1 ◦ h2|∆2 \∆

(k−1)
2 and f ◦ h1 ◦ h2|∆2 \∆

(k−1)
2 are of class Cp, and if

∆2 ⊂ ∆1 ∈ T1\T12 the restriction h2|∆2 is of class Cq and h2(Γ1) = Γ1, for any face
Γ1 of any simplex ∆1 ∈ T1. Clearly, h1 ◦h2|∆2 \∆

(k−1)
2 and f ◦h1 ◦h2|∆2 \∆

(k−1)
2

are of class Cp, when ∆2 ⊂ ∆1 ∈ T11. Put

T2i := {∆2 ∈ T2 : dim ∆2 = n, ∆2 ⊂ ∆1 ∈ T1i} (i ∈ {1, . . . , s}).

Observe now that if ∆2 ∈ T2i (i > 3), then ∆2 is (k, (f ◦ h1 ◦ h2, h1 ◦ h2), q)-well
situated in Rn relative to vi and then Σ(∆2) ⊂ h−1

2 (Σ(∆1)) = Σ(∆1), where
∆2 ⊂ ∆1 ∈ T1i.

It is clear how to continue this process which at the final s-th step gives the
required triangulation (T , h) = (Ts, h1 ◦ · · · ◦ hs).
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Proposition 9.2. Let p be a positive integer and let integers q1, . . . , qn be such
that

q1 > (n−1)
(

p

2

)
+p+1, q2 > (n−2)

(
q1

2

)
+ q1 +1, . . . , qn > 0

(
qn−1

2

)
+ qn−1 +1 =

qn−1 + 1.

Let P be a polyhedral complex in Rn such that |P| is a convex polyhedron of dimen-
sion n. Let f : |P| −→ Rd be a continuous mapping such that for each P ∈ P, the
restriction f |P \ P (n−1) is of class Cqn .

Then there exists a strict Cp-triangulation (T , h) of |P| such that T is a refine-
ment of P, h(Γ ) = Γ , for each face Γ of any polyhedron P ∈ P and f ◦ h is of
class Cp.

Proof. By Proposition 9.1 applied n times, we obtain a Cp-triangulation (T , h) of
|P| such that T is a refinement of P, h(Γ ) = Γ , for each face Γ of any P ∈ P and
such that for each simplex ∆ ∈ T of dimension n the restrictions h|∆ and f ◦ h|∆
are of class Cp. We now improve h, using Corollary 6.4.

10. An application to approximation theory.

Fernando and Ghiloni proved in [FG] the following approximation theorem.

Theorem 10.1 ([FG, Corollary 1.5]). Let A be a definable, closed and bounded
subset of Rn and let T be a finite simplicial complex in Rm. Let f : A −→ |T | be
a definable continuous mapping.

Then for any positive integer p and any ε ∈ R such that ε > 0 there exists a
Cp-mapping g : A −→ |T | such that

|f(x)− g(x)| 6 ε, for each x ∈ A,

where |(y1, . . . , ym)| := ( m∑

i=1

y2
i

) 1
2 .

In fact [FG] contains a proof of Theorem 10.1 only in the semialgebraic case and
R = R (the field of real numbers), but it is easy to check that the same proof, with
obvious modifications, holds true in our general context.

The existence of strict Cp-triangulations allows us to improve the last theorem.

Theorem 10.2. Let A and B be any definable, closed and bounded subsets of Rn

and of Rm, respectively. Let f : A −→ B be a definable continuous mapping.
Then for any positive integer p and any ε ∈ R such that ε > 0 there exists a

Cp-mapping g : A −→ B such that

|f(x)− g(x)| 6 ε, for each x ∈ A.

Proof. Let (T , h) be a strict Cp-triangulation of B; hence h : |T | −→ B is a
homeomorphism of class Cp. Since h is uniformly continuous, there exists δ > 0
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such that for each pair u,w ∈ |T |, if |u − w| 6 δ, then |h(u) − h(w)| 6 ε. By
Theorem 10.1 there exists a Cp-mapping g : A −→ |T | such that

|h−1 ◦ f(x)− g(x)| 6 δ, for each x ∈ A.

Hence,
|f(x)− h ◦ g(x)| 6 ε, for each x ∈ A,

and h ◦ g : A −→ B is of class Cp as a composition of two mappings of class Cp.
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