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Abstract. This paper introduces a natural extension of Kolchin’s dif-
ferential Galois theory to positive characteristic iterative differential
fields, generalizing to the non-linear case the iterative Picard-Vessiot
theory recently developed by Matzat and van der Put. We use the meth-
ods and framework provided by the model theory of iterative differential
fields. We offer a definition of strongly normal extension of iterative dif-
ferential fields, and then prove that these extensions have good Galois
theory and that a G-primitive element theorem holds. In addition, mak-
ing use of the basic theory of arc spaces of algebraic groups, we define
iterative logarithmic equations, finally proving that our strongly normal
extensions are Galois extensions for these equations.

1. Introduction

Differential Galois theory is the study of extensions of differential fields
with well-behaved automorphism groups. In contrast to classic algebraic
Galois theory, the automorphism groups of differential Galois extensions
turn out to be algebraic groups or, in more general settings, differential
algebraic groups. The origins of differential Galois theory trace back to
the works of Picard and Vessiot in the 1890s studying linear differential
equations, but it was Kolchin (following the work of Ritt) who gave the first
systematic and modern account of the subject in his seminal book [7]. There
he introduced, among other things, the notion of a strongly normal extension
of differential fields as a non-linear generalization of the classic extensions
discovered by Picard and Vessiot. Modern treatments of Kolchin’s theory
have been offered in recent years by Magid [9], Kovacic [8] and Umemura
[24], among others. The current general reference on the subject is the book
by Singer and van der Put [22].

For basic technical reasons regarding the nature of constants in positive
characteristic, most of the work on differential Galois theory has been re-
stricted to the context of characteristic zero differential fields, but several
attempts have been made to work around this obstacle [1][22]. One of the
most popular strategies is replacing the notion of a derivative for that of an
iterative (Hasse-Schmidt) derivation. This approach was extensively studied
(but with partial success) by Okugawa [12][13] and Shikishima-Tsuji [23],

Date: June, 2009.
2000 Mathematics Subject Classification. Primary 03C98; Secondary 12H05.
This paper contains the results of the author’s thesis, which was written under the kind

supervision of Anand Pillay. The author would like thank him for his patience, advice
and support.

1



ITERATIVE DIFFERENTIAL GALOIS THEORY 2

and more recently by Matzat and van der Put [10], who developed a full
Picard-Vessiot theory for positive characteristic iterative differential fields
with the use of the theory of torsors.

Differential Galois theory and model theory have had a long history. It all
started with Poizat’s paper Une théorie de Galois imaginaire [21] suggesting
that Kolchin’s main results could be obtained as a consequence of the ω-
stability of the theory of differentially closed fields and some work by Zilber
and Hrushovski on the definability of automorphism groups [5][26]. After
this, several people including Marker, Pillay and Sokolović [14][15][16][18][19]
have contributed to the development and even generalization of Kolchin’s
results making use of these abstract tools from model theory.

Positive characteristic differential Galois theory, however, remained out
of reach of model theory until Messmer, Wood and Ziegler proved (strongly
based on Delon’s work on separably closed fields of positive characteristic
[3]) that the theory of fields equipped with stacks of commuting iterative
derivations has a stable model companion with quantifier elimination and
elimination of imaginaries [11][25]. After this, adapting some of his previous
results in characteristic zero, and working along the lines of what Hrushovski
suggested in [6], Pillay found alternative proofs of existence and uniqueness
of iterative Picard-Vessiot extensions (results already proved by Matzat and
van der Put) using now model-theoretic techniques [17].

Following Pillay, this article introduces a theory of strongly normal exten-
sions for iterative differential fields of positive characteristic. These exten-
sions generalize the Picard-Vessiot extensions developed by Matzat and Van
Der Put as well as the strongly normal extensions proposed by Okugawa.
Our results depend on the model theory of iterative differential fields.

After introducing in section 2 the basic definitions and model theory of
iterative differential fields of positive characteristic, in section 3 we define
what we mean by an iterative strongly normal extension (Definition 3.1).
Then we prove that the Galois group of these extensions is isomorphic to the
constant-rational points of an algebraic group defined over the constants of
the base field (Theorem 3.5), we have good Galois correspondence (Theorem
3.15), and also what Kolchin called a G-primitive element theorem (Theorem
3.17).

In section 4 we start all over again, this time from the perspective of
(logarithmic) differential equations. This requires us to make an overview
of the notion of the arc bundle of an algebraic variety (Definition 4.4) and
introduce what should be our logarithmic derivation (Definition 4.8). Once
there we define what we mean by an iterative differential Galois extension
for a given logarithmic differential equation (Definition 4.11) and prove that
these extensions exist and are unique modulo isomorphism (Theorem 4.12).

Finally, in section 5, we show that, under certain hypothesis on the base
field, iterative strongly normal extensions and iterative differential Galois
extensions are just two faces of the same notion (Theorems 5.1 and 5.2).

We assume that the reader has working knowledge of the fundamentals
of geometric model theory, and a fair understanding of the terminology of
varieties from algebraic geometry and basic differential algebra.



ITERATIVE DIFFERENTIAL GALOIS THEORY 3

2. Iterative differential algebra: Model theory and practice

The aim of this section is offering a brief introduction to the basic model
theory of iterative derivations.

Definition 2.1. Let R be an arbitrary ring. A sequence of maps ∂ =
(∂i : R→ R)i∈ω is called a Hasse-Schmidt derivation if ∂0 = idR and the
map

D∂ : R→ R[[ε]] : a 7→
∞∑
i=0

∂i(a)εi

is a ring homomorphism.
If, additionally, for any i, j ∈ ω we have that ∂i ◦ ∂j =

(
i+j
i

)
∂i+j , we say

that ∂ is an iterative Hasse-Shmidt derivation or simply an iterative
derivation.

A ring (field) R equipped with an iterative derivation ∂ is what we call an
iterative differential ring (field) or ID-ring (field) and its ring (field)
of constants, CR, is defined as the set where all the ∂i vanish.

We say that an ID-field F is non-trivial if ∂1|F 6≡ 0.

Let IDFp be the first-order theory of fields of characteristic p > 0 equipped
with an iterative derivation ∂. The language we will consider is that of fields
expanded with a sequence (∂i)i<ω of unary function symbols. This theory
has a model companion, SCHp, the theory of separably closed ID-fields,
K, of characteristic p, degree of imperfection 1 (i.e. [K : Kp] = p) and
Kp = {x ∈ K : ∂1(x) = 0}.

Given a model K of SCHp, we can see that CF = Kp∞ , an algebraically
closed field. This theory is, in some sense, just another version of SCFp,1, the
theory of separably closed fields of characteristic p and degree of imperfection
1:

Fact 2.2. Once a p-basis is fixed, every model of SCFp,1 can be expanded
to a model of SCHp and, additionally, any highly enough saturated model
of SCHp can be canonically equipped with a p-basis and its corresponding
λ-functions are quantifier-free definable.

Proof. See [25]. �

And, as a consequence of this,

Fact 2.3. SCHp is stable (non-superstable) and has quantifier elimination
and elimination of imaginaries.

Proof. See [25]. �

Since SCHp is stable, we may let (U , ∂) be a saturated model of SCHp

of large cardinality and C its field of constants.
As in the case of characteristic zero differentially closed fields, the field

of constants of U is a pure algebraically closed field, that is, any definable
subset is definable in the language of rings. Note that in this case, though,
C is not definable but type-definable:

Fact 2.4. If Z ⊂ Um is definable in Um over A, then Z ∩ Cm is definable
in (C,+, · ) over dcl(A) ∩ C.
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Proof. By stability and quantifier elimination. �

We will now define three different closure operators of algebraic nature.

Definition 2.5. Let A ⊂ U .
• The iterative differential closure of A, denoted 〈A〉, will be the

iterative differential subfield of U generated by the elements of A. If
F is an ID-field and A is a set, by F 〈A〉 we mean 〈FA〉.
• The strict closure of A, denoted As, will be the set obtained after

closing A under pth-roots.
• Finally, the relative algebraic closure of A, denoted Aa, will be

the field theoretic algebraic closure of A inside U .

Benoist [2] gave useful algebraic characterizations of the model theoretic
definable and algebraic closures in U in terms of these closure operators:

Fact 2.6. Let A ⊂ U .
• dcl(A) = 〈A〉s
• acl(A) = 〈A〉a

Proof. See Proposition II.2 and Proposition II.3 of [2]. �

3. Iterative strongly normal extensions

From now on, let us fix a prime number p > 0. As in the previous chapter,
let U be a saturated model of SCHp of large cardinality where any ID-field
mentioned is embedded and let C the field of constants of U .

Let us also assume that (F, ∂) is an iterative differential field with ∂1|F 6≡
0.

3.1. Definition and basic properties.

Definition 3.1. An extension (F, ∂) < (K, ∂) of non-trivial definably closed
ID-fields is said to be strongly normal if the following conditions hold:

(1) CF = CK , and CF is algebraically closed;
(2) K = F 〈a〉s(= dcl(Fa)) for some a = (a1, · · · , am);
(3) Whenever σ : K ↪→ U is an embedding of K into U over F , then

σ(K) ⊆ K〈C〉; and finally,
(4) F a ∩K = F 〈d〉s for some d = (d1, · · · , dm).

Following Kolchin, the Galois group of the strongly normal extension
K/F , denoted Gal(K/F ) will be Aut∂(K〈C〉/F 〈C〉). The traditional Aut∂(K/F )
will be denoted instead gal(K/F ).

Our definition of a strongly normal theory does not differ much from
the original one due to Kolchin in the characteristic zero case. We require,
though, one property that in Kolchin’s case is automatic: tp(a/F ) should
have finite multiplicity. This is going to be crucial to assure the definability
of our Galois group. The extra-condition (4) will do this for us:

Fact 3.2. If K = F 〈a〉s is an iterative strongly normal extension of F , then
tp(a/F ) has finite multiplicity.

This is a corollary of the following general lemma:
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Lemma 3.3. Let T be a stable theory and U a highly saturated model
of T . Then, for any a ∈ U and F ⊆ U , we have that tp(a/F ) has fi-
nite multiplicity if and only if there exists a finite tuple c ∈ Ueq such that
acleq(F ) ∩ dcleq(aF ) = dcleq(Fc).

Proof. ⇒) Let p = tp(a/F ) and let p1, . . . , pm be the complete extensions
of p to acl(F ), and p1 = tp(a/acl(F )). The finite equivalence relation the-
orem provides us with a single F -definable finite equivalence relation E
distinguishing the extensions of p to acl(A). Let c be the E-class of a. By
definition c ∈ dcleq(Fa), and, since E is an equivalence relation over F with
finitely many classes, c ∈ acleq(F ).

On the other hand, let b ∈ dcleq(aF ) ∩ acleq(F ). Thus we have b = f(a)
for some F -definable function f . Let σ be an automorphism of U fixing Fc.
Suppose σ(p1) 6= p1. Then σ(p1) = pi, for some i 6= 1 and so σ(c) 6= c,
contradicting the choice of σ. Thus, the formula σ(b) = f(x) is still in p1.
But then, σ(b) = f(a) = b. This implies that b ∈ dcleq(Fc).
⇐) Let d = Cb(tp(a/ acleq(F ))). We know that d ⊆ acleq(F ) and it is also
clear that d ⊆ dcl(Fa). Thus d ⊆ dcleq(Fc) for some c ∈ acleq(F ). But
this implies that d has finitely many conjugates over A, and so tp(a/F ) has
finite multiplicity. �

One consequence of condition (3) in the definition of iterative strongly
normal extensions is the fact that tp(a/F ) is internal to C: If tp(b/F ) =
tp(a/F ) then b ∈ K〈C〉 = dcl(F, a, C). The fact that the type has finite
multiplicity makes this definability uniform, as we show next.

Lemma 3.4. If K = F 〈a〉s is an iterative strongly normal extension of F ,
then there exists a function defined over F , let us call it u(·, ·), such that for
every b with tp(b/F ) = tp(a/F ), there is c ∈ C such that u(a, c) = b.

Proof. When p = tp(a/F ) is stationary, this is a standard fact (see, for
instance, Theorem 2.19, p. 37, of [20]). For the general case, find a function
for each complete extension of p to acl(F ) and then glue them together. �

3.2. The Galois group is an algebraic group. This subsection is de-
voted to prove the following key result:

Theorem 3.5. There is an isomorphism of groups

µ : Gal(K/F )→ G(C),
where G is algebraic group in U defined over CF . Furthermore, the action
of Gal(K/F ) on X = tp(a/F )U is (F ∪ {a})-definable.

The following lemma and its corollary, both crucial in the proof of this
theorem, clarify the nature of Gal(K/F ) and its relation with the asso-
ciated strongly normal extension. In particular, the lemma tells us that
gal(K/F ) < Gal(K/F ).

Lemma 3.6. Any embedding of K into U over F can be uniquely extended
to an automorphism of K〈C〉 fixing C pointwise.

Proof. It is enough to show that for any a′ ∈ U such that tp(a/F ) =
tp(a′/F ), we have tp(a/F 〈C〉) = tp(a′/F 〈C〉). To see this, take σ : K → U an
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embedding of ID-fields fixing F . Since tp(a/F ) = tp(σ(a)/F ), our assump-
tion tells us that tp(a/F 〈C〉) = tp(σ(a)/F 〈C〉) and this, by homogeneity of
U and stability of the theory, provides us with σ̄, a U-automorphism fixing
F 〈C〉 and taking a to a′. Note that σ̄|K〈C〉 : K〈C〉 → σ(K)〈C〉. Note also
that σ(K)〈C〉 = K〈C〉.

In order to prove the claim, consider the infinite tuples aF and a′F ,
where tp(a′/F ) = tp(a/F ). Since C is algebraically closed and type-definable
over the empty set, tp(aF/C) and tp(a′F/C) are, respectively, the unique
nonforking extensions of tp(aF/CF ) and tp(a′F/CF ). However, tp(aF/CF )
and tp(a′F/CF ) are equal, and, in consequence, the same is true about
tp(aF/C) and tp(a′F/C). �

Corollary 3.7. X , the set of realisations of tp(a/F ) in U , is a principal
homogeneous space for Gal(K/F ).

Proof. As X ⊂ K〈C〉, then Gal(K/F ) acts on X . The fact that the action
on X is transitive and free is a direct consequence of the previous lemma.

�

Proof of theorem 3.5. This is a modified version of the general argument for
proving the definability of the binding group.

Let Y = Z/E where Z = {c ∈ C : u(a, c) ∈ X} and E is an equiva-
lence relation on Z defined by the formula u(a, x1) = u(a, x2). Because of
elimination of imaginaries of the theory of algebraically closed fields and the
pureness of C, Y is a type-definable set in C over dcl(a) ∩ C ⊂ CF .

For b ∈ X and d ∈ Y , define f(b, d) = u(b, c) with c ∈ Y0 such that
c/E = d, and note that for any b1 and b2 ∈ X , there is only one d ∈ Y such
that f(b1, d) = b2.

Consider the function µ : Gal(K/F ) → Y : σ 7→ h(a, σ(a)). Corollary
3.7 then tells us that µ is a bijection. Endow Y with the group operation
induced by µ. This is, let us define d · d′ = µ(µ−1(d) · µ−1(d′)). Note that
this group operation is definable. Moreover, the induced action of Y on X
turns out to be F ∪ a-definable.

Finally, the fact that C is totally transcendental plus the Weil-Van den
Dries-Hrushovski theorem (See Theorem 4.13, p. 84 of [20], or [4]) tells
us that (Y, ·) is definably isomorphic to the set of C-rational points of an
algebraic group G defined over CF . Identify G(C) and Y . �

In addition, µ takes gal(K/F ) to the CF -rational points of G.

Fact 3.8. µ(gal(K/F )) = G(CF )

Proof. First, observe that for any σ ∈ Gal(K/F ), we have that σ(a) ∈
F 〈a, µ(σ)〉s and µ(σ) ∈ F 〈a, σ(a)〉s ∩ C. Now, if σ(a) ∈ K, then µ(σ) ∈
F 〈a〉s ∩ C = CK = CF .

On the other hand, if µ(σ) ∈ CF , then, σ(a) ∈ F 〈a〉s = K. �

3.3. Scaffolding. In characteristic zero, the model theoretic approach to
differential Galois theory [16] heavily depends on the existence of prime
models, a basic consequence of the fact that DCF0 is totally transcendental.
Since SCHp is only stable and not even superstable, we need to rely in other
tools to deal with the lack of decent differential closure. Just like in the linear
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case [17], the use of a suitable auxiliary structure as a scaffolding to handle
the group inside U will do the trick.

Definition 3.9. Let K/F be an iterative strongly normal extension, with
K = F 〈a〉s. Now defineM as the two-sorted structure (X , C), with relations
induced by F -definable relations in U .

Fact 3.10. Let N be the structure whose universe is C, with relations in-
duced by the F 〈a〉s-definable sets in U . Then (M, a) is bi-interpretable with
N .

Proof. On one hand, any intersection of C and a F 〈a〉s-definable set in U is,
insideM, an a-definable set. The other direction depends on the definability
of the Galois group from the previous section.

As in the proof of theorem 3.5, let us define Y as the quotient of Z by E,
where Z is the type-definable set {c ∈ C : u(a, c) ∈ X} and E is given by
the formula u(a, x1) = u(a, x2). By the proof of theorem 3.5 we know that
Y is a CF -definable set in C.

Note that X and Y are isomorphic. Indeed, for each b ∈ X assign the
class c̄b of c ∈ C such that u(a, c) = b. This map is one-to-one and onto by
construction. Now, suppose that you have D ⊂M∩X definable in (M, a).
By definition, D is F 〈a〉s-definable in U ∩X . The map given between X and
Y is also F 〈a〉s-definable; thus the image of D, now inside the quotient set,
is also F 〈a〉s-definable. This makes D definable inside N . �

Now we can check that, although we are working in a stable, non-superstable
theory, the auxiliary structure we built is totally transcendental.

Fact 3.11. M is saturated and its theory Th(M) has quantifier elimination
and is totally transcendental.

Proof. Let N be just as in fact 3.10.
Since N can be seen as C with names for the elements of CF , then it is sat-

urated and totally transcendental. The fact that being totally transcenden-
tal and saturation are preserved under taking reducts and interpretability,
allow us to conclude that M is also saturated and totally transcendental.

SinceM is saturated, for quantifier elimination it is enough to prove that
it is also quantifier-free homogeneous. Indeed, if d1 and d2 are two finite
tuples from M with the same quantifier-free type, then, seeing them as
tuples from U , they have the same type over F . The homogeneity of U then
provide us with an automorphism of U over F taking one to the other. As
it fixes F , this function is also an automorphism of M when restricted to
its domain. �

Given that Th(M) is totally transcendental, let M0 be its prime model
over the empty set. This structure will play the role of the differential closure
of F .

Lemma 3.12.
M0 ∩ C = CF

Proof. Let c ∈ M0 ∩ C and consider p, the type of c over the empty set in
the language of M. Since M0 is prime, p is isolated by a formula φ(x).
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By lemma 2.4, the set that this formula defines inside C is also defined by
a formula in the language of rings and with parameters in F ∩ C = CF .
However, being algebraically closed, CF is an elementary substructure of C
(in the language of rings), and so φ(C)∩CF is not empty. This implies that,
as φ is an isolating formula over F , it must be of the form x = c′ for some
c′ ∈ CF . �

The following fact tells us that the whole extension can be somehow in-
terpreted, in a multi-sorted way, insideM0, as if it were an scaffolding built
on its side.

Lemma 3.13. There is a bijection between the set of definably closed subsets
of Meq

0 and the set of definably closed ID-fields lying between F and K.

Proof. Any d ∈Meq
0 is of the form a′/E where E, by quantifier elimination,

is a quantifier free ∅-definable equivalence relation in M. This means that,
in U , we have that E is the intersection of X and some F -definable set E′ in
U . By stability of SCHp,1, it can be assumed that E′ is also an equivalence
relation. By elimination of imaginaries in SCHp,1, we know that a′/E′ is
interdefinable over F in U with some tuple e ∈ dcl(F, a′). Note that, since
there is c ∈ C ∩M0 = CF such that a′ = u(a, c), then, e ∈ dcl(F, a) = K.
Thus, d is interdefinable over F in U with a tuple in K.

Let now e ∈ K. Then, e = f(a) for some F -definable function f . Let
E(x, y) be f(x) = f(y). The restriction of E is ∅-definable in M0 and
d = a/E ∈ Meq

0 . Clearly, d (seen as an element in U) is interdefinable over
F with e. �

3.4. Galois correspondence and a G-primitive element theorem.
Let K a strongly normal extension of F and G the algebraic group whose
C-rational points are isomorphic to Gal(K/F ), as provided by theorem 3.5.
As in the previous subsection, let M the scaffolding built for the extension
K/F and M0 its prime model over the empty set.

Definition 3.14. Given L a definably closed subfield of K containing F ,
let

GL = {g ∈ G(C) : g(c) = c for all c ∈ L}.

Theorem 3.15. Let K/F be a strongly normal extension of ID-fields. If L
is a definably closed intermediate ID-field in K/F , then:

(i) K/L is strongly normal.
(ii) GL is a CF -definable subgroup of G(C) and is isomorphic to Gal(K/L).

(iii) The correspondence L 7→ GL between intermediate ID-fields and CF -
definable subgroups of G is an injection.

(iv) L/F is strongly normal if and only if GL is a normal subgroup of G(C).
In this case, G(C)/GL ∼= Gal(L/F ).

Before proving the theorem, let us observe that definably closed interme-
diate fields of a strongly normal extension are finitely generated over the
base field. More precisely:

Lemma 3.16. If K/F is strongly normal and L is an intermediate definably
closed ID-field, then L = F 〈b〉s for some b = (b1, · · · , bm).
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Proof. Consider L as a definably closed subset inMeq
0 and let p = tp(a/L).

Since Th(M) is totally transcendental, there is a finite tuple b such that p
is the unique non-forking extension over L of tp(a/Fb). This b is the tuple
of the canonical bases of each of the finitely many complete extensions of p
to acl(L). We claim F 〈b〉s = L.

The left to right containment is clear. On the other hand, if e ∈ L, let g(·)
an F -definable function such that g(a) = e. Consider the formula φ(x, y)
defined as g(x) = y and let dφx(y) be the tp(a/ acl(L))-definition of φ over
dcl(F, b). Clearly, dφx(e′) iff e = e′, and so e ∈ dcl(F, b). �

Proof of theorem 3.15. Let L = F 〈b〉s.
(ii) and (iii) are easy.
For (i), observe that as K/F is strongly normal, conditions (1), (2) (by

lemma 3.16) and (3) of the definition of strongly normal extensions imme-
diately hold in K/L. Condition (4) requires an explanation:

The correspondence provided by lemma 3.13 allows us to see D = acl(L)∩
K as a subset of Meq

0 . Consider then, in M, the type tp(a/D). Since
K = L〈a〉s, the canonical base of tp(a/ acl(L)) is contained inside D. By
ω-stability of Th(M), we have that Cb(tp(a/ acl(L)) is interdefinable with
d, a single finite tuple in Meq. It is easy to check that L〈d〉s = D.

Finally, for (iv), suppose that L/F is strongly normal and let N be the
normalizer of Gal(K/L) in Gal(K/F ). As both Gal(K/L) and Gal(K/F )
are definable, so is N . Thus, by part (3) of the present theorem, N = GL′
for some L′ such that F < L′ < L. We will prove that N = Gal(K/F ):

Let σ ∈ Gal(K/F ), an automorphism τ ∈ Gal(K/L) and d ∈ L. Since
L/F is strongly normal, σ(d) ∈ L〈C〉 and so τσ(d) = σ(d). This implies that
σ−1τσ(d) = d and thus we conclude that σ−1τσ ∈ Gal(K/L) and, moreover,
σ ∈ N as τ ∈ Gal(K/L) is arbitrary.

Assume now that GL = Gal(K/L) is a normal subgroup of Gal(K/F ).
Conditions (1), (2) and (4) from the definition of strongly normal extensions
are clear for L/F . We need to prove (3): Let σ : L ↪→ U be an embedding
of L into U over F . Because of saturation of U and quantifier elimination,
there is σ̄ an embedding of K into U over F such that σ = σ̄|L. Since K/F
is strongly normal, σ̄ can be seen as an element of Gal(K/F ) (lemma 3.6).
Let d ∈ L, we need to show that σ(d) ∈ L〈C〉: Consider τ ∈ Gal(K/L) and
observe that, as Gal(K/L) is normal in Gal(K/F ), we have that

σ̄−1τ σ̄(d) = σ−1τσ(d) = d.

That is, τ(σ(d)) = σ(d). As τ is arbitrary, this implies that σ(d) belongs to
the set fixed by Gal(K/L), which is precisely L〈C〉.

Finally, consider the restriction map

|L〈C〉 : Gal(K/F )→ Gal(L/F ).

This map is onto because of saturation of U and quantifier elimination, and
its kernel is Gal(K/L). This implies that G(C)/GL ∼= Gal(L/F ). �

Theorem 3.17. Let K/F be a strongly normal extension of ID-fields. Sup-
pose F is relatively algebraically closed in U . Then, there is α ∈ G(K) such
that K = F 〈α〉, and for all σ ∈ Gal(K/F ), we have that

σ(α) = (µ(σ))−1 · α.
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Proof. Let b, c ∈ U with tp(b/F ) = tp(a/F ) = tp(c/F ) such that a |̂
F
b,

a |̂
F
c and c |̂

F
b. Using the notation from the proof of 3.5, it is clear that

h(a, b), h(a, c), h(c, b) ∈ G(U)

and
h(a, c) · h(c, b) = h(a, b).

Replacing a, b, c by a, b, c plus finitely many derivations and pth-roots, we
may assume h is rational. Since b is algebraically independent of a and c
over F and F is relatively algebraically closed in U , we can find d ∈ F such
that

h(a, d), h(c, d), h(a, c) ∈ G(U),
and

h(a, c) · h(c, d) = h(a, d). (?)
Let α = h(a, d). Observe first that α is interdefinable with a over F (because
of the way h is defined) and so K = F 〈α〉. Additionally, as a, d ∈ K, we
have that α ∈ K. Finally, let σ ∈ Gal(K/F ) and pick c |̂

F
σ(a). Then

tp(a, c/F ) = tp(c, σ(a)/F ) by stationarity. So

h(c, σ(a)) · h(σ(a), d) = h(c, d).

But this, combined with (?) implies that

h(a, c) · h(c, σ(a)) · h(σ(a), d) = h(a, d).

Now, h(a, c) · h(c, σ(a)) = µ(σ) and h(σ(a), d) = σ(α) (because σ(d) = d).
So, we have

µ(σ) · σ(α) = α.

Which is what was left to prove. �

4. Iterative differential Galois extensions

In the previous section we introduced a class of ID-field extensions with
well behaved Galois groups. Now, we will concentrate on the differential
equations that under suitable conditions have good Galois theory.

4.1. Arc bundles and the iterative logarithmic derivative.

Definition 4.1. For a natural number m and an arbitrary field k, define
k(m) as the ring k[ε]/(εm+1). View k(m) as a k-algebra under the natural
map a 7→ a+ 0ε+ · · ·+ 0εm.

Definition 4.2. Let X be an algebraic variety over F and define, for any
field k extending F the mth arc bundle of X over k, denoted AmX(k), as
the set of k(m)-rational points of X. This can be seen as an actual algebraic
variety by identifying points in k(m) with points in (km+1).

Now, if f : X → Y a (regular) map of algebraic varieties over F , then
define

Am(f) : AmX → AmY
as the map which is given, on k-points, by evaluating f on X(k(m)).

Fact 4.3. Let X,Y and Z be algebraic varieties over F .
(1) Am(X)×Am(Y ) is naturally isomorphic to Am(X × Y ).
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(2) Suppose f : X → Y and g : Y → Z are regular maps defined over F ,
then Am(g ◦ f) = Am(g) ◦Am(f). This is, Am is a functor from the
category of algebraic varieties with regular maps over F to itself.

(3) If (G, · ) is an algebraic group defined over F , then so is (AmG,Am( · )).

Proof. (1) and (2) are immediate consequences of the given definition of A,
and (3) follows from those two. For instance, for associativity, consider the
commutative diagram,

(g1, g2, g3) � //
_

��

(g1 · g2, g3)
_

��
(g1, g2 · g3) � // (g1 · g2) · g3 = g1 · (g2 · g3)

and then apply Am. �

For n > m, the quotient map k(n) → k(m) induces a projection

ρn,m : AnX → AmX.

Identifying A0 with the identity functor we will write ρn,0 as ρn.

Definition 4.4. For a ∈ X(k), the nth arc space AnXa of X at a is
defined as the fibre of ρn : AnX → X over a.

Additionally, define AX(k), the full arc bundle of X over k, as the
inverse limit of (AiX(k))i∈ω.

Observe that AX(k) can be identified with the k[[ε]]-rational points of X.

Let us consider now the case when F is a ID-field of positive character-
istic. As before, assume U is a highly saturated model of SCHp,1.

Lemma 4.5. Let X be an algebraic variety defined over CF .
If a ∈ X(U), then ∇X(a) = (∂0(a), ∂1(a), . . .) ∈ AX(U) and in particular

∇X,m(a) = (∂0(a), . . . , ∂m(a)) ∈ AmX(U) for any m.
Additionally, if Y is an algebraic variety, f : X → Y is a morphism and

both are also defined over CF , then A(f) ◦ ∇X = ∇Y ◦ f .

Proof. Before starting, observe that ∇X(a) is just another way of presenting
D∂(a) once you identify, as suggested above, AX(U) and X(U [[ε]]).

For the first part, recall that D∂ : U → U [[ε]] : x →
∑∞

i=0 ∂i(x)εi is a ring
homorphism. Then, working locally, if p(x) is one of the defining polynomials
of X and a ∈ X(U), then p(D∂(a)) = 0. Which is another way of saying
that ∇X(a) ∈ AX(U).

For the second part, note that D∂ is not only a ring homomorphism but a
C-algebra homomorphism. Thus, again locally, if q(x) is a polynomial with
constant coefficients, then D∂(q(x)) = q(D∂(x)). �

Corollary 4.6. If (G, ·) is an algebraic group defined over the constants of
F , then (AG,A(·)) is also a group and ∇G : G→ A(G) is a group embedding.

Proof. Since (G, · ) is an inverse limit of algebraic groups, it is a pro-
algebraic group. For the second part, the previous lemma gives us that
∇G ◦ · = A( · ) ◦ ∇G×G. �
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Let G be an algebraic group defined over CF and consider the following
exact sequence of groups:

{(e, 0)} // Ae(G) i // A(G) π // G // {e},

where i is the natural inclusion and π the canonical projection. Note that
s : G→ A(G) : g 7→ (g, 0, 0, . . .) is a group embedding and so a homomorphic
section of π. Recall also that the existence of such a homomorphic section
provides us with an isomorphism A(G) ∼= Ae(G)oG. Thus, we can identify
G with its image under s. Let h : A(G)→ Ae(G) be the projection induced
by this isomorphism. Given (g, u) ∈ A(G), we have that (g, u) = ((g, u) ·
s(g−1)) · s(g), so h((g, u)) = (g, u) · s(g−1).

Although h is not a group homomorphism, we have:

Fact 4.7. If h((g, u)) = h((l, v)) then h((g, u)−1 · (l, v)) = (e, 0).

Proof. Since h((g, u)) = h((l, v)), then, by definition,

(g, u) · s(g−1) = (l, v) · s(l−1).

Reorganizing the equation, we get

(g, u)−1 · (l, v) = s(g−1) · s(l).

Now, applying h to both sides, we obtain

h((g, u)−1 · (l, v)) = h(s(g−1l)) = s(g−1l) · s(l−1g) = (e, 0).

�

Definition 4.8. Define the iterative logarithmic derivative be the map

`D : G(U)→ AGe(U) : g 7→ h(∇(g)).

Fact 4.9. If G is defined over CF , then Ker(`D) = G(C). Furthermore, if
`D(x) = `D(y), then x−1 · y ∈ G(C).

Proof. If `D(g) = (e, 0), then ∇(g) · (g−1, 0) = (e, 0). Thus ∇(g) = (g, 0),
which implies that ∂i(g) = 0 for any i. That is, g ∈ G(C).

The additional remark is a direct consequence of fact 4.7. �

The logarithmic derivative in the (differential) characteristic zero case,
defined as a map from G to L(G), the Lie algebra of G, is surjective. In our
setting, that is not the case:

Example 4.10. Let G = Ga, the additive group. Then A(G) =
∑∞

i=0 Ga

and
`D(g) = (g, ∂1(g), . . .)− (g, 0, · · · ) = (0, ∂1(g), ∂2(g), . . .).

Thus, Im(`D) is contained in the set

{(xi) : x0 = 0 and, for i > 0, ∂j(xi) =
(
i+ j

i

)
(xi+j)},

which is clearly not equal to Ae(G).
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4.2. Logarithmic differential equations and Galois extensions.

Definition 4.11. Given an algebraic group defined over the constants of
(F, ∂) a (non-trivial) definably closed ID-field of characteristic p with alge-
braically closed constant field, by a consistent logarithmic differential
equation over F we mean something of the form

`D(x) = α,

where `D is defined as in the previous section and α ∈ AGe(F ) is an element
contained in the image of `D.

By an iterative differential Galois extension of F for that given
logarithmic differential equation we mean K = F 〈a〉s, where `D(a) = α and
CF = CK .

Theorem 4.12 (Existence and Uniqueness of iterative differential Galois
extensions). If G is an algebraic group defined over the constants of (F, ∂)
and `D(x) = α is a (consistent) logarithmic differential equation over F ,
then there exists an iterative differential Galois extension of F for the given
equation. Furthermore, any two such extensions are isomorphic over F as
ID-fields.

Once again, we will depend on the use of an appropriate auxiliary struc-
ture in order to prove this. LetM be the two-sorted structure (X , C), where
X is the set of solutions in U of the equation `D(x) = α, and the relations
of M are those induced by F -definable sets in U .

Lemma 4.13. M is saturated, its theory Th(M) has quantifier elimination,
it is totally transcendental and, additionally,

M0 ∩ C = CF .

Proof. Just as in the proof of fact 3.11, this depends on the bi-interpretability
of an expansion of M by a constant and another simpler structure. Let a′

be any solution of the given logarithmic differential equation and let N be
the structure whose universe is C and whose relations are induced by the
F 〈a′〉-definable sets in U . We will see thatN is bi-interpretable with (M, a′):

Let Y = G(C). As a subset of N , we have that Y is definable. Observe
that there is a one-to-one correspondence between X and Y . This is given
by the fact that, for any b ∈ X , there is g ∈ G(C) such that g · a′ = b
(a corollary of fact 4.7). Note that such g is unique given b and a′. Let
f : Y → X : g 7→ g·a′. The fact that X and Y are isomorphic via this function
is proved as in fact 3.10. This shows that X (and so M) is interpretable in
N . The fact that N is interpreted in (M, a) is clear.

Note thatN is, once again, totally transcendental and saturated, and thus
the argument used to prove fact 3.11 applies. Hence,M is also saturated and
totally transcendental. The same is true for proving that M has quantifier
elimination.

The proof thatM0∩C = CF is exactly the same given for lemma 3.12. �

We now go back to the proof of theorem 4.12:

Proof of theorem 4.12. (Existence) Let a ∈ M0 ∩ X and K = F 〈a〉s. It is
not hard to see that CF = CK .
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(Uniqueness) Let a′ ∈ X be such that K ′ = F 〈a′〉s is another iterative
differential Galois extension of F for the given equation.

Consider M1 prime over a′. Note that M1 ∩ C = CF . Let a′′ ∈M1 with
the same type as a over the empty set. AsM1 ≺M, there is g ∈M1 ∩ C =
CF such that a′′ · g = a′. This implies that dcl(Fa′) = dcl(Fa′′).

Finally, since tp(a) = tp(a′′) inM, then tp(a/F ) = tp(a′′/F ) in U . This,
by saturation, implies that dcl(Fa) is isomorphic to dcl(Fa′′) = dcl(Fa′).

�

5. What goes around comes around

Section 3 introduced a class of extensions of differential fields with good
Galois theory. Section 4 provided us with extensions of differential fields
related to iterative logarithmic differential equations. In this section we will
prove that, under certain conditions on the base field, these two notions
coincide.

Theorem 5.1. If K is an iterative differential Galois extension of F for a
given logarithmic differential equation `D(x) = α, then K/F is a strongly
normal extension.

Proof. The first two conditions of the definition of strongly normal exten-
sions are explicitly stated in our definition of ID-Galois extensions. For the
third one, let K = F 〈a〉s, and tp(a′/F ) = tp(a/F ). Since α ∈ AGe(F ) and
lD(a) = α, we have that `D(a′) = α, and this implies that a−1a′ ∈ G(C) by
fact 4.9. So, a′ = a · d for some d ∈ G(C) and thus a′ ∈ K〈C〉. Finally, for
the fourth condition, the argument goes exactly as in the proof of the first
part of theorem 3.15. �

Theorem 5.2. Suppose F is relatively algebraically closed in U and K/F
is a strongly normal extension. Let G be the algebraic group over CF that
is provided by theorem 3.5 whose set of C-rational points is isomorphic to
Gal(K/F ). Then K/F is an iterative differential Galois extension for some
logarithmic differential equation on G.

Proof. Let K/F be a strongly normal extension and G as in the statement.
Let

µ : Gal(K/F )→ G(C)
witness the isomorphism.

Since F is relatively algebraically closed in U , the primitive element
theorem provides us with a ∈ G(K) such that K = F 〈a〉 and, for any
σ ∈ Gal(K/F ), we have that σ(a) = (µ(σ))−1 · a.

Let α = `D(a) and note that α is fixed by any automorphism of U fixing
F : let ξ̄ ∈ Aut(U/F ); since K/F is strongly normal, lemma 3.6 tells us that
ξ = ξ̄|K〈C〉 ∈ Gal(K/F ), and so ξ(a) · a−1 = (µ(ξ))−1 ∈ G(C) = Ker(`D).
Thus,

ξ̄(α) = `D(ξ(a)) = `D(a) = α.

Since F is relatively algebraically closed in U , we get that α ∈ AGe(F ).
Consider the iterative logarithmic differential equation `D(x) = α. Let

K ′ = dcl(Fa′) be the unique iterative differential Galois extension of F for
the given equation. Note that, since `D(a) = `D(a′), fact 4.9 tells us that
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there exists g ∈ G(C) such that a′ = g−1 · a. Since g ∈ G(C) there is
σ ∈ Gal(K/F ) such that µ(σ) = g. So, by the way a was chosen,

a′ = ((µ(σ))−1 · a = σ(a),

which implies that σ induces an isomorphism between K and K ′. Thus
K is isomorphic to a Galois differential extension of F for an appropriate
logarithmic differential equation. �

To conclude, let us prove, under the same assumption on the base field,
that a desirable equality between the transcendence degree of a strongly
normal extension and the dimension of its Galois group holds. To be precise:

Theorem 5.3. Suppose F is relatively algebraically closed in U , the exten-
sion K/F is strongly normal, and G is an algebferaic group over CF such
that G(C) is isomorphic to Gal(K/F ). Then,

dim(G(C)) = tr.deg(K/F ).

Proof. By the previous result, we know that K is an iterative differen-
tial Galois extension of F for a consistent logarithmic differential equation
`D(x) = α on G(U) with α in F . That is, there is a ∈ G(K) such that
`D(a) = α and K = F 〈a〉s.

First note that K = F (a)s. To prove this, it is enough to see that ∂n(a) ∈
F (a) for all n ∈ ω. However, by the definition of the logarithmic derivative,
we know that ∇(a) = α · (a, 0, 0, . . .), thus coordinate by coordinate, we
obtain that ∂n(a) is a rational function of a and the coefficients of α, which
are all in F . This in particular implies that tr. deg(K/F ) = tr.deg(F (a)/F ).

Secondly, by fact 4.9, we know that for each a′, a′′ ∈ X , where X is the
solution set in G(U) of the equation, there is g ∈ G(C) such that g · a′ = a′′.
Since G(C) is precisely our isomorphic copy of Gal(K/F ), this implies that,
in U , any a′ ∈ X has the same type as a over F . Thus, tr. deg(K/F ) is in
fact equal to tr.deg(X ).

Finally, observe that, after naming a ∈ X , there is a rational bijection
between X and G(C) given by a′ 7→ a−1 ·a′. So, tr. deg(K/F ) = tr.deg(X ) =
tr. deg(G(C)) = dim(G(C)). �
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[19] A. Pillay and Ž. Sokolović, Superstable differential fields. Journal of Symbolic Logic,
Vol. 56, n. 1, Mar 1992 (pp. 97-108). Universitext Series, 2000.

[20] B. Poizat, Stable Groups. AMS, 2001.
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