STRICT CP-TRIANGULATIONS - A NEW APPROACH
TO DESINGULARIZATION

WIESEAW PAWLUCKI

December 28, 2020

ABSTRACT. Let R be any real closed field expanded by some o-minimal structure.
Let f : A — R? be a definable and continuous mapping defined on a definable,
closed, bounded subset A of R™. Let £ be a finite family of definable subsets of R™
contained in A. Let p be any positive integer. We prove that then there exists a
finite simplicial complex 7 in R™ and a definable homeomorphism h : |7| — A,
where |T| = U7, such that for each simplex A € 7, the restriction of h to its relative

interior A is a CP-embedding of A into R™ and moreover both A and foh are of class
CP in the sense that they have definable CP-extensions defined on an open definable
neighborhood of |7| in R™. Then we call a pair (T, h) a strict CP-triangulation of A.
In addition this triangulation can be made compatible with £ in the sense that for

(e}
each £ € £, h~1(F) is a union of some A, where A € 7. We also give an application
to approximation theory.
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1.Introduction and Main Theorem.

We will work with an arbitrary fixed o-minimal expansion of any real closed
field R; e.g. the field of real numbers R with semialgebraic subsets of spaces R",
where n € N. O-minimal geometry (see [C] or [vdD] for fundamental notions and
results) is a far-going generalization of semialgebraic and subanalytic geometries
(presented in [BCR], [L], [Ga], [H], [BM], [S]). We will deal only with subsets of R™
and mappings f : A — R™, where A C R", which are definable in this structure
(mapping f is called definable if the graph of f is a definable subset of R™t™).
Therefore we will principally skip the adjective definable.

We adopt the following general definition. If IC is any family of subsets of a set
X, then by a refinement of K we understand any family £ of subsets of X such
that each L € L is contained in some K € K and each K € K is the union UL’ of
some subfamily £’ C £. The term refinement will be also used in a different sense;
namely, if F is a family of functions defined on a set X we will say that a family G
of functions defined on X is a refinement of F if simply F C G.

If K is any family of subsets of a set X, then we will denote by |K| the union of
all subsets K belonging to .

The interior of a subset A of a topological space will be in general denoted intA,

but sometimes we find the Bourbaki notation A more handy, while for the closure
of A we will use either A or clA.

We adopt a standard definition of a simplex of dimension k in R™ as the convex
hull of k£ 4 1 points ag, ..., a; affinely independent in R"; i.e.

k k
A= ag,...,ax] = {Zaiai co; 20 (i € {0,---,745}),20% =1}
i=0 i=0
If 0 <ip <iy <---<i; <k, then the simplex [a;,, ..., a;] is called a face of A of
dimension [. The points aq, ..., a are called vertices of A. The boundary 0A of a

simplex A is the union of all faces of A of dimension < k. Its relative interior is by
definition

k
A=A\ 0A = (ag,...,a;) == {Zaiai:ai>0 (iE{O,...,k}),Zaizl}.
i=0

=0

It will be convenient for us to use a more general notion of a convex polyhedron, or
simply polyhedron, in R™ which is defined as the convex hull of any finite subset of
R™. Tt is clear that the notions of dimension, faces, boundary, vertices and relative
interior generalize to all polyhedra and that polyhedra are subsets definable in
PL-geometry.

By a polyhedral complexr in R™ we will understand a finite family P of polyhedra
in R™ such that for each P € P all faces of P belong to P and for each pair
P, P, € P, PLN Py is a common face of both P, and P,. A polyhedral complex
consisting of simplexes is called a simplicial complex. Observe that if we restrict
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our consideration to polyhedral complexes P such that |P]| is of constant dimension
n, then a polyhedral complex can be defined as a finite family of polyhedra of
dimension n such that the intersection any two of them is their common face. We
will use this identification concerning simplicial complexes as well.

Let p be any positive integer and let A be any definable, bounded and closed
subset of R™. A CP-triangulation of A is a pair (7,h), where 7 is a simplicial
complex in R™ and h is a definable homeomorphism of |7| onto A such that for

each simplex A € 7 the restriction h|A is a CP-embedding of A into R™. If &
is any finite family of definable subsets of A we say that a triangulation (7, h) is

compatible with & if for each E € € the inverse image h™!(E) is a union of some A,
where A € 7. A CP-triangulation of A will be called a strict CP-triangulation of A
if the mapping h : |T| — R"™ is of class CP in the sense that it admits a definable
extension i : 2 — R™ of class C? defined on an open definable neighborhood (2
of |7] in R™.

Main Theorem. Let R be any real closed field expanded by some o-minimal struc-
ture. Let f : A — R be a definable and continuous mapping defined on a definable,
closed, bounded subset A of R™. Let £ be a finite family of definable subsets of R™

contained in A. Let p be any positive integer.

Then there exists a strict CP-triangulation (7, h) of A compatible with the family
E and such that f o h is of class CP.

The proof of the Main Theorem is an interplay between PL- and o-minimal ge-
ometries. The general idea comes from our earlier paper about CP-parametrizations
of sets definable in o-minimal structures [K-CPV]. In that paper we parametrized
definable sets by (CP-mappings defined on) cubes (similarly as in the classical an-
alytic rectilinearization theorem for subanalytic sets [H],[BM]), which inevitably
spoils injectivity of the parametrization. Similarly, blowing-up operations evidently
spoil injectivity. Instead of cubes or blowings-up we use simplexes as in the classical
triangulation theorem [vdD, Chapter 8], which gives existence of CP-triangulations.
All the problem is to make a triangulating homeomorphism CP-smooth. Our pro-
cedure of smoothing is based on the case of dimension one; it means on the Main
Theorem for n = 1, the proof of which we will shortly explain now, assuming
for simplicity that d = 1. Without any loss of generality we can assume that
f :[a,b] — R is a continuous definable function defined on a bounded, closed
interval. There exists a finite sequence ¢y = a < ¢ < -+ < ¢s41 = b such
that for each i € {0,...,s}, the restriction f|(c;,ciy1) is of class CPT! and either
|l <1 on (¢,cit1) or |f'(x)] > 1 on (¢;,c¢iy1). Now we use a simple but beau-
tiful trick of Coste-Reguiat [CR] reducing the problem to that where |f'| < 1 on
[a,b]\{co,...,cs+1}. Namely, define g : [a,b] — R by an inductive formula. First,
put g(a) = g(co) = f(a). Then we define g on [¢;, ¢;41] depending on two following
cases:

Case I: if |f'| < 1 on [¢;,ciq1], then we put g(z) := g(¢;) + x — ¢;, for each
T € [¢, Ciy1), and

Case II: if |f'| > 1 on [¢;, ¢;41], then we put g(z) := g(¢;) + |f(x) — f(¢)], for
each x € [¢;, ¢iy1].
3



Put d; = g(¢;) for i € {0,...,s+ 1}. Observe that g : [co,cs+1] — [do, ds+1]
is a strictly increasing homeomorphism such that ¢'(z) > 1 for x € [co, cs11] \
{co,...,cs11}. Take now the inverse h := g~ ! : [dy,dsy1] — [co,cst1]. Then
0 <h(y) <1land |(foh)(y)| <1, for each y € (d;,d;+1), where i € {0,...,s}.
Now we use a trick of Yomdin-Gromov (see Lemma 4.1 and Corollary 4.2 below
and compare with [Y1], [Y2] and [G]). There exists € > 0 such that each of the
derivatives h(*) and (f o h)*), where v € {2,...,p + 1}, has a constant sign. It
follows that substituting y = ¢(u) = (v — do)? + do, where ¢ is any fixed odd
integer grater than p, we get two functions ho and fohop defined on an interval
[do, d., 1], which are of class CP at dy and p-flat at do. Let d} := ¢~ '(dy). Now
substituting u = ¥ (w) := (w—d})?+d} we get two functions hoyot) and fohopor)
defined on an interval [dy,d], ] which are of class C” both at dj and at df = d
and p-flat at these points. Continuing this process we finally get a homeomorphism
H : [a,b] — [a, b] of class CP such that fo H is of class CP. In the case n > 1 we use
the same smoothing procedure but with parameters. In order to make it possible
we introduce two devices: capsules which are cells without vertical line segments in
the boundary (see Section 2) and detectors which are special differentiable functions
of choice (see Section 3).

The advantage of our method of desingularization is that it works for arbitrary
o-minimal structure, including in particular the following two examples:

(1) the o-minimal structure of R-subanalytic sets and mapping; i.e. the structure
generated on the ordered field of real numbers R by real analytic bounded subsets of
R™ (n € N) and all power functions (0,00) 3 t — t* € (0, 00) with real irrational
« (for a CP-rectilinearization and uniformization theorems in this structure see [Pi]),

(2) an o-minimal structure of Le Gal and Rolin [LR] which does not admit C*
cell decompositions.

These examples explain why in our Main Theorem we deal with finite classes
of differentiability rather than with C*°. Besides, the C*°-analogue of the theorem
is not true even in the semialgebraic case as can be easily checked; consider for
example the continuous semialgebraic function

3
f(z1,22) == x%afx%’ for (z1,22) € [-1,1]*\ {(0,0)}
0, for (x1,22) = (0,0).

The case p = 1 has already been proved in a slightly weaker form for semial-
gebraic category by Ohmoto and Shiota [OS], who used strict C!-triangulations to
develop the theory of integration on sets with sinularities. Our Main Theorem for
p =1 in full extent has been proved by Czapla and Pawtucki [CP].

Throughout the paper we use the following notation for linear projections

my s RY S (x1,...,xn) — (21,...,2,) € R™

where m < n.



We end this introduction by a useful observation that without any loss of gener-
ality we can assume in the Main Theorem that instead of A we have to triangulate a
big polyhedron P containing A, because by the Tietze Theorem (cf. [vdD, Chapter
8, (3.10)]) the mapping f can be extended to a continuous mapping defined on P.

2. Capsules.

We define two special notions which will play essential role in the proof of the
Main Theorem. These are capsules studied in the present section and detectors to
which the next section is devoted.

A capsule in R™*! is a subset K of R"*! of the form
K={(z,t) e DxR: a(x) <t<p(x)},

where D is a subset of R™ such that D = intD, intD is bounded, connected and
a, : D — R are continuous functions such that o < 4 on intD and @ = 3 on
0D. The subset {(z,t) € K : x € 0D} of K will be called the rim of the capsule
K.

Proposition 2.1. For any subset E of R"*! the following conditions are equiva-
lent

(2.1.1) E is a finite union of capsules in R" 1.

(2.1.2) E =intE is bounded and OE does not contain any nontrivial line segment
parallel to the t-axis.

2.1.3) E s a finite union of capsules in R 1 whose interiors are pairwise
p p
dlSjOZ’I’Lt

Proof. Obviously (2.1.1) implies (2.1.2). Assume now (2.1.2) satisfied. Let 7 :
R"1' 5 (x,t) — 2 € R™. Since intE is bounded and 7(FE) is closed,

m(E) = m(intF) = 7(intE) C intw(E) C 7(E),

hence 7(F) = intw(FE). Take a cell decomposition of R"*! compatible with intE
and with OF (cf. [vdD, Chapter 3, (2.11)]). This allows us to represent intE as a
finite union of pairwise disjoint cells of the form

(0, 9) ={(z, 1) - x €5, p(z) < <P(2)},

where S C 7(intE), ¢,1 : S — R are continuous, ¢ < 9 on S and the graphs’
of ¢ and 1 are contained in JE. Using classical triangulation applied to m(intE)
and all S (cf. [vdD, Chapter 8, (1.7)) we can additionally assume that S = 7 (¢, )
satisfies the following Lojasiewicz’s (s)-condition (cf. [L, Section 25]): each point
a € S\ S admits a neighborhood basis ¢ in R™ such that the trace U N S of each
U € U on S is connected. Then the set of all limit values of ¢ at each point a € S\ S
can be identified with

pN({a} x R) = {a} x [ {eU): U,

1We identify mappings with their graphs denoting both by the same letter.
)



which is a nonempty, connected subset of the vertical line {a} x R and of OF at
the same time; hence, a singleton. Consequently, both ¢ and i have continuous
extensions @, : S — R to S and next, by the Tietze Theorem (cf. [vdD, Chapter
8, (3.10)]), to the whole 7(E). Using all these extensions and functions min and
max we can find a sequence of continuous functions

a; < < ap:m(E) — R,

such that
(2.1.4) for each = € w(intE) the fiber (intF),

is a union of some intervals (a;(z), j(x)), where 7 < j,
and
(2.1.5) 7N (n(intE)) NOE C | Jas.

i

Refining the sequence a,...,a, by some extra functions we can assume that all
the sets

(i, aiq1) = A{(z,t) : z € w(E), aj(x) <t < aq1(z)}
are connected and nonempty. It follows from (2.1.5) that if (a;, a41) NintE # 0,
then (a;,aiy1) C intE. Let {i1 < --- < is} = {i : (a4, s41) C intE}. Then by
(2.1.4)
(ciy, @iy 1) U= U (0, i, 1)

is dense in intF; hence in E. Let P, := m(a;, ,q;,+1). Now if z € P, \ P, and
r € n(intF), then of course a;, (x) = a;,11(x) and if x € P, \ P, and = ¢ 7(intE),
then {z} X [a;, (2),;,+1(x)] C OF, hence again «;, (x) = «a;,4+1(x). However
(a;,,; +1) may not be a capsule yet because the condition intP, = P, may not
be a priori satisfied. To solve this problem we prove the following lemma.

Lemma. Let P be a bounded open subset of R" and let o, : P — R be two
continuous functions such that « < 8 on P and o = 3 on OP. Then («a,3) can be
represented as a finite union of capsules with pairwise disjoint interiors.

Proof of Lemma. Without any loss of generality we can assume that o = 0. Next,
using classical triangulation we reduce the problem to PL-geometry. Then the sub-
set A := (intP)\ P is contained in a finite number Hy, ..., H, of affine hyperplanes,
g minimal. We argue by induction on ¢. By affine change of coordinates in R", we
can assume that H, = {(x1,...,2,) : &, = 0}. Then the function~y(z) := Mz,,

with |M| big enough, cuts the cell (0, 5) into two (0,~) and (v, ) for each of which
q <q.

This ends the proof of Proposition 1.
Remark 2.2. If E fulfills the conditions of Proposition 1 and A\; : m(E) — R

(j €{1,...,1}) is a given finite family of continuous functions, then there exists a
finite family of continuous functions

a1 <+ <as: R"— R

such that E is a union of some capsules of the form (o, cv;11) which are compatible
with every \; in the sense that either \j(z) < t, for each (x,t) € (a4, i41), or
Aj(z) = t, for each (z,t) € (o, iy1).



Remark 2.3. If Ko, Ky, ..., K, are capsules in R and K, € Ky when1 < v <
p, then there exists a finite family of continuous functions

o < <ag:R"— R

such that (o, ai41), (1 €40,...,8—1}) is a family of capsules which is a refine-
ment of Ko, ..., K.

Corollary 2.4. For any finite family K of capsules in R"T' there exists a finite
family L of capsules in R™1 which is a refinement of KC and the interiors of capsules
from L are pairwise disjoint.

Proposition 2.5. Let K be any capsule in R*"! and let V be a finite family of
open subsets of int K covering the whole int K. Then there exists a finite family L
of capsules in R™"t whose interiors are pairwise disjoint, UL = K and for each
L € L there exists V €V such that intL C V.

Proof. Put K = {(x,t) € D x R: a(x) <t < f(z)}. There are two parts of the
proof.

Part I. We first prove by induction on k that if A is any subset of intD of dimension
k, then there exists a finite family of capsules in R"T1 such that for each L € L
there exists V € V containing intL and for each a € A there exists L € L and e > 0
such that {a} x (a(a),a(a) +€) C intL.

Applying triangulation to D compatible with A, we can assume that A is an
open subset of R¥ = {(x1,...,2,) : Tx41 = -+ = x, = 0}. Partitioning A, using
induction hypothesis and cell decomposition, we can assume that A is connected,
there exists one V' € V and a function

n:A— (0,00)
such that {a} x (o
min{n(a),d(a, 4\ A
each t € [« ( ,ala
p(a,a(a)) = 0 and

)+ n(a)] C V, for each a € A. Replacing n by 7(a) :=

a),a(a
we can assume that n(a) — 0, when d(a, A\ A) — 0. For
n(a
t) >

)s
)b
)+ )] put p(a,t) := 1d((a,t),K \ V). Since for each a € A,
p(a, 0, when ¢ > a(a), we can modify 7 in such a way that
(a(a),a(a) +n(a)] >t — p(a,t) € (0,00)

is strictly increasing. Again by partitioning A and using induction hypothesis we
can assume that 7 is continuous and replacing 1 by 7(a) := min{n(a),d(a, A\ A)},
we can assume that 7(a) — 0, when d(a, A\ A) — 0. It follows from the definition
of p that for each a € A and ¢t € (a(a), a(a) + n(a)]

1
{(xla-"axn7t): a= (xla"'vxk)v ($i+1++$i)2 <p(a7t)} cV

Now we define the wanted capsule. Put

E:={(x1,...,2p): a=(1,...,2) €z7, (:1:%+1+---+a:fl)% < pla,aa) +n(a))}



and L :={(z1,...,2n,t): (z1,...,2,) € E,

_ 1
P 1(x1,...,xk,(xi+1 +Fa2)2) <t < afxy, ... on) (e, ..., 1))
where p~! denotes the inverse of p with respect to the last variable.

Part II. According to Part I, there exists a finite family £ of capsules in R™t!
such that for each L € L there exists V' € V containing intL and for each a € D
there exists L € £ and ¢ > 0 such that {a} x (a(a),a(a) + &) C intL and there
exists M € L and 6 > 0 such that {a} x (8(a),B(a) —0) C intM.

By Corollary 2.3 there exists a finite family £’ of capsules in R"™! which is
refinement of the family £LU{K} and the interiors of which are pairwise disjoint. It
follows that if L' € £’ and L’ is not contained in any of the capsules from £, then
L’ is of the form

L'={(z,t): 2 €Q,v(z) <t < d(a)},

where V is an open covering of L'|int@Q = {(z,t) : = € intQ, v(z) < t < d(x)}.
Thus to finish the proof it suffices to prove the following.

If K = {(z,t) € Dx R : a(r) <t < B(x)} is a capsule in R*1 K* =
KN (@D x R), V is a finite family of open subsets of R"™1 such that K\ K* C UV
and A is a subset of intD of dimension k, then there exists a finite family L of
capsules in R"™1 contained in K such that UL\ K* is a neighborhood of K|A in
K\ K* and for each L € L there exists V €V such that L\ K* C V.

We proceed again by induction on k. Take a cell decomposition C of the set UV
compatible with each of V' € V and with K|A. Let

{B1,...,Bs} ={n(C): CeC,C C K|A, dim~7(C) = k}.

Now we apply the induction hypothesis to F := A\ (By U---U By). There ex-
ists a finite family £ of capsules in R"*! contained in K such that UL\ K* is a
neighborhood of K|E in K \ K* and for each L € L there exists V' € V such that
L\ K* CV. Fix one B, = B. Then

K|B = [vo,m] U+ U [Ym—1,7Yml,

where v, : B — R (v € {0,...,m})are continuous, 79 < -+ < Y,V =
a|B, v, = BB and each of [v,,7,+1] is contained in some V € V. There is an open
subset Tp of B such that ToNintD C B and UL\ K* is a neighborhood of K|(B\Ty).
Take also open subsets Ty, T, of B such that T; NintD C T ;i C Tj NintD C B if

0 <i < j < 2. By Tietze Theorem for each v € {1, ..., m} there exists a continuous
function
Y, :To — R
such that :)/V|Tl = 71/|T17 ’?u’aT2 = 7u—1|6T2 and 7,1 <% <7 on T2- Then
m
U [fYV—l‘T27 5’1/] \ K
v=1

is a neighborhood of K|ToNintD in K\ K*. A similar neighborhood we built over
every B,. Applying Proposition 2.1 we finish the proof.

In the proof of Proposition 8.2 in Section 8 we will need the following lemma.
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Lemma 2.6. FEvery PL-capsule in R"! is a finite union of convexr PL-capsules,
whose interiors are pairwise disjoint.

Proof. The boundary 9S of any PL-capsule S is contained in a finite number of
graphs of affine functions
0S C 1 U---Uyps,

where s is the smallest possible. We argue by induction on the number ¢ of ¢, such
that S is not contained in just one closed half-space cut by ¢,. If ¢ = 0, clearly S
is convex. Otherwise there is v such that

T :=cl{(z,y) €intS : y <, ()} and Th:=cl{(z,y) €intS: y> p,(z)},

are finite unions of PL-capsules, for which the number ¢ is smaller. The lemma
follows.

3. Detectors.

In this section we will need CP-partitions of unity. Although it is well-known that
CP-partitions of unity exist in any o-minimal structure, however for the reader’s
convenience and making the paper self-contained, we give a short proof in the first
two lemmas.

Lemma 3.1. Let Q be an open subset of R™ and let A and B be two closed, disjoint
subsets of Q. Then there exists a CP-function ¢ : ) — [0, 1] such that p =1 on A
and ¢ =0 on B.

Proof. By the Whitney extension theorem in the version from [KP], there exists a
CP-function 1 :  — R such that ¢» =1 on A and ¢ = 0 on B. Now it suffices
to put ¢ := Ao, where A : R — [0, 1] is a CP-function such that A(0) = 0 and
A1) =1.

Lemma 3.2. Let ) be an open subset of R"™ and let Aq,...,A,, be a finite fam-
ily of closed and pairwise disjoint subsets of ). Then there exist CP-functions
w1 —10,1] (j€{1,...,m}) such that

Z%‘(I) =1, for each x € Q
j=1

and for each j € {1,...,m} ¢; =1 on A;.

Proof. Induction on m. Let m > 1. By the induction hypothesis there are
U1,y Um—1 :  — [0,1] of class CP such that

m—1

Z vi(x) =1, for each x € Q)

and ¢; = 1 on A;. By Lemma 3.1 there exists a CP-function o1 : Q@ — [0, 1]
such that 0y =1 on A,, and 01 =0 on A; U---UA,,_1. There exists an open
9



neighborhood U of A; in Q such that 01 >0on U and U C Q\ (A1 U---UA,_1).
By Lemma 3.1 there exists a CP-function o9 : 2 — [0, 1] such that oo =1 on Q\U
and 09 = 0 on A,,. Then the CP-function

o1+ 02:Q—10,2]
is positive on €2, so we can built the following CP-function on 2

0'2(33)
o1(x) +oa(z)

0'1(.’13)

) +oa(@) @ + 0a(@) and pa(z) :=

p1(x) =

Of course, pi(x) + p2(x) = 1, p1 = 0Oon A3 U---U A,,—1, while po = 0 on
Ay hence pp =1 on A,, and p; = lon A;U---UA,,_1. Finally we put
01 =P1p2, s Pm—1 = Ym_1p2 and Q. = p1.

Proposition 3.3. Let Q2 be an open subset of R, E a closed subset of Q of dimen-
sion k and C a convez, closed bounded subset of R™. Let f : E x C — [0,00) be
a continuous function and define

g(x) :=sup f(x,y), foreach x¢€E.
yel

Assume that g(x) > 0, for each x € E. Let p € N.

Then there exists a family w; : Q@ — intC' (5 € {0,...,k}) of CP-mappings
such that .
59(3:) < sup f(z,w;(z)), for each x € E.
J

The mappings w; will be called detectors of class CP for f over K.

Proof. Induction on k. If k = 0 it suffices to know that there exists a CP-mapping
w : £} — C which has prescribed values at a finite number of points; an immediate
consequence of existence of definable CP-partitions of unity (Lemma 3.2).

Suppose now that & > 0. By the definable choice there exists a mapping
wg 1 E — intC such that

(3.3.1) %g(m) < f(z,wk(x)), foreach x € D.

There exists a closed subset F; of E of dimension [ < k such that £\ E; is a
CP-submanifold of R™ of dimension k and wg|E \ E; is a CP-mapping. Moreover,
by [KP| we can assume that F \ F; can be represented as a finite union

(3.3.2) E\E =L,

of pairwise disjoint k-dimensional CP-submanifolds each of which, in some linear
coordinate system is the graph of a CP-mapping

Iy ={(zy, ..o, v (@, 2), v (T, mk)) 2 (21,0, 2%) € Dyt
10



of a CP-mapping v = (Vj/11,--->M) : Dy — R"™ % defined on some open subset
D, C RF.

By natural projection
D, x R"F 3 (x1,...,2,) — (x1,..., 26,7 (x1,...,21)) € Thu

wi| I, can be extended to a CP-mapping to a neighborhood of I',; hence wy|F\ E; can
be extended to a CP-mapping defined on a neighborhood of E \ E;. Consequently,
wi|E \ E7 extends to a CP-Whitney field defined on F \ E;. By the induction
hypothesis, there exist CP-mappings w; : @ — intC' (5 € {0,...,k1}) such that

1
(3.3.3.) 59(:1:) < sup f(z,w;(x)), for each z € E;
j

There exists an open neighborhood W of E; in © such that (3.3.3) holds true
for each x € W N E. Then E \ W is a closed subset of {2 contained in E \ Ej.
By the Whitney Extension Theorem, there exists a CP-mapping F :  — R™
which extends wy|E \ W. Then U := F~!(intc) is an open neighborhood of E\ W
in Q. By Lemma 3.2, there exists CP-functions ¢1,p2 : © — [0,1] such that
p1+p2=1, g1y =1on E\W and po =1 on Q\ U. Choose any ¢y € intC' and
put Wi = @1 F 4 pacg. Then wy, ..., wk_1,wx is the desired sequence for FE.

Example 3.2 The following example shows the assumption g(x) > 0, for each
x € F, in Proposition 3.1 cannot be omitted. Put

1
E:={(z1,22) € R?: 22 4+ 22 < 1 ad  C=[01]

Consider f : E x C — [0,00) defined in the following way:

w1 |||
9,y) =0, hen 22 4 22 > 0 and y < 2l®2l
fz1,22,y) when x7 + x5 an y\2(x%+a:%)
|21 || 2]

m, when I’% + :L‘% > 0 and
1 2

f(wy,22,y) =y —

|21 |22 |21 ||22]

5 <YK 55—y + 27 + a3
2@ +a2) VS 24z T

x1||x
f($17$2ay):2(fl7§+$§)— (y—%), when 2?2 4+ 23 > 0 and
1 2

|71 |2
2(x7 4 x3)

71 ||22]
2(x} + x3)
21| |22
2(x? + 23)

+ai 433 <y < + 2(z7 + 23);

f(x1,22,9) =0, when x%+x% >0 and +2(w§+x§) <y<l;
f(z1,22,y) =0, when x%—i—x% =0.

Clearly, g(x1,72) = 22 +23 and f does not admit event continuous detectors over
E.
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4. Yomdin-Gromov trick and a smoothing homeomorphism w.

This paragraph concerns a method of smoothing functions of one variable mim-
icking Yomdin and Gromov (cf. [Y7,Y2] and [G; Section 4.1]) which appeared useful
to get smooth parametrizations of subsets definable in o-minimal structures (cf. [K-
CPV]). It is crucial in the proof of our basic Lemma 5.1.

Lemma 4.1. Let X : (a,b) — R be a definable CPT-function, wherep € N, p > 1,
defined on an open interval (a,b) C R such that, for eachv € {2,...,p+1}, A\V) >0
on (a,b) or \) <0 on (a,b). Then, for any closed interval [t —r,t +1r] C (a,b),
wherer € R and r > 0,

p+2 1
AP ()] <203)72 sup A=
[t—rtt+r] TP

Proof. Induction on p (see [K-CPV; Lemma 2.1] for details).

Applying Lemma 4.1 to A’ in the place of A and p — 1 in the place of p, we have
the following

Corollary 4.2. Under the assumptions of Lemma 4.1,

1
2B <y sup | N |———,
| ( )| p(a,b)| ‘\t—a\“_l

for each t € (a, “TH’] and p € {2,...,p}, where C), := 2("t) =2, In, particular, if N
is bounded; i. e. |N| < M, where M € R and M > 0, then

1

a+b
m, for each t € (a,—],,ue{Q,...,p}.

(4.21) MW@ <o,M :

Lemma 4.3. Let A : (a,c] — R be a definable CP-function, where a,c € R, a < c
such that

1
[t —a|r—1’

(4.3.1) IAM (1) < L for each te€ (a,cl, pe{l,...,p}

where L € R s a positive constant. Fix m € N, m > p+ 1. Fiz any o € R. Put
o(7) == ANa+ (1 —a)™), for each T € (o, (], where f = a+ X/c— a.

Then there exists a positive constant M depending only on L and m such that
| (T)| < LT — o|™*, for each 7 € (o, 8] and p € {1,...,p}. Consequently, o
has a unique extension to a CP-function ¢ : [a, 5] — R p-flat at «.

Proof. Without any loss of generality we can assume that a = 0 = a. Then
@(T) = A(7™). For each p € {1,...,p}, (1) =

ar, 7TTEN (T + CLQMT2m_‘u)\//(Tm) —|—a3u7'3m_”)\(3) (T"™) - —i—aWT“m_“)\(“) (r™),
where a;,, are positive integers defined inductively by the following formulae

A1p = (— Wiy = magi—1)(u—1) T (im = p+ 1)a;—1),  ap, =m".
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By (4.3.1), it follows that |¢*")(7)| <
L

L L
m—u 2m—p Im—u . nwm—p —
a1,T L+ ag, 7 — + as,T —m + +au, T —G—Dm

L(ai, + -+ ay,)tm "

It will be convenient to have the p-flatness of a parametrization of the segment
la, c] at the right end as well. It is why we use the following increasing parametriza-
tion of the segment [«, §] p-flat at right end:

Ti=a+ Ve—a—(y—s)™,

where v € R is arbitrary,s € [y,d] and § = v+ *3/c —a. This leads us to the
following.

Corollary 4.4. Let X\ : (a,b) — R be a CPT-function, where p € N, p > 1,
defined on an open interval (a,b) C R such that X is bounded and, for each
vel{2,...,p+1}, X >0 on (a,b) or \*) <0 on (a,b). Letm €N, m >p+1.

Let vy € R be fized arbitrarily, 1 :=vo+ 3/ (b—a)/2, v2:=y + */(b—a)/2 =
Yo + 2 *%/(b—a)/2. Put

w(a b: S) L { a+ [m\/ (b_ a)/ - (’71 - S)m}ma ZfS € [’707’71]
N b— [/ B—a)2— (s =)™, ifs €l
Then w : [v0,72] — la,b] is an increasing homeomorphism such that w(yy) =

a, win) = GTH’, w(ye) = b and X o w extends uniquely to a CP function

Aow: [y0,72] — R p-flat at points 0,71 and 2.

Corollary 4.5. Let yo < y1 < -+ < ¥y, be (at most)r + 1 points in R. Let
A [Yo,yr] — R be a continuous function such that, for each i€ {0,...,r—1}, if
Yi < Yit1, then N(yi,yi+1) satisfies the assumptions of Corollary 4.4. Let m € N,
m = p+ 1. Let the sequence of points in R

Yo <Y1 S V2 < < Yo

2m

be defined inductively by: vy € R fixed arbitrarily, yoi+1 := vY2i + (Yiv1 —vi)/2,
Yoite = V2it1 + N (Yiv1 —¥i)/2 (1 €{0,...,r = 1}). Put w(yo,...,yr;s) :=
{ Yi + [V (yit1 — v:)/2 — (yair1 — S)m]m, if 5 € [v2i, V2i41]
Yir1 — [ Y/ (i1 —vi)/2 — (s — ’721+1)m}m7 if 5 € [Y2i+1,72i)s
forie{0,...,r—1} and
(ORI 9 T .
" Yr + (8 - 727’)m7 ZfS S [727‘7 OO)

Then w: R — R is an increasing homeomorphism of class CP such that w(7vy2;) = v;
and w(Yaiy1) = LY (5 € {0,...,7r — 1}), and Ao w : [y0,72,] — R is of class
CP, p-flat at points o, ..., Yor-



5. Basic lemmata.

Lemma 5.1. Let D be a bounded subset of R"~! such that D = intD, let m, p be
positive integers such that m > p+ 1. Let

ap<ap<--<a:D—R
be a finite sequence of continuous functions such that I = {(ai,aiH) NS
{0,...,r — 1}} is a family of capsules in R™. Let Ky C K and put A := |K]|
and Ay = |Kq].

Let f = (fi,...,f1) : Ay — R% be a continuous mapping such that for each
K € Ky there exists continuous partial derivatives

TR e e

Then there exists a finite sequence of continuous functions
o< << :D—R

and a homeomorphism
@ . [50, 5lc] — [Oéo, Oé,«]

such that:
(5.1.1) @ is of the form @(2’,&,) = (2, p(2',&,)), where ' = (x1,...,2p—1).
(5.1.2) For each j € {0,...,k — 1} the derivatives

0%
0/34

(ce{l,...,p+1})

exist continuous in (8;,9,11) and have continuous extensions by zero to m,
moreover 5
% >0 on (5j>6j—|—1)'
n

(5.1.3) The sequence 0;(z") = @(a’,d;(x")), where ' € D and j € {0,...,k},
is a refinement of oy, ..., q,; in particular, ag = 0y and o, = 0.

(6.1.4) L :={(6j,041) : 7 € {0,...,k —1}} is a family of capsules in R"™ such
that {®(L): L € L} is a family of capsules which is a refinement of K.

(5.1.5) Put L1 :=={L € L : ¢&(L) C K, for some K € K1}. For each L € Ly,
there exist continuous partial derivatives

9°(f o ®|L)

9E7 (ce{l,...,p+1})
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and these for o € {1,...,p} extend continuously by zero to L.
(5.1.6) On each capsule L € L the function ¢ is either of the form
M 1 ay ()™ - agy (1), where ay, . .., a2y : D — R are continuous

(it is so in particular, when L ¢ L)
or of the form

+ o 2, 2™ 4 ay ()™ - dagm(2))),  where ai,...,a0m D — R

are continuous and where 3 € {1,...,d} and f_1 denotes the inverse of f,. with
respect to the variable x,, on the capsule ®(L) on which
0

> cfl, with some constant ¢ > 1.

oz,

Proof. Fix any ¢ > 1. By Proposition 2.5, passing perhaps to a refinement of IC
one can assume that for each K € K we have either

(5.1.7) gi}‘ <¢, inK foreach e {l,...,d},
or
(5.1.8) g% >c7 !, in K forsome x € {1,...,d},

and in the second case among f,, satisfying (5.1.8) there is one, denote it by fx,
such that
/‘ Ofk
o0x,

Now we define a function A : [ag, @] — R inductively as follows. Put first

0fx

9., <c?, in K foreach sx€{l,...,d}.

(5.1.9)

A, ag(z”)) = ag(z’), for each z’ € D.
We define A on [«;, a;41] according to the following two cases.

Case I If (o, ;41) ¢ Ky or if (o, a41) € Ky and (5.1.7) is satisfied on
(viy @viy1), then put

M2 ) = M, ai (7)) + 2 — (7)), for each (2, z,) € [a, iy1]-

Case II. If K = (i, a41) € K1 and (5.1.8) is satisfied on (a;, aj+1), then put

A ) = Ma', 0i(2")) + [ frc (2, 2n) = frc (2, 0i(2))],

for each (2',x,,) € [a;, Qviy1]-
15



Put Az, z,) := (', A\(2’,2,))). Then A is a homeomorphism of [ag, o] onto

[Bo, Br], where 5;(z") := A2/, ai;(2")) (2' € D, i € {0,...,r}) and (G;, Bi+1) (i €
{0,...,r — 1}) are capsules in R".

The partial derivatives

0%\
@ (0'6{1,,p+1})
: : : . . oA — oA -1
exist and are continuous in every (OéZ,O[H_l) and W =1 or Dz 2 C on

(o, ai11); hence A : [a, @] — R is continuous, strictly increasing with respect
to x,,. Let

v [ﬁo,ﬁr] > (x/7Cn) — (x/,w(@"/’(n)) S [a07a7“]

denote the inverse homeomorphism to A. Then

Oy ! _
0<8Cn( ', ) = — 833 @) <max{l,c} =c

on every (0, 3i+1). Fix now any K = (o, a;41) € K.
If K is of type as in Case I, then for each (z/,(,) € (8;, Bix1)

Bi(x") + (', n) — ai(2’) = Cu; hence  Y(2',Gn) = (G — Bi(2") + au(2);
consequently, if K € Ky, then for each s € {1,...,d}

fr o W) _ ‘8f%

¢, v Gl <e

(@', ¢n)

If K € Ky is of type as in Case II, then for each (z/,(,) € (8i, Bi+1)
Bula) + | (' ) — Fie (el &) = G,

hence (2, Cn) = fro (2, £(Cn — Bi(a")) + [ (2, ci(a));
consequently, for each s € {1,... d}

O(fxo¥) _ ‘6’f%
9Cn

3fK

(&', Gn) 2,0, G))| < ¢f

', Gn))

By Proposition 2.4, passing to a refinement (v;,v;+1) (j € {0,...,s —1})
capsules (f3;,3;+1) , where the sequence 79 < 71 < - -+ < 7 is a refinement of the

sequence fy < ...[0,, we can additionally assume that for each j € {0,...,s— 1}
and each o € {2,...,p+ 1} we have either
0%
(5.1.10) ace (',¢n)| < ¢, on (Vs Vi+1)
or
0% _
(5111) aCo- (xla CTL) Zc 17 on (7j7’7j+1)
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and, similarly, for each » € {1,...,d}, either

0% (f0W), ,
(5.1.12) ‘%(z,@) <, on  (75,%j+1)
or

% (f0W), , _
(5.1.13) ‘%(w,én) >cl on (v, 754):

Notice that the condition (5.1.13) implies a constant sign of the partial derivative
involved on (7;,7v;j+1)-

Finally, we modify the homeomorphism ¥ with respect to the variable (,, by
means of the smoothing homeomorphism w with a parameter (Corollary 4.5):

D(2',&n) =W (2", w(r0(2), .-, 7s(2);6n)),

where (2/,&,) € [d0,02s] and where 6y < -+ < J2s : D — R is a sequence of
continuous functions.

Lemma 5.2. Let A C R™ be a simplex of dimension n, p a positive integer and
let

fo<Bi<...0k:A—R
be CP-functions such that for every face S of A and each j € {0,... k — 1} either

Bij+1 — B #0 on :S)’ or Bj+1 — B; =0 on S and let in the latter 3j41 — B be p-flat
on S.

Let
S <N A—R

be continuous PL-functions such that for every face S of A and j € {0,...,k}
Aj|S is affine and

(5.2.1) Bi=p0jx1 onS <<= X=Xt onS (j€{0,....k—1})

Then the formula

W (u,() = { (“ S (B (w) = B5(w) +ﬁj(u)), if Aj(u) < Ajp(u),

(u, Bj(u)), if Aj(u) = Ajia(u),

for (u,C) € [Aj, A\jt1], defines a homeomorphism [Ao, \i] onto [Bo, x|, such that
U(u,Aj(u) = (u,Bi(u)), forue A, j€{0,...,k} and for each j € {0,...,k —1}
W|[Aj, Ajy1] is of class CP.

(o]
Proof. Assume that A\; < A;1; on A. By a linear change of coordinates we can
assume that

A={ueR":u, <0 (re{l,...,n}) Zuygl}
v=1

17



and S:={ueA: \j(u)=XAjt1(u)}
={ueA: Bi(u)=pFj1(v)} ={ueA: w4 = =u, =0}

Then for each u € A

Aj1(u) = Aj(u) = Z cyuy,, where ¢, >0 (ve{l+1,...,n}).
v=Il+1

We want to check that

lo|+p — Ai(uw
0 [}\ ¢ —Aj(u) (Bjs1(u) — Bj(u))| — 0,

Qur 0P LAji1(u) — Aj(u)
when (Aj, Aj11) 2 (w, () — (uo, Aj(up)) € Sx R, 0 € N", pe Nand |o|+p < p.

In view of the Leibnitz formula, it suffices to check that

1

(¢ = Aj(u))D? [m

| D811 = B (w) — 0,

when o,pE Nn7 |U| + |p| <P and (U,C) - (u07)‘j(u0))7 and

1

2w

| @D (8541 = B5)(w) — 0,
when o,pE Nna |U| + |p| <p—1 and (U’,C) - (UOJ )‘](UO))
In the first case, by the Taylor formula

1
Aj+1 = Aj

C
(Aj1(u) = Aj(w))ll+

(C=N()D7 | | @)D (8141 =85 (w) = (¢ ()

1
> am W) DD (B — B)((w) + B~ w(w))
|8|=p—Ip|
where C' > 0, w(u) = (u1,...,u;,0,...,0) and 6 € (0,1). Consequently, with some
constant C" > O,

1

(€= X)D7 |

|@Dr(811 = B (w)| <

C’ - “1p]
; SO w)”™ sup [DH(Bjn — B)) () + 0 — m(w)))],
(Xooiow) S5 Ju=p
which tends to 0, when u tends to ug. Similarly in the second case.

We will also need some CP-extension result based on the following C!-extension
theorem (cf. [Pa, Proposition 2]).
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Theorem 5.3 (C'-Extension Theorem). Let f:S — Rbe a Cl-function de-
fined on a cell

S={(a,z,) e R": 2’ € G, px') <z, <)}
in R™ such that G is an open subset of R*~! and ¢ < ¢ : G — R are of class C*.

0
Assume that 8_f has a finite limit value® at (almost) each point of v ( for
L

example, when % is bounded ).

Then there is a closed nowhere dense subset Z of ¢ such that f extends to a
C!-function
f:Su ((,0 \ Z) — R

to SU (¢ \ Z) as a Ct-submanifold of R™ with boundary ¢\ Z.

Proof. With no loss of generality we can assume that ¢ = 0; i.e. ¢ = G x {0}. For
each a € G the set
of

Lim ——(x)

0
of all finite limit values of —f at point (a, 0) is a closed non-empty interval, because

ox,
S satisfies the Lojasiewicz (s)-condition at points of ¢. Since
. of of . of
Lim —(z) =\ =
aLGJG{a} % ﬁﬁ%mxn () ox, ' O0x,

is of dimension n — 1, it follows that there exists a closed nowhere dense subset E
of G such that there exists a finite limit

) af
lim ——

m o (z), foreachae€G\E.

This implies in particular that for each 2’ € G\ E there exists a finite limit

(5.3.1) g(z') = xlir_r)lof(x', z,) € R.

There exists a closed nowhere dense subset Z of G containing E such that g is
of class C! on G\ Z. Hence, without any loss of generality we can assume that
g =0 and Z = (). Repeating the previous argument with dimension we conclude
that after removing a closed nowhere dense subset from G f extends by 0 to a
continuous function on S U .

Now, we will show that for any i € {1,...,n — 1} the partial derivative 0f/0z;
extends by 0 to a continuous function defined on S\ F, where E' C ¢ and dim F < k.
With no loss of generality we assume that ¢ = n — 1. First we will show that

of
5.3.2 0 Li
( ) © wﬂl(gzlo) axn—l

(z), for each a € G.

2An element o € R is a limit value of a function g : S — R at a € S if and only if there is an
arc v : (0,1) — S such that }iir%)v(t) = a and tlgr(l) g(v(t)) = a.
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To check this fix any arbitrarily small n > 0 such that B(a,n) :=
{u € RF : |u—a|l < n} C G and any ¢ > 0. There exists § > 0 such that
|f(2',x,)| < en, when 2’ € B(a,n) and z,, € (0,d). By the Mean Value Theorem
there exists 6 € (0,1) such that

of

axn—l

(&,an_l +—0n’xn) __‘f(aﬂan—l+‘ﬁ;$n)-—-f(a,xn)

B n

where a = (@, a,—1). This ends the proof of (5.3.2). Repeating the previous argu-
ment we conclude that

of
5.3.3 li =0
( ) x—gao)ﬁxn_l x) ’

for a € G\ Z, where Z is a closed subset of Z of dimension < k. This ends the
proof of the theorem.

Lemma 5.4 (basic CP-extension lemma). Let Q C R* be an open subset, where
ke {0,...,n—1}, and let p be a positive integer.
Let

Okt1, Vrr1: Q@ — R be CP-functions such that pr11 < VYi41;

Okt+2, Vk+2 * [@Pk+1, Vkt+1) — R be CP-functions such that ¢rio < V1o

on (S0k+17¢k+1) and Qpq2 = Yry2 ON Pry1;
Okt3, Vk+3 : [Prr2, Ypro] — R be CP-functions such that 13 < Yri3

on (Pr42, Yrt2) and Qi3 = V13 0N Pryo|Pry1;

OnsUn t [Pn—1,Vn-1] — R be CP-functions such that @, < ¥,
on (Pn—1,Vn-1) and pn = Pn on @u_1|(. .. (Pryo|Prs1)-..).
Put
Si={(w1,..., ) ERX R i(xy,...,x; 1) =x; (Ge{k+1,....,n}H}
Let f: [pn,¥n] \ ¥ — R a CP-function such that all the partial derivatives

o f

0z o

(5.4.1) (la| = a1+ -+ an =p) have continuous

extensions to X .

Then there exists a closed subset EE of X of dimension < k such that f extends
to a CP-function defined on [pn, V] \ E.

Proof. First assume that p = 1. With no loss of generality we can assume that

(5.4.2) Orr1 =0, ra2lert1 =0, ooy onl(o . (Prrel@rr)-) =0;
20



in other words X = 2 x {0}"~*.

Put y := (k41,...,%,). For any a € {2 the function f, : [pn,¥n]a \ {0} —
R defined by fu(y) = f(a,y) on the set [, bula \ {0} = {y # 0 : (a,y) €
[©n,¥n]} is a C-function with bounded first order partial derivatives near 0. Since
(V0> Vn]a \ {0} is quasi-convex® near 0, this implies that the limit

g(a) = lim fo(y)

y—0

exists in R (cf. [Pa, Proposition 1]). Since there exists a closed subset E of (2 of
dimension < k such that g is of class C! on 2\ E, with no loss of generality we can
assume that g is C' and then that g = 0.
For each a € 2 the set Li(m f(z) of all finite limit values of f at point (a,0)
z—(a,0
is a closed interval containing 0, because [¢,,1,] \ X satisfies the Lojasiewicz (s)-
condition at points of X. We want to check that Li(mo) f(x) = {0}, for almost all

a € §2. Suppose it is not so. Hence there exists a non-empty open subset G of {2
and € > 0 such that [0,¢] C Li(m )f(x) (or [—¢,0] C Li(m )f(:c)) for each a € G.
r—(a,0 rz—(a,0

Then G x {0}"% C f~1(¢/2,00). Tt follows by the Cell Decomposition Theo-
rem that there exists a € G such that {0}"* C f~1(¢/2,00), = fa '(/2,0), a
contradiction.

It follows that we can assume that f extends by 0 to a continuous function
defined on [y, ¥,]. Now, we will show that for any i € {1,...,k} the partial
derivative 0f/0z; extends by 0 to a continuous function defined on [p,,¥,]| \ E,
where ¥ C Y and dim E < k. With no loss of generality we assume that i = k.
Suppose it is not so. Then there exists a non-empty open subset G of {2 such that

. Of
4. L — fi h .
(5.4.3) m-»l(g,lo) . (z) # {0}, oreach ae€ G

It follows that there there exists a non-empty open subset G of {2 and € > 0 such
that
of

& x foy* c 3xk>_1[€’ 00)

or

G x {0}"F ¢ (%)_1(—00, .

By an analogue of the Whitney Wing Lemma (cf. [L, Section 19]) or directly by
the Cell Decomposition Theorem there exist a non-empty open subset G’ of G and
9 > 0 such that G’ x [0,9) C [@k+1,%k+1) and a continuous mapping

(5.4.4) a:G x[0,8) i— (%)_1[5, ),

3A subset A of R™ is called quasi-convez if there is a positive integer M such that for any
two points a1,a2 € A there exists a (definable) continuous arc A : [0, |a1 — a2|] — A such that
A(0) = a1, AM(|la1 — az2]) = a2 and [N (t)] < M, for any ¢t € [0,|a1 — az2|] such that M (t) exists.
(Then X is necessarily piece-wise C'.)
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such that

(5.4.5) a(u, Tpr1) = (U, Trg1, O (U Thg1)s .- oy (U, Thy1)),

where «;(u,0) = 0, for each j € {k+2,...,n} and u € G’, because of (5.4.2).
Since

Prt2(t, Try1) < g2 (U Tpt1) < Ypa(u, Tpt1),  and
@1 (U Tt g2 (U, Tpg1), - 0 (U Tpp1)) < @ (U, Tpgr) <
Vijp1(u, Thp1, apgo(U, Thtr), - - j(u, 2k41)),  for je{k+2,...,m},

it follows that

Oovs

(5.4.6) lim % (u,zk41) € R, foreachu e G and j € {k+2,...,n}.
Tk+1—0 a$k+1

By Theorem 5.3, at the expense of shrinking G’ and diminishing ¢ ,we can assume

that a; are C! functions on G’ x [0, 6); in particular

(5.4.7) lim %(u,$k+1) =0, forueG andje{k+2,...,n}.
Tpp1—0 0T

It follows from (5.4.1) and (5.4.6) that for each u € G’ the derivative
O(fca)

ax—m(% Thy1)
is bounded when xj. 1 is near 0. Again by Theorem 5.3, after perhaps shrinking G’
and diminishing § we can assume that (f o «a)|G’ x [0,6) is of class C!; in particular
O(foa)

5.4.8 lim — % —0.
(5.4.8) G —o (U, Tpy1)

On the other hand,
O(f o)

0
8—9%(% Tpt1) = 8_xk(u’ Thot1, 0t 2(U, Thg 1), - -+ O (U, Tpog1) )+

n
0 oo

%(U, Tt 15 Qo2 (U Tt 1), - -+ Qi (U, Tpeg1)) 5 (U Tpy1),
J

(9£Ck

j=k+2
which, in view of (5.4.8), (5.4.1) and (5.4.7), implies that

lm  ——(u, Tpy1, kg2 (U, Tht1), - .-y an(u, 2541)) =0,
Tr+1—0 0Tk

contradicting (5.4.4). This ends the proof in the case p = 1.

Assume now that p > 1 and the lemma is true for p — 1. Since [¢n, V] \ X is
locally quasi-convex near X* it suffices to check that all the partial derivatives

o8l f

5.4.9 _
( ) oxy*' .. .8xg"

(18] :=B1+ -+ Bn <p)

41t means that each point u € X admits arbitrarily small neighborhoods U in R™ such that
U N [¢n,¥n] \ X is quasi-convex.
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have continuous extensions to X'\ F, where F is a closed subset of X' of dimension
< k (cf. [T, p. 80]). By the induction hypothesis, there exists a closed subset of X
of dimension < k such that for each j € {k+1,...,n} all the derivatives

oh! of B, ol
= — _ 1
ozt ... 0xy" (8@-) oz (8:51“ . 8:5'%") (hl=p-1)

have continuous extensions to X'\ E. It follows from the case p = 1, that there
exists a closed subset E’ of X containing E of dimension < k such that all the
derivatives (5.4.9) have continuous extensions to X'\ E’.

6. Existence of strict CP-triangulations orthogonally flat along sim-
plexes.

Let I' be an open subset of R¥ = {(xy,...,m,) € R" : Tp41 = -+ = x,, =
0} C R™ and let f: D — R™ be a CP-mapping defined on a non-necessarily open
but locally closed subset D of R™ such that D C intD; i. e. there exists an open
neighborhood 2 of D in R™ and a CP-mapping f : £2 — R™ such that f|D = f.
Assume that I' C D. We say that f is orthogonally p-flat along I' if

olal f olal f
a T1,...,0k,0,...,0) = —5 - (u,0)=0
8xki+11...8:1:%"( ! g ) 8xki+11...8xn”( )
for each u = (z1,...,2;) € I' and @ = (agq1,...,0,) € N*7F such that 1 < || <

p. This definition generalizes in a natural way to the case when I' is an open subset
of any affine subspace Aff(I") of R™ of dimension k.

Remark 6.1. If f : D — R™ is a CP-mapping orthogonally p-flat along I" C D
and w; € S"1 is a vector orthogonal to Aff(I"), then for each j € {0,...,p} and
arbitrary ws,...,w; € Sn—1

o f

— | I'=0.
ow; ...0w;

To prove the main theorem of this section we need the following lemma.

Lemma 6.2. Let
A={(z1,...,21) € R": pi(x1,...,21) >0 (i €{0,...,k)}
be a simplex of dimension k in R¥, where p; are nonzero affine forms. Put

_ (po - - pr)(u)
> (po--pi - o) ()’

for each u € A.

Then there exists constants Cy, >0 (a € N¥) such that

Citd(u,04) < w(u) < Cod(u, dA),  for each u € A
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and
Co

[D%w(u)| < Wa

for each u € A and o € N\ {0}.

Proof. Put H; := p;'(0) (i € {0,...,k}). Then d(u,dA) = min;d(u, H;) and
there exists C' > 0 such that C~1p;(u) < d(u, H;) < Cp;(u), for u € A. Hence

c~ mmpz() d(u,0A) < C'min p;(u).

For a fixed u € A let j be such that p;(u) = min; p;(u). Then

1 1 1 k+1
< + .-+ < ; thus
pi(u) = po(u) pe(u) ~ pj(u)
(6:21) o min pi(u) < w(u) : <m
2. —— min p;(u) < w(u) = — — < minp;
Rl @ttt @
1
. Ow
There are constants a; (j € {0,...,k} such that S
Ty
,Ok) 1 1
Z _(pO---Pk)<Zai Po---%) 5 =
Z - Pk) = PP [ 225 po Pk
. 1
DI I
Pi . PiPj
( i#]
o Ow
By the Leibnitz formula D"‘( 3 ) =
Ty
Daﬁ o Lypr( Ly pruns
Zaz Z w— Zaz Z Blylsle! (E) (p_) wEwW.
i fsa i#j  a=pty+ite J
There exist constants Mz >0 (8 € N™) such that
1 M
B(* g
(6.2.2) D (pi) PLES

By (6.2.1) and (6.2.2) and the induction on the degree of the derivative

o [Mg|  |Ca—gl
1D (5 \ < Z’ ail ) ( )pmﬂ lal—1A—1

BLa

Z las] Z ol [Mg| [M,| C5 Ce
v IvI8le!l 181+ |v[+1 8|1 ylel—1"
oy Bt Se Bl1de! P, p; w w

The lemma follows.

24



Theorem 6.3. Let K be any finite simplicial complex in R™ such that || = int|K|.
Then there exists a homeomorphism h : R® — R™ of class CP such that
(6.3.1) h|[': I' — I is a CP-diffeomorphism, for each I' € KC, and
(6.3.2) h is orthogonally p-flat along each simplex I' € K.

Proof. Take a CP-function ¢ : [0,00) — [0,1] such that ©®(0) = 0 for each
ie€{0,....;p}, ¢'(t)>0 for t € (0,1) and ¢(t) =1 for each t € [1,00).

We will prove by induction on k € {0,...,n — 1} that there exists such a
homeomorphism h : R — R™ of class CP that (6.3.1) is satisfied, while (6.3.2) is
satisfied just for simplexes of dimension < k.

I. Let £k =0. Let {a} € K and fix 7, > 0 such that B(a,r,) N|K| C |JSt{a}.

Define
[z — al?

>(a:— a)+a, foreach x € R".

ha() = (=5
Then h, is of class CP and p-flat at a. Besides, h, is a homeomorphism and CP-
diffeomorphism on R™ \ {a}, because

r=a+ Y (|he(z) — al) for each = € R",

—a

|ha(2) — al’
t2

where (t) := gp(r—Q) -t, (t € R) is an increasing homeomorphism of R onto R.

It is clear that h,(I") = I, for each I € K. Now, if a4, ..., a,, are all vertices of
IC, then we put
h:=hg, o---0hg,.

II. Assume now that 0 < k£ < n — 1 and we have a CP-homeomorphism h
satisfying (1) and (2), for simplexes of dimension < k. Let A € K and dim 4 = k.
With no loss of generality we can assume that A is an open simplex in R* =
{(z1,...,2n) : Thg1 = -+ = 2, = 0}. Put w = (uqg,...,ux) = (21,...,2,) and
v=(V1,. s Vn—k) = (Tht1,...,%n). Take w: A — (0,00) as in Lemma 6.2. Since
(2 :=|JSt(A) is an open neighborhood of A in ||, there exists (by a kind of the
Lojasiewicz inequality) a constant r > 0 such that

{(u,v) € Ax R"™": |v] <rw(u)}N|K| C 1.

Put G := {(u,v) € I' x R* % : |v| < rw(u)}. The mapping

|v]?

g(u,v) := { <u’90<r2w2(u)) "U) ;when (u,v) € G,
(u,v) swhen (u,v) € R"\ G

is a homeomorphism of R™ onto R™ such that g|I" : I' — I’ is a CP-diffeomorphism,
for each I € KC. Moreover, g is of class C? on R™ \ 0A. Now define

H(u,v) := h(g(u,v)), for each (u,v) € R".
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For any (u,v) € Gand v € {1,...,n —k}

) =t on o] 20y i
avyH(u’v) = uz::l a—vu<u,gp<m)v>vu 202 (u) ¢'<T2w2(u)>+

° °

861)}1 (u, 7 (7‘252 (u) > U) 7 (r2(|52 (u) ) '
OH

It follows by induction on |a| € {1,...,p}, where a = (a1,...,a,—k), that oo
v

expresses as a finite linear combination with real coefficients of the following func-
tions

| 2

S (e (oY) gy [ (rzfi?m)] " [t (ﬂfiiu) )]

where |ﬁ| < {]_,._.7|Oé|}, |ﬂ|+28— |’Y| = |Oé|, V0+"'+V|a| = |5| and Vo + 11 +
2y + -+ |alyg) < al.

Hence in particular

ol |7

(6.3.3) e

(u,v) =0, whenued, v=0 ac N 1<]|al <p.

Now in general, if « € N*7* and » € N¥ and |a| + |»| < p, then the derivative

Blal+1
ov*ou**

is a finite linear combination with real coefficients of functions of the form

QIBI+IAL, |v|? v’
(6.3.4) W(“’@(r2w2(u))v> ()

2 U 2 v
<o>(L)] "l ( il )] o Dpea
[0 )| e o x (DFw(w)) ... (Dw(u)),
where 0 < g < |a|+ x|, d >0, |e1] >0,...,]eq] >0, A+e1+ - +¢4 = 7,
|ﬁ’+d_|’y|:’a’+Q7 o 27--'7V|a|+|%|207 d?”)/‘ and |5|>‘%‘_|)\|

Assume now that (u,v) € G and (u, v) tends to (ug, 0) along some (definable) arc,
where ug € 0A. Let Iy € K and ug € Iy. By an orthogonal change of coordinates
Uu1,..., U, one can assume that

d(u,0A) = d(u, I') = |uq],

where I' € K, dimI’ = k—1, I' € {(u1,...,ux) € R¥ : w; = 0} and Iy C
{(ug, ... ug) :ug =---=u =0} (1€{1,...,k}).

When «a # 0, in a product (6.3.4) we necessarily have 3 # 0, therefore by the

Taylor Formula,
9IBI+IA lv]?
0P ou™ (“ @(T%Q(U))”)‘ -
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|81+ 18I+
o (7 () )?) ~ s (O ow0)] =

Z U'Lp'uif [90<7’2<’;}2(u) >U} p@vﬁﬂ?gz)‘au‘l’ <0u1, U2y Wy 9¢<r2f2|(u) >v> "

otlpl=
p—[B|=[Al

where 6 € (0,1). Hence

Tour (12 (1) < ol )

where u(u,v) — 0, when (u,v) — (ug,0). Thus, there exists a constant M > 0
such that

|(634>| < wa|ﬁ||A|Mij;lw|€1|+1 N ‘w7‘€q|+1 _
w

M P11 =Nl =dba—lerl=—leql _ ppppp=lal=l=l _,
when (u,v) — (up,0).

Suppose now that & = 0 and » # 0. Then, for each (u,v) € G,

¥ H 5’“|h<u 90< |v]2

e u,v) = e 202 (0) )v) + a linear combination with real
coefficients of functions of the form (6.3.4), where 5 # 0.

It follows that

o H o n Bk PE
ooy B )= (i ( ’¢<r2w2<u>)“) = Bur (00

(u,v)—(up,0) ou*
We have just checked that H is of class CP which is orthogonally p-flat along I
and (6.3.3) shows that it is orthogonally p-flat along A. We consecutively repeat
the above construction for every simplex of dimension k.

Corollary 6.4. If K is a finite simplicial complex in R™ such that |K| = int|K]|
and f : |K| — A is a homeomorphism such that for each A € IC, f|A is of class

CP and f|A is a CP-embedding, then there exists a strict CP-triangulation (f*,K*)
of A orthogonally p-flat along simplexes such that K* is a refinement of K and
f(A) = f*(A), for each A € K. In particular, if (IC, f) is any strict CP-triangulation
of A, there exists a strict CP-triangulation (KC*, f*) of A orthogonally p-flat along
simplezes such that K* is a refinement of K and f(A) = f*(A), for each A € K.
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7. Regular cells, (k, f,q)-proper regular cells and convex polyhedra
(k, f,q)-well situated in R".

We define a notion of a regular cell in R", its boundary cells and its boundary
inductively on n. If n = 1, a regular cell in R is either a singleton or a closed
bounded interval [a, b], where a < b, and then its boundary cells are {a} and {b},
while its boundary J[a,b] := {a,b}. Assume now that n > 1. A subset C' of R" is
a regular cell if it is either a graph of a continuous function

C={(2,2,) ER"'xR: o' €C', 2, = p(2')}

defined on a regular cell C’ in R"~!, and then a boundary cells of C' are exactly the
graphs ¢|D’, where D’ is a boundary cell of C’, while its boundary 9C' is ¢|0C",
or there are two continuous functions ¢ < s : ¢’ — R defined on a regular cell
C’ in R"! such that

C=[p1,00] ={(z/,2,) ER" I xR: 2/ €, p1(2') <z, < o(')}

and the set {2/ € C': ¢1(2') = ¢2(2’)} is a union of some boundary cells of C’,
the boundary cells of C' are then exactly ¢1, 2, the boundary cells of ¢ and those
of ¢o and finally all [p1|D’, 2| D’], where D’ is a boundary cell of C’, while the
boundary 0C' of C' is the union of all its boundary cells.

Let now C' be a regular cell in R™ of dimension n, let k,q be non-negative
integers and let f : B — R< be a continuous mapping defined on a subset B of R"
containing C. Then we say that C' is (k, f, q)-proper (regular) cell if either f is of
class C? on the set® C'\ J{D : D a boundary cell of C of dimension < k} or there
exists exactly one boundary cell Z(C) of C of dimension k such that f|C\ =(C)
is of class C? and the projection 7}, ,|=(C) is injective. In the first case we put

=(C) = 0.

Let now P be any convex polyhedron in R™ of dimension n. Notice that it may
not be a regular cell in R™, but it becomes a regular cell after an arbitrarily small
linear change of coordinates and then boundary cells are unions of some faces of P.
Let k,q be non-negative integers and let f : B — R? be a continuous mapping
defined in a subset B of R™ containing P. We will say that a convex polyhedron
P of dimension n is (k, f, q)-well situated in R™ (relative to the canonical basis) if
either f is of class C7 on P\ P*~1 where P*~1) denotes the union of all faces
of P of dimension < k — 1, or f is not of class C? on P\ P*~1 but there exists
exactly one face X'(P) of P of dimension k such that f is of class C? on P\ X(P),
and moreover

(7.1) (mk1) ™ (T4 (Z(P))) N P = X(P)

and the restriction

(7.2) T | X (P) : 2(P) — R*! s injective.

5A mapping f : B — R defined on any subset E of R™ is called of class C%, if there exists
an extension f : 2 — R of f to an open neighborhood of E in R™ which is of class C4.
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In the first case we put X (P) = ().

Notice that if P is (k, f,q)-well situated in R™ and if it is at the same time a
regular cell in R™, then it is as a cell (k, f, ¢)-proper and X (P) C Z(P).

If v =(v1,...,v,) € V,(R"™) is any orthonormal basis in R", we will say that
a convex polyhedron P of dimension n is (k, f,q)-well situated in R™ relative to
the basis v if \(P) is (k, f o A™1, q)-well situated in R™ relative to the canonical
basis e = (e, ..., €,), where A stands for the linear automorphism of R™ such that
Mv;) =¢e; (i€{l,...,n}). Then we put X(P) := \"L(Z(\(P))).

The following proposition is straightforward.

Proposition 7.1. Let now P be any convex polyhedron in R™ of dimension n. Let
k,q be non-negative integers and let f : B — R? be a continuous mapping defined
in a subset B of R™ containing P.

Then

(7.1.1) if there exists a face X of P of dimension < k, such that f|P\ X is of class
C, then there exists an orthonormal basis v € V,,(R™) such that P is (k, f,q)-well
situated in R™ relative to v;

(7.1.2) the subset of all bases v € V,(R™) such that P is (k, f,q)-well situated in
R™ relative to v is open;

(7.1.3) if P is (k, f,q)-well situated in R™ relative to a basis v and dim X (P) =
k, then changing this basis slightly we can assume additionally that for each j €
{n,...,k+2}, the set 77 (P) is a capsule in R7 the rim of which contains 77 (X (P))
while ', (P) is a capsule in R*' the boundary of which contains 7}, (2 (P))
and 7 (X(P)) is a graph of a linear function restricted to a polyhedron m}/ (X))
of dimension k;

(7.1.4) if P is (k, f,q)-well situated in R™ relative to a basis v and Q is any
polyhedron in R"™ of dimension n and Q C P, then Q is (k, f,q)-well situated in
R"™ relative to a basis v and X(Q) C X (P).

8. Main Theorem - proof in generic case.

Proposition 8.1. Assume that our Main Theorem is true in dimensions < n. Let
P be a finite polyhedral complex in R*~' and put D := |P|. Let q1,q € Z and
gzq=zp+1L

Let ag < - < ap : D — R be an increasing sequence of continuous PL-
functions such that the family

K= {(Oéi,OZH_l)Z iE{O,...,’I‘—l}}

is a family of capsules in R™. Let K1 C K, A := |[K| and Ay := |[Ky|. Let

f=f1,.--,f1): AL — R< be a continuous mapping such that f|K is of class C1*
for each K € 1. Let £ be any finite family of subsets of D.
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Then there exist

(8.1.1) a strict Cl-triangulation (M, h) of D compatible with £ such that |M| = D
and h(I') = I', for every face of each polyhedron P € P,

(8.1.2) an increasing sequence of continuous PL-functions
< <D — R,

which is a refinement of «y, ..., a, such that the family
C:={(m;mj+1): j€{0,....,k—1}} is a family of capsules refining the family K,

(8.1.3) a homeomorphism ¥ : [ag, ] — [, o] of the form

Lp(u’ gn) = (h(u)a¢(u7Cn))7 fOT each (U,Cn) € [QOaar];
such that
(8.1.4) ¥(u,a;(u)) = (h(u),a;(h(u))) for each w € D and i € {0,...,r};

(8.1.5) ifa e C €C, where C C K € Ky and f|K is of class C? in a neighborhood
of U(a) in K, then ¥|C and f oW|C are of class C? in a neighborhood of a in C;

(8.1.6) W!é’ and f o W\é’ are of class C*, for each C € C such that C C K € Ky;

(8.1.7) ¥|C is of class C? for each C € C such that C C K € K\ Ky and

07 (¥|C)

WZO on 0C for o€ {l,...,p};

(8.1.8) if C €C and C C K € K1, then the derivatives

rwic) (L ow|C)

—_— 1,...
ace O ace (0 €{l,....p})
have continuous extensions by zero to the whole C;
8.1.9 M >0, for each C €C.
¢

Proof. By a refinement of P one can assume that
(8.1.10) every function «; is affine on each P € P, and

(8.1.11) P is compatible with each of the sets {2’ € D : «;(2') = a;y1(2’)}
(1 €{0,...,7 —1}); i.e. each of these sets is a union of some P € P.

By Lemma 5.1, we get a sequence of continuous functions

o< <0,:D—R
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and a homeomorphism @ : [0y, ;] — [ao, ] with the properties (5.1.1)-(5.1.6).

Now we apply the induction hypothesis. We get a strict C9-triangulation (M, h)
of the set D such that

(8.1.12) M is a finite simplicial complex in R"~! such that | M| = D;

(8.1.13) (M, h) is compatible with each E € £ and with each P € P (the latter
follows from (8.1.14) below);

(8.1.14) h(P) = P, for each P € P; hence, each of the sets {2’ € D : «a;(2) =
air1(2")} (i €{0,...,r —1}) is h-invariant (see (8.1.11));

(8.1.15) djoh, @;0h: D — R areof class C? (j€{0,...,k});

(8.1.16) for all the functions aq,...,a,, from condition (5.1.6) the compositions
aioh,...,amoh: D — R are of class C%, and

(8.1.17) (M, h) is compatible with each of the sets {2’ € D : 0;(z') = 0j41(2')}
(7 €{0,....,k—1}).

By passing to the barycentric subdivision we can have in addition

(8.1.18) for each j € {0,...,k — 1} and each simplex A € M, if §oh # Jj110h
on A, then §;(h(w)) < §;41(h(w)), for some vertex w of A

and by (6.4)

(8.1.19) (M, h) is a strict C?-triangulation orthogonally C'?-flat along simplexes.

Define the following homeomorphism
&* : [0g 0 h, 0k 0 h] — [a, o)
by the formula
(8.1.20) " (u, &n) = (M), p(h(u), &n)) = (h(u), ¢ (u,&n))-

Then

(8.1.21) the sequence ;0h (j € {0,...,k}) is a refinement of agoh, ..., oh;

(8.1.22) L* := {(6;0h,d;410h): j€{0,...,k—1}} is a family of capsules in
R™ such that {®*(L*): L* € L*} ={P(L): L € L} is a refinement of K.

Put £ :={L" € L*: P*(L*) C K, for some K € ;}. Then

(8.1.23) for any L* € L3, ®*|L* and f o &*|L* are of class C? (by (5.1.6) and
(8.1.16)),

* o o (Pp* I(j* o o* I(j*
g?n >0 on L* and all the derivatives 0 (8574 ), 0 (f;&; | ),
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where o € {1,...,p}) have continuous extensions by zero to L*;

(8.1.24) for any L* € L£L*\ L}, &*|L* is of class C? (by (5.1.6) and (8.1.16)),

Ho* o o (P* | L*
a?ﬂ >0 on L* and the derivatives %

are equal zero on OL*;

(ce{l,...,p})

(8.1.25) if L* € L7, b € OL* and &*(L*) € K € Ky and f|K is of class CP
in a neighborhood of &*(b) in K, then ®*|L* and f o ®*|L* are of class CP
in a neighborhood of b in L*.

Now we want to replace the C?-functions d;0h by continuous PL-functions defined
on D by using Lemma 5.2. Therefore we want to find continuous PL-functions,
affine in restriction to any simplex S € M

m<--<n:D—R
such that for each j € {0,...,k—1}
(81.26)  {ueD: (30 h)(u) = (410 W)W} = fu e D ny(u) = ny41(u)}.
For any continuous function § : D — R define the continuous PL-function
B%: D — R by the formula
B (N 4 - - - + Asvs) == Aof(vg) + - - + A B(vs),

where (vg,...,vs) € M is a simplex with vertices vg,...,vs Ag,...,As = 0 and
A+ -+ A =1.

In view of (8.1.17) and (8.1.18)
(8.1.27) dj0h(u) < dj410h(u) <= 0;0h(u) <bjy10h(u) <=
(85 0 h)F(u) < (G541 0 h)*(w),
for any u € D and j € {0,...,k — 1}.

By (8.1.27) (6 o h)* are continuous PL-functions, affine on simplexes and sa-
tisfying (8.1.26). However they might not be a refinement of «y,...,a,, so some
improvement is necessary.

Of course, (§;0h)* (5 € {0,...,k}) are arefinement of (a;oh)* (i € {0,...,7}).
By (8.1.14) and (8.1.27), for each i € {0,...,r — 1}

{ue D (a0 h)H(u) = (a1 0 W)} = {u € D : (s 0 h)(w) = (@ o h)(u)}

={u€eD:a(u) =a(u)}
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This shows that we can define the following homeomorphisms
H; : (e 0 h)*, (iig1 0 h)F] — [ov, i,

H;(u, 7((az410h) (u) — (0 h)* (1)) + (aioh) (u)) = (u, 7(cvig1 (u) — i (u)) + o (w)),

where 7 € [0,1], ¢ € {0,...,r — 1}. Gluing them together gives us a homeomor-
phism
r—1
H:= | J Hi: (a0 o h), (ar o h)*] — [a, o]
i=0

strictly increasing with respect to the last variable. Finally we put
n; = (H((0; o h)ﬁ))ﬁ, (j € {0,...,k}), which are a refinement of ay,...,a,,
according to (8.1.10).

Corollary 8.2. Assume the Main Theorem is proved in dimensions < n.
Let ag < --- < ap 1 D — R be an increasing sequence of continuous PL-functions
such that

K= {(Oéi,ai_H)I iE{O,...,T—l}}
is a family of capsules in R"™ such that D = {n]!_{(K): K € K} and [ag, ] is a
convez polyhedron. Let P be a polyhedral complex in R"~' such that |P| = D. Let
V be a finite family of open subsets of R™ covering | J{K : K € K}.

Then there exists a sequence of continuous PL-functions fo < --- < [Bs: D — R
which is a refinement of the previous one and a homeomorphism
G : [ag, ap] — |, | of the form G(u,x,) = (g(u), §(u,x,)) such that, for each
j€A{0,...,s =1}, G|(Bj,B+1) is of class C? and such that G(Bi, Biv1) C V,

for some V€V and G(a;|P) = «;|P for eachi € {0,...,r} and P € P. Moreover,
0G/0xy, > 0 on each (B;,Bj4+1) and

fo(u,ﬁj(u))zo, for eachu e D, j€{0,...,s} and o €{1,...,q}.

Proof. By Proposition 2.5, there is a refinement

o< - S<Ps:D—R

of the sequence ay, ..., a, such that each (3;,3;4+1) is contained in some V € V.
Now it suffices to use Proposition 8.1, where we put

K={ 00 Ge{0.....s—1}}

and Ky = 0.
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Proposition 8.3. Assume that the Main Theorem is proved in dimensions < n.

Let 0 < k <n. Fix an integerq}(n—l—k)(p

2) + p. Assume that

ag < <ap Dy — R

18 a sequence of continuous PL-functions such that

K= {(ala?,): i €{0,...,r, —1}}
is a family of convexr PL-capsules in R™, where D,_1 = U{m_1(K,) : K, €

K™}, Let K € K™. Assume that D,,_1 is a closed convex polyhedron in R"™! of
dimension n — 1. Put D,, := |K"|.

Let f : |K?| — RY be continuous and such that f|K, is of class C? for each
K, € K. Assume that each K, € KV is (k, f,q)-well situated in R™ and that all
the derivatives

0" (fIF \ X(Kn))

oxt,

(8.3.1) (te{l,...,q}) have continuous extensions

by zero to all K,,.

Assume that k <1 <n—1andme {1,...,p}. Put
4, when |=n—1

Al m) = q—(n—Z—Z)(p>—(p—l)—---—(p—m), when k <1< n—2.

2

Then, after some arbitrarily small linear change of coordinates in R"1:

(8.3.2) for each j such that | < j < n — 1 there exists a sequence of continuous
PL-functions '
aég éaij 3Dj_1 —>R,

such that K7 := {(af, agﬂ) : i €{0,...,7;—1}} is a family of convex capsules in
R7 which is a refinement of {7T§+1(Kj+1) D Kjp € K9, Dy = U] (K;)
K; € K7}, every aﬁ“ is affine over each K; € K7 and there exists a homeomor-
phism @; : D; — D; of the form

Bj(x1,...,25) = (P (21, x5_1),05(x1,...,25)), such that
(8.3.3) &;:D;_1 — D;_; is of class CY;
(8.3.4) @j(ﬁ§+1(L)) = 7r§+1(L), for every face L of any polyhedron K; i € KJT1;

(8.3.5) each K; € K7 is (k,;, A, m))-well situated in R’
and X (K;) C W?(E(Kn));
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(8.3.6) consider homeomorphisms W,... . W, defined inductively as follows:

v, = ile, !pj = @j(@jfl,pxj) : (ijl,pxj)_l'(Dj) — Dj, for
Jj€{l+1,...,n}, where p;; denotes the projection of R’ onto x;-axis and P, =
ian;

(8.3.7) forj € {I+1,...,n}, (¥j_1,ps,) " (D;) = ¥; 1 (D;) is the union of the

J
capsules

(agogpj—laaz+1ogpj—1), (ZE {0,...,7“]'—1}),

where ag oW; 1 <+ < od;j oW,y : M'/j__ll(Dj,l) — R and at the same time
it 1s a union of some cells of the form

Qj<il+1,...,ij) =

{(acl,...,a:j)ERj:(xl,...,ac,,)e(oﬂ oW, 1,af i 0 v—1), when I+1< v <)}

(3%

for some i, € {0,...,r, — 1}, where |+ 1< v < j;

(8.3.8) each of the cells Q™ = Q™ (ij41,---,in) such that ¥,(Q™) C K, € K} and
dim (¥,,(Q™) N X(K,)) =k is (k, f oW, A(l,m))-proper and all the derivatives

7 (f 0, Q")

8:1:?1{1 . Oxkm

where 1 < || =341+ -+ 36, <p and 341 <M

have continuous extensions by zero to =Z(Q™) and at the same time each of the cells
QJ = Qj(ilJrl?'-'aij) = W;L(Qn) (.7 € {l+ 17"'777'_ 1}) is
(k, {141, ..., %}, A(l, m))-proper and all the derivatives

o]
Al (v, |Q7
81‘%““5 i 8x)%j , where 1 < || =341+ -+ <pand g4 <M
i1 -0

have continuous extensions by zero to =(Q7).

Proof. We will use the descending induction on [ and the ascending induction on
m.

Assume first that [ = n — 1. There exists a polyhedral complex P in R"~! such
that |P| = D,,—1, P is a refinement of

{m_1(L): L a face of some K,, € K"};

hence, all the functions o (i € {0,...,r,}) are affine over each P € P. Moreover,
we assume that each P € P has a face, say M, of dimension < k such that if
K, € K} and P C m)!_{(K,), then n]'_;(X(K,)) N P is empty or a face of M. By
an arbitrarily small linear change of coordinates we can assume that both D,_;
and all P € P are capsules in R"~! and if K,, € K? and P C 77_,(K,), then

n—1
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mn_1(X(K,)) N P is contained in the rim of P if k <1 =n — 1. Hence, by Remark

n—1
2.3 there exists a sequence of continuous PL-functions

(8.3.9) af '<-<al ! Dy s — R
such that K"~! == {(a? ", al'7") : i € {0,...,r_1 — 1}} is a family of convex

capsules in R”~! which is a refinement of P and D,,_s = U{WZ:% (Kp—1): Kp-1 €
Kr=1}. We put &,,_1 = idp, ,. Then the first part of (8.3.8) is satisfied due to
(8.3.1) and the second part is emptily satisfied.

n—l

Assume now that [ = n—2 and m = 1°. Fix any (o ', 'y ') and any K,, € K}

such that (o', ') C 77_;(K,). Fix any s € {1,...,p}. The function

_rr
0xn_18x,’ﬂf*1

n—l n 1
7

o) 3 (2 xp_1) — sup {‘ (2, Tp—1,2n)| :

(', xp_1,2p) € Kn} € [0, 00),

where ' = (z1,...,2,_2), is continuous. It follows that (a?_l,a?jfll) can be
covered by a finite family V of open subsets, which do not depend on s, such that

for each V' € V the norm over V' \ 7"_;(X(K,)) of the derivative

0" (f1Kn \ Y(Kn))

8.3.10
( ) Oy 1027t

is either bounded from above (the first case) or bounded from below (the second
case) by a positive constant. In the second case we can take detectors {w,, },, of class
C% on R 1\ 7" _,(X(K,)) for the derivative (8.3.10) over V \ 7"_,(X(K,)). It
follows from Corollary 8.2 (for n—1 in the place of n) that there exists a refinement
(B, Bj41) of (a1, a?;ll) and a homeomorphism G : D,y — D, _1 of class

C? of the form G(&',&,-1) = (9(¢), (&', €n—-1)), where & := (&1,...,&n—2), such
that every G((B;, 3;+1)) is contained in some V' € V and G preserves the faces of

polyhedrons K f’_l. Then we replace our function f by

F(£/7£n—17~rn) = f(g(fl)7§(€/7fn—1)amn)-

If now G((B;,8j+1)) C V and we have the first case, then the derivative

0*F ,
(8311) W(é 7671—17:1:77,) —
O*(fIEn \ X(Kn)) , on =ipr 99
83771 130% 1 (g(g )7g(€7§n—1) )8571_ (5 fn 1)

is bounded and if G((8;,8j+1)) C V and we have the second case, then
Ou(€,6n—1) = wu(9(&),q(&,&—1) are detectors of class C¢ for the derivative

(8:3.11) over (B, By1) \ w1 (S(K)).

8From the formal point of view it is not necessary to analyze this case separately, but in this
simple case it is easy to present the general idea of the proof.
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The above argument shows that coming back to the initial derivative (8.3.10), we
can assume with no loss in generality that for any (o'~ 1 a;ﬂr_ll) and any K,, € K}

such that (o', af' ") C m_;(K,,) either (8.3.10) is bounded over (o', al' ;") or
there are detectors {wu},. of class CY for (8.3.10) over (af ', a7 ) \ 701 (Z(K,))

which have continuous extensions to (o} ™!, Zrll) N1 (X(Ky)). Now we apply

Proposition 8.1 in dimension n—1 in the place of n. Hence, there exists a refinement
(’yj Vit ') of the system of capsules (o} ! a;ﬂr_ll) and a homeomorphism @,,_1 :
D,,_1 — D,_1, preserving faces of K"~ 1, satisfying (8.3.3)-(8.3.5), for j =n — 1,

and such that:

if L1 = (7;7_1,7;7‘;11) C (a1, i Y ¢ (K,), where K,, € K} and (8.3.10)

is bounded on ('~ ! , QG '), then &,,_ 1|L" Lis of class C? with

6(g0n_1 ’Lnil)

(8.3.12) e

extending continuously by zero to L™ 1

o

consequently, when ¢ € L™~ and (®,,-1(¢),z,) € K,

5= o
Wf( (g)amn) -

8(;911—1
Oz 10z (@n-1(0) @) OCn-1

extends continuously by zero to {({,z,) € C X R: (Pn-1(¢),z,) € K, };

if L1 = (y]~ ,7;:11) C (ot ol c o\ (K,), where K, € KT and (7.3.10)

o
is unbounded on (o}~ L ;‘Hl) then &,,_ 1][," 1w, 0®,_1|L""! and

g:%—i{c(@nfl,wu o (15”,1)|C’ are of class C7~(P=1) and all the derivatives,
O( @1 L") O(wp 0 Pu_i|C) o [oFLf 0
, d [ B, 1w, 0P, o] ,
0Cn—1 OCn—1 o OCn—1 axn_l( b e 1)l

extend continuously by zero to L™1; it follows that if (@, _1((),z,) € K,

- 8%f a(pnfl
)acn 1858% 1f( (C)7x’n) axn—lal‘n_l (én—l(C)axn) 8Cn—1 ) <
8%f aSon—l
250D | s 1 (O (@ ()52 <
a%—l 0% P od
[axn_f (qsn—lﬂwHO@n—l)] ‘ +2 Slip 833; (én—hwuoén—l))% ’

which extends continuously by zero to {({,z,) € C X R: (P,—1(C),zn) € K, };

finally, if L' = (v/7',41) ¢ 7 (Ky), for any K, € K}, then &,_|C is
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of class C9. Now LM 1 = {(’y;b_l,'y?_;ll)}j is a new family of capsules in dimension
n — 1. In a similar way, as in the case | = n — 1, after some arbirarily small linear
change of coordinates in R"~2, we get a system of convex PL-capsules K" ~2 which
is a refinement of {7"~2(C) : C a face of some L™~ € L*1}.

Assume now that we have our proposition proved for some [ such that £k <l <n—1
and for some m € {1,...,p —1}. Fix any

Qn:Qn(ilJrl,,,,,Z'n):{($17.,,7xn)ERTL:

(z1,...,2,) € (af oW, 1,0 [y 0¥, 1), when [+1<v<n},

such that Q" C K,, € KT.
Put

Q' =Q (i141,...,i;) ={(a1,...,2;) € R :

(1,...,m,) € (O‘Z oW, 1,af 40 v—1), when [+1<v<j}
For any s = (3441,...,%,) € N""! such that || < p and 54,1 = m + 1 the
functions
91 (2, Q)
I l
(aij:rlmo‘i;:ll—l-l) > (xlvxl-f-l) —— Sup {’8 %z+1 a 2] (x/’ Li41s -0 xj) :
T O
(,I/,{I}l+17 s ,LL‘]) € QJ} € [05 OO)
and
Ol (f o ¥, |Q7)
(O‘flutﬁ ) O‘iltll—l—l) > (2', 2141) > sup {’ Py na:z:%n (Il’ Tl Tn)]|
I+1 - n
(xla Tiy1y--- :xn) € Qn} € [07 OO)?
where ¢’ = (x1,...,2;), are continuous. It follows that (aéjfl,aéjfﬁl) can be

covered by a finite family V of open subsets such that for each V' € V the norm
over V' \ +1( (Q7)) of each of the derivatives

Ol ;|Q7 \ ], (2(Q7)))

i1 %j
Oz " ...0x;

(8.3.13)

(@, 211, 25) (I <pysap =m+ 1)

and, similarly, the norm over V \ @}, (Z(Q™)) of each of the derivatives

M (f oW |Q™ \ 71 (2(Q™)))

&ﬁf{l LLoxr

(8.3.14) (2, 2141, -, T)

(|2¢] < p, 941 =m+1)

is either bounded from above (the first case) or bounded from below (the second
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case) by a positive constant. In the second case we can take detectors {wz}u
(respectively {w,},) of class C? on R\ 7TH_1< (Q7)) (respectively of class CY
on R\ 7 (2(Q™))) for the derivative (8.3.13) (respectively (8.3.14)) over V' \

7,1 (2(Q7)) (respectively over V\ 7}, 1 (Z(Q™))). It follows from Corollary 8.2 (for

[+1 in the place of n) that there exists a refinement (3;,, ,, 3j,,,+1) of (aéj;ll, iltlﬁl)

and a homeomorphism G : D;y1 — D1 of class C? of the form G(¢',&41) =
(9(&'),9(¢',&41)) such that every G((B),,,,Bj,,,+1)) is contained in some V € V
and G preserves all faces of any K; 1 € K'™!. Then we replace the functions ¥; by

@j<5/7€l+1axl+27 .- axj) = ij(g(gl)v§(§/7§l+l)7xl+25 cee 7xj)

and foW, by F := foW,. If now G((Vji1sVjrsi+1)) € V and we have the first case,
then for each (§',&141) € (Vji1sVjiyi+1) such that (G(&',§41), ig2, .-, 20) € Q7

o1,

(8.3.15) ST 0 (& &q1 242, - 1) =
axl,i?g;;p - 83:;.47' (G(fla §141), Tig2 - - 79(:]-) <3§i1 >m+1 + a bounded function
and/or, similarly
(8.3.16) oE7 Hlaal,l;;. D (€ &1, T2, -, Ty) =
a7 H?;;'%:;Z ;I‘/n?axﬁn (G, &41), 12, -, Ty) <82i1 >m+1—|—a bounded function

is bounded and if G((3;,_, » ﬂjl+1+1>) C V and we have the second case, then puttmg
(€ &) = wl(9(€), (€, &11)) and ©u(E, &41) = wu(9(E),5(E &41)), b

(8 3.15), we have for each (¢,&41) € (85,1, Bji.1+1) such that

(G, &+1), Tig2, -, an) € Q"

I+,
(8317) ‘(‘95 z+1a Hit2 Py (6/, £l+1v Li42y .- 7$j) <
141 05" ... 0z
alxlgf/ _
2 sup ‘ T O o (& &541,0 ({ §l+1))’ + a bounded function
1+1 %49 ---OTn
and/or, similarly
o= F
(8:3.18) e g (€ G T, )| <
1+1 9Tp42 - -On
ol#l g . o )
QSup ’35 T D (&, &41,0u(& ,§l+1))’ + a bounded function.
141 %49 ---0Tn
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(Notice, that now &Jﬁ are not necessarily detectors in the previous sense, but
still will play the role of detectors as we will see in a moment.) It follows that
coming back to the initial family of capsules we can assume without any loss in

generality that for each (ol olt! ) c 77" (Q™) and j € {l+1,...,n} each

1417 i1+l
of the derivatives (8.3.13) is either bounded (the first case) or there exists a fi-
nite family {wj } of continuous maps on (aijfl,aéltll +1) which are of class C? on

I+1 _I+1

(ai;:l?aij;l—l—l) \ 7TH_1( (@Q7)) and such that

o=y,
8.3.19 ) T (e x’<
( ) 0xlf{1...5’x33( an DI

Bl
2Sup‘ e — (2! 241, w (x xl“))‘ + a bounded function
oz, " - .8%

(the second case).
Similarly, each of the derivatives (8.3.14) is either bounded on Q™ (the first
case) or (in the second case) there exists a finite family {w,} of continuous maps

on (oz,l”tll , O‘éztlﬁl) which are of class C? on (ailtll : aéltll_H) \ %1 (Z(Q™)) and such

that
ol (fow,)
8.3.20 ) = x4, .., )<
(8:3.20) Dyt D ('@ w)| S
a|%‘ f ) / ’ :
QSup ’ ET) ~ (a: , Tig1, wy (T ,xl+1))) -+ a bounded function.
Oz, +J1r ..oxnn

In this way, to every capsule (aﬁltll,ailtll +1), there corresponds a finite number of
continuous maps wy,, wy, (depending also on the choice of cell @™, which is not

reflected in the notatlon in order not to overcharge it), which are of class C? on

(aé;:ll , aéltll +1)- Now, we apply Proposition 8.1 to all the functions
a|%\—m—1w,
8.3.21 = el CAR TSN A Gt
(8:3.21) aa:lgz...axjﬁ( 41 (@ 2141))
and
8|%|_m_1(fokp )
8.3.22 5 (@ wg, (@ :
(8:322) Gty B (el i)

which are continuous on (a}™ ottt ) and of class CAbm)=(p=m=1) — cA(Lm+1)
417 g1t

41 I+1 : I+1 _ (1 141 ‘
on (ay'",a;' 1) Hence, there exists a refinement £ = {(v;, 7, 11)}ji4. of

I4+1 I+1  I+1 ) _
K = {(Oziltl,Ozi:lJrl)}il+1 and a homeomorphism @, : D;yx1 — Dy of the
form

gpl—l—l(glv ceey Cl?Cl—‘rl) — (gﬁl-l—l(Clv ceey Cl)v SOH—l(Clv cee 7CZ7CH—1))’
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where (lgl“ : D; — Dy is a homeomorphism of class C?, @;,1(S) = S, for every face
of any K;11 € KCH1 and if L1 C Ky C ﬂ'ﬁ’_l(Qn), then L1 is (k‘, ©Ol+1, )\(l, m —+
1))-well situated in R with X(Liy1) C X(Kj41),

(8.3.23) Nepralbiry) 0" (L)
3Cl+1 8C1+1

extend continuously by zero to 0L;41;

(¢)

consequently, when (8.3.13) (respectively, (8.3.14)) is bounded on @’ (respectively

on ™), which is the first case, then obviously

Ik
(8.3.24) DT T 9 i (P141(¢s Gg1), g2, - - -, )
141 Li42 -+ O
(|| < p, 5941 =m+1)
extend continuously by zero to the cell
(8.3.25) {(¢ oy ywy) € Ly x BRIV (01441(C), 2, -+ -, 25) € Q7Y
(respectively,
lEd ,
(8'3'26) aC%l+1 %l+2 ax%" (f o Wn)(¢l+1(g ?Cl+1)? ‘/El+27 AR 73771)
141 Li42 - OTn
(| <p, 2041 =m+1)
extend continuously by zero to the
cell

(8.3.27) {(¢,z,...,xn) € Ligy X RV (8141(0), 22, .., 20) € Q™))

In the second case, we can have not only (8.3.23) extending continuously by zero
to L;+1, but also the derivatives

m—+1 o
8.3.28 w) o ®111)|Litq, .. w? o @1 L
( ) (%H( 70 ®y1)|Liga aclnl—{—l( 1 0Dri1)|Liya
and
gm+1 6\;4 m— lw o
(8.3.29) _ [ ,{ I (Bry1, ] ogzﬁlﬂ)]
¢t Lox 15?0

(respectively, the derivatives

am—l—l

— g1 (Wi © Pig1) | Lia
oG

41

(8330) ((.UM o @H_l)’LH_l, Ce

9
0C1+1



and

6m+1 [a|%|—m—1(f o lpn)

(7.3.31) AN (Pry1,wp 0 ¢l+1)}
l+2 .. n

+1 >

By the induction hypothesis, (8.3.8), (8.3.23), (8.3.19) and (8.3.29) we have on the
cell (8.3.25)

Ik
P P %W¢ /, y L ,...,IL’"<
‘8Cl-ﬂ_l Hz_-gz o 8517]-J J( l-H(C Cl—!—l) 142 ])
8""% 89014—1 m+1
e v 2222
‘axlﬁl o (Prs1(¢, Gr1)s Tiga - s
+ a continuous function equal 0 at the boundary of (8.3.25) <
(9|%|!p 8301 1 m—+1
s 0 ot € 22
sup P .“8ij( 1+1(¢ Gg1),w ( 1+1(¢" G41)

+ a continuous function equal 0 at the boundary of (8.3.25) <
gm+1 8|%| m— lw
o

m+1 42 %7 (
G Ty e .6’%

2sup‘ D1, w), oqv)lﬂ)} + a cont. funct. equal 0 at 8Ll+1‘

+ a continuous function equal 0 at the boundary of (8.3.25),

which finally is a function extending by zero to the boundary of (8.3.25).

Similarly, by the induction hypothesis (8.3.8), (8.3.23) and (8.3.20), we have on
the cell (8.3.27)

lEd
e ) (@141(C ) s, o) <
g U @ (G )
\%l (f o) Dy M1
7 n%‘ él l(C/7Cl 1)7:61 2"'7:671) u ’
’8 lﬁl...axj’( * * * 0C+1
+ a continuous function equal 0 at the boundary of (8.3.27) <
alx\(f ) Dy |mt1
25up | B111(¢s ) (@ (¢ Ga)) || 52
Sup o 851:??"( 11(C 1), wu (P41 (¢ Q1) 961

+ a continuous function equal 0 at the boundary of (8.3.27) <
gm+1 [8|%|—m—1(f o !pn)

m+1 42 Hn
l+1 8:1r;l+2 ...0xn

2 sup ’ (@lﬂ,w“ 045[“)} + a cont.funct.equal 0 at 8Ll+1‘

+ a continuous function equal 0 at the boundary of (8.3.27),

which finally is a function extending by zero to the boundary of the cell (8.3.27).

To finish the proof it suffices now to assume that we have proved our proposition
for somel € {k+1,...,n—2} and m = p and to derive it for I’ =1 —1 and m' = 1.
We start as in the case | = n — 2 and m = 1 and then continue as for the case
when [ € {k,...,n—2} and m € {1,...,p — 1} is augmented by 1, by a simple
modification.
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Proposition 8.4. Assume that the Main Theorem is proved in dimensions < n.

Let 0 < k <n. Fix an integerq}(n—l—k)(p

2) + p. Assume that

ag <<y D — R

18 a sequence of continuous PL-functions such that
K= {(ala?,): i €{0,...,r, —1}}

is a family of convex PL-capsules in R™, where D,_1 = |J{ml_1(K,) : K, €
K"}, Let K? € K. Assume that D, _y is a closed convex polyhedron in R"~1 of
dimension n — 1 and A is a finite family of subsets of D,,—1. Put D,, := |[K™|.

Let f : |K}| — R? be continuous and such that f|K, is of class C? for each
K, € K}. Assume that each K, € K} is (k, f, q)-well situated in R™ and that all
the derivatives

0" (f | \ X(K))

oxt,

(8.4.1) (1€{1,...,q}) have continuous extensions

by zero to all K,,.
Let ¢ be any integer > q.

Then there exists a strict Cl-triangulation (T ,h) of D,, compatible with all sets
D,N(AxR) (A € A), such that T is a simplicial complex in R™ which is a
refinement of K™, h(I") = I', for any face I' of any K, € K™, and each A € T such
that A C K,, € K} is (k — 1, f o h, p)-well situated in R™.

Proof. Apply first Proposition 8.3 for [ = k. Hence, by Lemma 5.4, for every Q"
such that ¥, (Q") C K, € K} there exists a closed subset E(Q") of Z(Q") of
dimension < k such that consecutively all mappings

Vierr|Q"\ Z(QM), .. W ]Q" \ 2(Q™) and f o W,|Q" \ Z(Q")

extend respectively to CP-mappings
Vi1 |Q" \ T (E(QY)), - .-, Wn|Q™ \ E(Q™) and [ o ¥, [Q" \ E(Q™).

By induction hypothesis there exists a strict C-triangulation (Zx41, hsy1) of Diyq
compatible with all 77, (E(Q™)) such that 71, is a refinement of K*1, hyyy
preserving all faces of any Ky, 1 € K**! and such that all afk’fz oW1 0hpy are of
class C4. By using Corollary 6.4 and Lemma 5.2 this allows us to define a polyhe-
dral complex Pjo in R¥T2, which is a refinement of X**2 and a homeomorphism
Hyyo: Dpyo — ka__’:_l2(Dk+2), such that ¥y, o o Hy o is preserving all faces of any
Kpio € KE+2 and for each Piyo € Prio, Hpi2|Pri2 is of class CZ. Now we take a
strict Cd-triangulation (742, hpi2) of Dyyo such that 75 is a refinement of Py
and such that all af;ﬁ oWyio0Hy 90hg, o are of class C4. Again, by Corollary 6.4
and Lemma 5.2 this allows us to define a polyhedral complex Py 3 in R¥*3, which

is a refinement of K**3 and a homeomorphism Hj,3 : Dipi3 — Wl;rl?)(DkJrg),
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such that W3 o Hyy3 is preserving all faces of any Kj 3 € KCk+3 and for each
Pii3 € Prys, Hiis|Pris is of class C%. We continue this process, finally obtain-
ing a strict Cl-triangulation (7,,_1,h,_1) of D,_1, which is compatible with all
7 (E(Q™)), such h,,_1 is preserving all faces of any K,,_; € K"~ !, and such that
Wy —10hy1 and all o) oW, 40 h,  are of class Ci. Again, due to Corollary 6.4
and Lemma 5.2 with allows us to define a polyhedral complex P,, in R"™, which is
a refinement of K"~! and a homeomorphism H,, : D, — v Y(D,,) of the form
H, (2 z,) = (hn_l(x’),f[n(x’,xn)) such that P, is a refinement of K", ¥, o H,
is preserving all faces of each K, € K™ and such that for each P, € P,, both
H, _1|P is of class C4. Then h := ¥, o H, = (¥, _1 o hn_l,ﬁn_l) is of class C? at
the restriction to any P,, € P,,. Passing to a simplicial subdivision of P,, and using
once more Corollary 6.4 finishes the proof.

Proposition 8.5. Assume that the Main Theorem is proved in dimensions < n.

Let 0 < k < n. Fiz an integer ¢ = (n — 1 — k) (22)) +p+ 1. Let P be a polyhedral

complex in R™, such that |P| is a convex polyhedron and each P € P of dimension
n is a capsule in R™ and let Py C P. Assume that f : |P1| — R? is a continuous
mapping such that each P € Py is (k, f, q)-well situated in R™. Let ¢ be any integer
2q.

Then there ezists a CP-triangulation (T ,h) of |P| such that T is a refinement of
P, each A €T of dimension n such that A C P € Py is well (k—1,(f o h,h),p)-
situated in R"™, for each A C P € P\ Py the restriction h|A is of class C? and
h(I") =TI, for any face I' of any polyhedron P € P.

Proof. Since all P € P are PL-capsules, by Remark 2.3 and Lemma 2.6, there exists
a sequence of continuous PL-functions

ap << a:D— R,

where D = n'_;(|P]) such that
K= {(Oéi,OéH_l) S {O,...,T’—l}}

is a family of convex PL-capsules in R™, which is a refinement of P. Put Ky := {K €
K: K CPePi}. Itisclear that all K € Ky are (k, f,q + 1)-well situated in R™.
By Proposition 8.1, there exists an increasing sequence of continuous PL-functions

7]0<"'<7753D—>R7

which is a refinement of ay,..., o, such that the family C := {(n;,n;41) : j €
{0,...,5 — 1}} is a family of capsules which is a refinement of the family X and
moreover there exists a homeomorphism ¥ : |P| — |P| preserving all faces of each
K € KandsuchthateachC € C; :={C e€C: C C K € Ky}is (k,(fol,¥),q)-well
situated in R"™, the derivatives
ey o ew|)

0xg 0xg

(ced{l,...,q})

have continuous extensions by zero to the whole C' and, finally, for each C' € C\ Cy,
¥|C is of class C¢. Now the conclusion follows from Proposition 8.4.
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9. Main Theorem - proof in general case.

Proposition 9.1. Assume that the Main Theorem is proved in dimensions < n.
p
2
hedral complex in R™ such that |P| is a convexr polyhedron of dimension n. Let
f : |P| — RY be a continuous mapping such that for each P € P, the restriction
fIP\ P®) is of class C4.

Then there exists a CP-triangulation (T, h) of |P| such that T is a refinement of
P, h(I') = I', for each face I' of any polyhedron P € P and for each A € T of
dimension n, h|A\ A*=D and foh|A\ A®=D are of class CP.

Let 0 < k < n. Fiz an integer ¢ > (n — 1 — k) +p+ 1. Let P be a poly-

Proof. By a barycentric subdivision we reduce the situation to the case where each
P € P has only one face X' of dimension < k, such that f|P \ X is of class C9.
By Proposition 7.1, there exists a finite number of orthonormal bases vy,...,vs €
V,.(R™) such that each P € P is (k, f,q)-well situated in R" relative to some v;,
where i € {1,...,s}. Hence we can represent (the set of polyhedra of dimension n
belonging to) P as a pair-wise disjoint union

P=PU---UP,,

where each P € P; is (k, f,q)-well situated in R™ relative to v; (i € {1,...,s}).
By Proposition 8.5 there exists a CP-triangulation (77, k1) of |P| such that 77 is
a refinement of P, for each A; € 77 of dimension n, if Ay C P € P, then the
restrictions hq|Ap \ Agk_l) and fohy|A7\ A(lk_l) are of class CP, and if Ay C P €
P\ P1 the restriction hq|A4; is of class C? and hy(I") = I', for any face I" of any
polyhedron P € P. Put

Tii={A1 €Ty :dimA; =n, Ay CPeP;} (1e{l,...,s}).

Observe now that if Ay € 7q; (i > 2), then Ay is (k, (f o h1, k1), q)-well situated
in R™ relative to v; and then ¥(A;) € hi (2 (P)) = X(P), where A, C P € P;.
By Proposition 8.5, there exists a CP-triangulation (72, ha) of |P| such that 7 is
a refinement of 77, for each Ay € 715 of dimension n, if Ay C Ay € 712, then the
restrictions hy o ho|Ag \ Agk_l) and f o hy o hglAs\ Aék_l) are of class CP, and if
Ay C Ay € T3\ T3 the restriction ho| A is of class C? and ho (1) = I, for any face
Iy of any simplex Ay € 7;. Clearly, hy o ho|As '\ Aék_l) and fohyohg|As\ Agk_l)
are of class CP, when Ay C Ay € Tq1. Put

Eiiz{AQE%ZdimAzzn, AQCAleTM} (ZE{L,S})

Observe now that if Ay € To; (i > 3), then Ay is (k, (f o hy o ha, hy o ha), q)-well
situated in R™ relative to v; and then X(As) C hy'(X(A4;)) = X(4,), where
AQ - Al € ,Th

It is clear how to continue this process which at the final s-th step gives the
required triangulation (7,h) = (Z5,hy 0 -0 hg).
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Proposition 9.2. Let p be a positive integer and let integers qi,...,q, be such
that

q1 = (n—l)(?) +p+1,q2 = (n—2) (6121> +q+1,...,q, > o(q”21> +gno1+1=

dn—1 + 1.

Let P be a polyhedral complex in R™ such that |P| is a convex polyhedron of dimen-
sion n. Let f : |P| — R® be a continuous mapping such that for each P € P, the
restriction f|P\ P~ is of class CI".

Then there exists a strict CP-triangulation (T ,h) of |P| such that T is a refine-
ment of P, h(I") = I, for each face I' of any polyhedron P € P and f o h is of
class CP.

Proof. By Proposition 9.1 applied n times, we obtain a CP-triangulation (7, h) of
|P| such that 7 is a refinement of P, h(I') = I', for each face I" of any P € P and
such that for each simplex A € T of dimension n the restrictions h|A and f o h|A
are of class CP. We now improve h, using Corollary 6.4.

10. An application to approximation theory.
Fernando and Ghiloni proved in [FG] the following approximation theorem.

Theorem 10.1 ([FG, Corollary 1.5]). Let A be a definable, closed and bounded
subset of R™ and let T be a finite simplicial complex in R™. Let f : A — |T| be
a definable continuous mapping.

Then for any positive integer p and any € € R such that € > 0 there exists a
CP-mapping g : A — |T| such that

|f(z) —g(z)] <, for each x € A,

where [(y1, ..., ym)| == (ny)

In fact [FG] contains a proof of Theorem 10.1 only in the semialgebraic case and
R = R (the field of real numbers), but it is easy to check that the same proof, with
obvious modifications, holds true in our general context.

The existence of strict CP-triangulations allows us to improve the last theorem.

Theorem 10.2. Let A and B be any definable, closed and bounded subsets of R"
and of R™, respectively. Let f: A — B be a definable continuous mapping.

Then for any positive integer p and any € € R such that € > 0 there exists a
CP-mapping g : A — B such that

|f(xz) —g(x)| <, for each x € A.

Proof. Let (7,h) be a strict CP-triangulation of B; hence h : |7| — B is a
homeomorphism of class CP. Since h is uniformly continuous, there exists § > 0
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such that for each pair w,w € |7T|, if |u — w| < §, then |h(u) — h(w)| < . By
Theorem 10.1 there exists a CP-mapping g : A — |7 | such that

Ih~to f(z) — g(z)| <6, for each z € A.

Hence,
|f(z) —hog(x)| <k, for each x € A,

and hog: A — B is of class CP as a composition of two mappings of class CP.
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