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Abstract. Kirszbraun’s Theorem states that every Lipschitz map S → Rn,

where S ⊆ Rm, has an extension to a Lipschitz map Rm → Rn with the
same Lipschitz constant. Its proof relies on Helly’s Theorem: every family

of compact subsets of Rn, having the property that each of its subfamilies

consisting of at most n + 1 sets share a common point, has a non-empty
intersection. We prove versions of these theorems valid for definable maps and

sets in arbitrary definably complete expansions of ordered fields.

Introduction

Let L be a non-negative real number and let f : S → Rn, S ⊆ Rm, be an L-Lipschitz
map, i.e., ||f(x) − f(y)|| ≤ L ||x − y|| for all x, y ∈ S. It was noted by McShane
and Whitney independently (1934) that if n = 1, then f extends to an L-Lipschitz
function Rm → R. This immediately implies that for general n, there always exists
a
√
nL-Lipschitz map F : Rm → Rn with F |S = f . A seminal result proved by

Kirszbraun (1934) shows that in fact, the multiplicative constant
√
n is redundant:

there is an L-Lipschitz map F : Rm → Rn such that F |S = f . This theorem plays
an important role in geometric measure theory (see [13]) and has been generalized in
many ways, e.g., to more general moduli of continuity and arbitrary Hilbert spaces
(see [3, Theorem 1.12]). The usual proofs of theorems of this kind in the literature
employ, in some form or other, the Axiom of Choice. (See, e.g., [3, 5, 13, 15, 20].)
This prompted Chris Miller to ask: suppose f as before is semialgebraic; is there a
semialgebraic L-Lipschitz map Rm → Rn extending f? More generally:

Let R be an o-minimal expansion of a real closed ordered field R,
and let f : S → Rn, S ⊆ Rm, be definable in R and L-Lipschitz
(where L ∈ R, L ≥ 0). Does f admit an extension to an L-Lipschitz
map Rm → Rn which is definable in R?

Here and below, “definable” means “definable, possibly with parameters.” Ques-
tions like these are of interest since many (but not all [22]) properties familiar from
real analysis and topology hold for sets and functions definable in o-minimal struc-
tures, even if the underlying ordered set is different from the real line. See [8] for
this, and basic definitions concerning o-minimal structures.

It is easy to see that the question above has a positive answer in the case n = 1 by
the McShane-Whitney construction alluded to above (see Proposition 5.3 below)
and also if the domain S of f is convex (see Proposition 5.4). In this paper we
answer Miller’s question positively in general. In fact, o-minimality may be replaced
by a weaker assumption. For the rest of this introduction, we fix an expansion
R = (R, 0, 1,+, · , <, . . . ) of a real closed ordered field, and “definable” means
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“definable in R.” One says that R is definably complete if every non-empty
definable subset of R which is bounded from above has a least upper bound in
R. (See Section 1.1 below for more on this notion.) Our first main result is the
following:

Theorem A. Suppose R is definably complete. Let L ∈ R, L ≥ 0, and let f : S →
Rn, where S ⊆ Rm, be a definable L-Lipschitz map. Then there exists a definable
L-Lipschitz map F : Rm → Rn such that F |S = f .

It turns out that definable completeness is indeed necessary for the conclusion of
Theorem A to hold, see Proposition 5.2 below. The extension F of f in the theorem
can additionally be chosen to depend uniformly on parameters, see Corollary 5.13.

The proof of Theorem A is based on a recent constructive approach to Kirsz-
braun’s Theorem due to Bauschke and Wang [1, 2] using the proximal average of
convex functions. This is the culmination of a long train of thought (going back
at least to Minty [28]) relating Lipschitz maps to monotone set-valued maps. It is
remarkable that the arguments of loc. cit. may be transferred in a straightforward
way to the setting of definable complete expansions of ordered fields, with the
exception of an interesting property of definable families: In general, a family C of
closed balls in Rn with the finite intersection property may have empty intersection;
however (and perhaps, somewhat surprisingly), if R is definably complete and the
family C is definable, then

⋂
C 6= ∅. More precisely, we have the following result:

Theorem B. Suppose R is definably complete. Let C be a definable family of closed
bounded convex subsets of Rn. If any collection of at most n+ 1 sets from C has a
non-empty intersection, then C has a non-empty intersection.

This theorem is a definable analogue of a classical theorem of Helly (1913) on
families of compact convex subsets of Rn. In the standard proofs of this theorem
(e.g., as given in [39]), one first reduces to the case of a finite family by a topological
compactness argument, which is unavailable in the more general context considered
here. Thus we were forced to find a different proof which adapts to infinite definable
families. (See [5, 11] for the history and numerous variants of Helly’s Theorem.)

Note that the theorem fails trivially if the assumptions “closed” or “bounded”
are dropped, as suitable definable families of intervals in R show. Definable com-
pleteness of R is also necessary in this case: if R has the property that every infinite
definable family of closed bounded convex subsets of R with empty intersection con-
tains two disjoint members, then R is definably complete. It may also be worth
noting that the natural definable analogue of the Heine-Borel Theorem (a definable
set S ⊆ Rn is closed and bounded if and only if every definable family of closed
subsets of S with the finite intersection property has a non-empty intersection) fails
if the ordered field R is non-archimedean. (See Section 3.2.)

Organization of the paper. Many of the basic properties of convex sets in Rn
(as presented in, say, [34, 39]) hold in the setting of a definably complete expansion
of an ordered field, provided attention is restricted to definable convex sets. After a
preliminary Section 1, we develop some of these properties in Section 2, restricting
ourselves to what is necessary for the proof of Theorems A and B. We give the proof
of Theorem B and some applications of this theorem in Section 3. In Section 3.2 we
also present another proof of Theorem B valid in the case where R is o-minimal, due
to S. Starchenko (and based on results by Dolich and Peterzil-Pillay). In Section 4
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we establish a few basic results of convex analysis in the definably complete setting,
and in Section 5 we prove Theorem A. In Section 6 we discuss some variants of
Theorem A: a weak version of Kirszbraun’s Theorem for Lipschitz maps which
are locally definable in expansions of the ordered field of real numbers, and the
extension problem for uniformly continuous definable maps.

Acknowledgments. We thank Chris Miller for many discussions around the top-
ics of this paper, and Sergei Starchenko for permission to include the argument in
Section 3.2. This paper was partially written while both authors were participating
in the thematic program on O-minimal Structures and Real Analytic Geometry at
the Fields Institute in Toronto in 2009. The support of this institution is gratefully
acknowledged. The first author was also partially supported by a grant from the
National Science Foundation.

Conventions and notations. We let k, m, n, range over the set N = {0, 1, 2, . . . }
of natural numbers. “Definable” means “definable, possibly with parameters.”

Let R be a real closed ordered field. We equip R with the order topology,
and each Rn with the corresponding product topology. Given a subset S of Rn

we write int(S) for the interior, cl(S) for the closure, and bd(S) = cl(S) \ int(S)
for the boundary of S. We write the dot product of x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , yn) ∈ Rn as

〈x, y〉 = x1y1 + · · ·+ xnyn,

and we set ||x|| :=
√
〈x, x〉. For % > 0 and x ∈ Rn we write

B%(x) :=
{
y ∈ Rn : ||x− y|| < %

}
, B%(x) :=

{
y ∈ Rn : ||x− y|| ≤ %

}
for the open respectively closed ball in Rn with radius % and center x. A set S ⊆ Rn
is said to be bounded if S ⊆ B%(0) for some % > 0.

For a, b ∈ R we put [a, b] := {x ∈ R : a ≤ x ≤ b}. For S ⊆ R and a ∈ R
we set S>a := {r ∈ S : r > a} and similarly with other inequality symbols in
place of “>.” We extend the linear ordering of R to a linear ordering of R±∞ =
R∪{−∞,+∞} such that −∞ < R < +∞. We assume the usual rules for addition
and multiplication with ±∞. We also set R∞ = R∪{+∞}. We say that a function
f : S → R±∞ (where S ⊆ Rn) is finite at x ∈ S if f(x) ∈ R, and we simply say
that f is finite if it is finite at every x ∈ S.

1. Preliminaries

This section contains material which is fundamental for the following sections. In
Sections 1.1 and 1.2 we collect basic properties of definably complete expansions of
ordered fields. In Section 1.4 we discuss Lipschitz maps, and Section 1.5 contains
a useful fact about Minkowski sums of closed sets.

1.1. Definable completeness. Let R be an expansion of an ordered field R. One
says that R is definably complete if every non-empty definable subset of R which
is bounded from above has a least upper bound in R. Clearly then every non-empty
definable subset of R which is bounded from below has a greatest lower bound in
R. Moreover, if R is definably complete, then the field R is necessarily real closed.
For a proof of this fact see [26], where further basic properties of definably complete
structures were developed. In particular, the following characterization of definable
completeness is proved in [26, Corollary 1.5].
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Proposition 1.1. The following are equivalent:
(1) R is definably complete.
(2) Every continuous definable function f : [a, b] → R has the intermediate

value property: for each y ∈ R between f(a) and f(b) there is some x ∈ [a, b]
with y = f(x).

(3) Intervals in R are definably connected.
(4) R is definably connected.

(Recall that a set S ⊆ Rn is said to be definably connected if for all definable
open sets U, V ⊆ Rn with S = (S∩U)∪ (S∩V ) and S∩U ∩V = ∅, we have S ⊆ U
or S ⊆ V .)

The notion of definable completeness is intended to capture the first-order con-
tent of Dedekind completeness: indeed, every expansion of the ordered field of
real numbers is definably complete, and every structure elementarily equivalent
to a definably complete structure is definably complete [26, Section 3]. Definable
completeness is connected to o-minimality: If R is o-minimal, then R is definably
complete. (In fact, it is enough to require that the open core R◦ of R is o-minimal.)
If R is o-minimal, and R′ is a proper dense subset of R which is the underlying
set of an elementary substructure of R, then (R, R′) is definably complete, by [9].
However, definable completeness is sufficiently far removed from o-minimality to
warrant independent interest: by results in [7, 27], R is o-minimal if and only if
R is definably complete, every definable subset of R is constructible (i.e., a finite
boolean combination of open sets), and there is no definable subset of R which is
both infinite and discrete.

In the rest of this section we assume that R is definably complete.

Notation. We say that A ⊆ R±∞ is definable if A ∩ R is definable. With this
convention, every non-empty definable subset A of R±∞ has a least upper bound
in R±∞, which we denote by supA, and A has a greatest lower bound in R±∞,
denoted by inf A. We also set sup ∅ := −∞ and inf ∅ := +∞.

We have a weak version of definable choice [26, Proposition 1.8]:

Lemma 1.2. Let C = {Ca}a∈A, where A ⊆ Rn, be a definable family of non-empty
closed and bounded subsets of Rm. Then there is a definable map f : A→ Rm such
that f(a) ∈ Ca for every a ∈ A.

Many facts familiar from set-theoretic topology in R continue to hold for R,
provided attention is restricted to the definable category. In the following we col-
lect some of those properties. The first one [26, Lemma 1.9] (which follows from
Lemma 1.2) captures a crucial feature of compact subsets of Rn:

Lemma 1.3. Let C = {Ca}a∈A, where A ⊆ R, be a definable family of non-empty
closed bounded subsets of Rn which is monotone, i.e., either Ca ⊆ Cb for all a, b ∈ A
with a ≤ b, or Ca ⊇ Cb for all a, b ∈ A with a ≤ b. Then

⋂
C 6= ∅.

Note that this lemma implies a special case of Theorem B for monotone definable
families of closed bounded sets (without the assumption of convexity).

Proposition 1.4. Let f : S → Rn be definable and continuous, where S ⊆ Rm. If
S is closed and bounded, then so is f(S).

This is [26, Proposition 1.10]. As an immediate consequence, one has:
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Corollary 1.5. Let f : S → R be definable and continuous, where S ⊆ Rm is closed
and bounded. Then f achieves a minimum and a maximum on S.

1.2. Definable Bolzano-Weierstrass Theorem. For our investigations it is use-
ful to have a counterpart of the Bolzano-Weierstrass Theorem from classical analy-
sis, concerning infinite sequences in compact subsets of Rn. In o-minimal geometry,
this counterpart is described by the Curve Selection Lemma, which is not available
in the definably complete situation.

Definition. Let γ : I → Rn be a definable function, where I ⊆ R>0 is unbounded.
We call such a function γ a sequence-function. A sequence-function γ′ : I ′ → Rn

is said to be a subsequence-function of γ if I ′ ⊆ I and γ′ = γ|I ′. We say that γ
converges if a = lim

t→∞, t∈I
γ(t) exists, and in this case, we say that γ converges to

a. An element a of Rn such that there is a subsequence function γ′ of γ converging
to a is called an accumulation point of γ.

Proposition 1.6 (Definable Bolzano-Weierstrass Theorem). Let S ⊆ Rn be a
closed and bounded definable set. Then every sequence-function γ : I → S has an
accumulation point in S.

Proof. Let γ : I → S be a sequence-function. In the following let ε, ε′ and t range
over R>0. For every t put St := cl(γ(I>t)), a closed and bounded non-empty
definable subset of S. By Lemma 1.3 we have

⋂
t St 6= ∅. Let a ∈

⋂
t St; we claim

that a is an accumulation point of γ. To see this, note that by choice of a, for every
ε the definable set

Iε :=
{
t ∈ I : ‖γ(t)− a‖ < ε

}
is unbounded, hence Iε ∩R≥1/ε 6= ∅. For each ε put

tε := inf
(
Iε ∩R≥1/ε

)
∈ R>0, sε := tε + 1.

So for every ε there exists t ∈ Iε with 1/ε ≤ t ≤ sε, hence the definable subset

I ′ :=
{
t : ∃ε (t ∈ Iε & t ≤ sε)

}
of I is unbounded. Moreover, if ε′ ≤ ε then sε′ ≥ sε. Let ε be given, and let t ∈ I ′
with t > sε. Then there is some ε′ with t ∈ Iε′ and t ≤ sε′ . Then ε > ε′ and hence
t ∈ Iε. This shows that a = lim

t→∞, t∈I′
γ(t). �

1.3. Moduli of continuity. Let f : S → Rn be a definable map, where S ⊆ Rm

is non-empty. Then the modulus of continuity ωf : R≥0 → R∞ of f is given by

ωf (t) := sup
{
||f(x)− f(y)|| : x, y ∈ S, ||x− y|| ≤ t

}
.

The function ωf is definable and increasing with ωf ≥ 0, and f is uniformly con-
tinuous if and only if ωf (t)→ 0 as t→ 0+. If f is bounded, then ωf is finite.

Lemma 1.7. Suppose f is uniformly continuous. Then f extends uniquely to a
continuous map F : cl(S)→ Rn. This extension is again definable, with

ωf (t) ≤ ωF (t) ≤ inf
t′>0

ωf (t′ + t) for all t > 0.

In particular, F remains uniformly continuous.
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Proof. Uniqueness is easy to see (and only needs continuity of f). For existence,
take δ > 0 such that the restriction of ωf to the interval A := (0, δ) is finite. Let
x0 ∈ cl(S); we introduce a definable family C = C(x0) as follows: For t ∈ A let

Ct :=
⋂

x∈Bt(x0)∩S

Bωf (t)(f(x));

then C = {Ct}t∈A is a decreasing definable family of non-empty closed bounded
subsets of Rm. By Lemma 1.3, we have

⋂
C 6= ∅. Note that this intersection is a

singleton: if y 6= y′ are both in C, take t ∈ A such that ωf (t) < 1
2 ||y − y

′||; then
for every x ∈ Bt(x0) ∩ S we have ||y − f(x)|| ≤ ωf (t) and ||y′ − f(x)|| ≤ ωf (t),
hence ||y − y′|| ≤ 2ωf (t), a contradiction. Therefore we have a definable map
F : cl(S)→ Rm which sends x0 ∈ cl(S) to the unique element in

⋂
C(x0). Clearly

the map F extends f , and hence ωf ≤ ωF . Let t > 0 and x0, x1 ∈ cl(S) with
||x0 − x1|| ≤ t be given. For every t′ with 0 < t′ < δ − t we find y0, y1 ∈ S with
||x0 − y0|| ≤ t′/2 and ||x1 − y1|| ≤ t′/2, and so ||y0 − y1|| ≤ t+ t′; then

||F (x0)− F (x1)|| ≤ ||F (x0)− f(y0)||+ ||f(y0)− f(y1)||+ ||F (x1)− f(y1)||
≤ ωf (t′) + ωf (t′ + t) + ωf (t′).

The inequality for the moduli of continuity now follows by letting t′ → 0. �

As over R we have uniform continuity of definable continuous maps with closed
and bounded domain, as shown in the next lemma. (The classical proof of this fact
uses the finite subcover property of compact sets.) Notice that by Corollary 1.5,
definable, closed and bounded non-empty subsets D and E of Rm have a common
point if and only if d(D,E) = 0, where d(D,E) := inf

{
‖x− y‖ : x ∈ D, y ∈ E

}
is

the distance between D and E.

Lemma 1.8. Suppose S is closed and bounded, and f is continuous. Then f is
uniformly continuous.

Proof. Note that ωf is finite since f is bounded, cf. Proposition 1.4. We shall
show that ωf (t) → 0 as t → 0+. Assume, for a contradiction, that ε > 0 is
such that ωf (t) ≥ ε for arbitrarily small positive t. Then D := {(x, y) ∈ S × S :
‖f(x)− f(y)‖ ≥ ε} and E := {(x, x) : x ∈ S} are disjoint definable closed and
bounded non-empty sets with d(D,E) = 0, a contradiction. �

We say that a function ω : R≥0 → R∞ is a modulus of continuity of f if
ωf ≤ ω. The following is easy to show; we skip the proof:

Lemma 1.9. Let ω : R≥0 → R≥0 be definable, and let {fa}a∈A be a definable family
of functions fa : S → R with modulus of continuity ω. If the function

x 7→ inf
a∈A

fa(x) : S → R ∪ {−∞}

is finite at one point of S, then it is finite with modulus of continuity ω. Similarly,
if the function

x 7→ sup
a∈A

fa(x) : S → R ∪ {+∞}

is finite at one point of S, then it is finite with modulus of continuity ω.
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1.4. Lipschitz maps. Let f : S → Rn be a definable map, where S ⊆ Rm is non-
empty. Given L ∈ R≥0, we say that f is L-Lipschitz if ||f(x)− f(y)|| ≤ L||x− y||
for all x, y ∈ S. We call f Lipschitz if f is L-Lipschitz for some L ∈ R≥0. Every
Lipschitz map is uniformly continuous; in fact, given L ∈ R≥0, f is L-Lipschitz if
and only if t 7→ Lt is a modulus of continuity of f . Consequently, if f is L-Lipschitz,
then f extends uniquely to a continuous map cl(S) → Rn, and this map is also
L-Lipschitz, by Lemma 1.7.

We use non-expansive synonymously for 1-Lipschitz. By the triangle inequal-
ity, for every y ∈ Rn the function

x 7→ d(x, y) := ||x− y|| : Rn → R

is non-expansive. From Lemma 1.9 we therefore obtain:

Corollary 1.10. For every definable subset S of Rn, the distance function

x 7→ d(x, S) := inf
{
d(x, y) : y ∈ S

}
: Rn → R

is non-expansive.

The set S in the previous corollary was not assumed to be closed. However, in this
context one may often reduce to the case of a closed set, since d(x, S) = d(x, cl(S))
for every definable set S ⊆ Rn and every x ∈ Rn. For closed sets we have, as a
consequence of Corollary 1.5:

Corollary 1.11. Suppose S is closed and definable. Then for every x ∈ Rn there
is a nearest point of S to x, that is, a point y0 ∈ S such that d(x, y0) = d(x, S).

Proof. Let x ∈ Rn. Choose % > 0 such that the closed and bounded definable
set S ∩ B%(x) is non-empty. By Corollary 1.5 the function y 7→ d(x, y) attains a
minimum on this set, say at y0; then y0 is a nearest point of S to x. �

The following concept plays an important role in the proof of Theorem A below.

Definition. A map f : S → Rn, where S ⊆ Rn, is called firmly non-expansive if

‖f(x)− f(y)‖2 ≤ 〈f(x)− f(y), x− y〉 for all x, y ∈ S.

The Cauchy-Schwarz Inequality implies that every firmly non-expansive map
is non-expansive. We also have the following fact, well-known in classical convex
analysis (see, e.g., [15, Theorem 12.1]):

Proposition 1.12. Let S ⊆ Rn. Then f 7→ 1
2 (f + id) is a bijection from the set

of non-expansive maps S → Rn to the set of firmly non-expansive maps S → Rn.

Proof. For x, y ∈ S consider

a(x, y) := 1
4 ‖x− y‖

2 + 1
2 〈f(x)− f(y), x− y〉+ 1

4 ‖f(x)− f(y)‖2

=
∥∥ 1

2 (x+ f(x))− 1
2 (y + f(y))

∥∥2

and

b(x, y) := 1
2 ‖x− y‖

2 + 1
2 〈f(x)− f(y), x− y〉

=
〈

1
2 (x+ f(x))− 1

2 (y + f(y)), x− y
〉
.

Then x 7→ 1
2 (x+ f(x)) is firmly non-expansive if and only if a(x, y) ≤ b(x, y) for all

x, y ∈ S. Moreover, for given x, y ∈ S, the inequality a(x, y) ≤ b(x, y) holds if and
only if ‖f(x)− f(y)‖ ≤ ‖x− y‖. �
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1.5. Minkowski sum. Let A and B be subsets of Rn. We denote the (Minkowski)
sum of A and B by

A+B = {a+ b : a ∈ A, b ∈ B}.
If both A and B are closed, then A+B is not necessarily closed, as the example

A = {0} ×R, B =
{

(x, y) ∈ R2 : xy ≥ 1, x ≥ 0
}

shows. The following fact is used in Section 3.1.

Lemma 1.13. Let A,B ⊆ Rn be definable, and suppose A is closed, and B is
closed and bounded. Then A+B is closed.

Proof. Let z ∈ cl(A+B). Then for every ε > 0 the definable closed set

Cε :=
{

(a, b) ∈ A×B : ||a+ b− z|| ≤ ε
}

is non-empty. Note that each Cε is bounded: if (a, b) ∈ Cε then ||a|| ≤ ||a+b−z||+
||b − z|| ≤ ε + % + ||z|| where % > 0 is such that B ⊆ B%(0). Hence by Lemma 1.3
we have

⋂
ε>0 Cε 6= ∅, showing that z ∈ A+B. �

2. Basic Properties of Convex Sets

In this section, R is an expansion of an ordered field R. Recall: A ⊆ Rn is convex
if for all x, y ∈ A we have [x, y] ⊆ A. Here and below, for x, y ∈ Rn we write

[x, y] =
{
λx+ (1− λ)y : 0 ≤ λ ≤ 1

}
for the line segment in Rn connecting x and y. (We also use analogous notation
for the half-open line segments (x, y] and [x, y).) If A, B are convex, then so are
A+B and λA = {λa : a ∈ A}, where λ ∈ R.

2.1. Theorems of Carathéodory, Radon, and Helly. The intersection of an
arbitrary family of convex subsets of Rn is convex. In particular, the intersection
of all convex subsets of Rn which contain a given set A ⊆ Rn is a convex set
containing A, called the convex hull conv(A) of A. As in the case R = R (cf., e.g.,
[39, Theorem 2.2.2]), one shows that conv(A) is the set of convex combinations
of elements of A, that is, the set of x ∈ Rn for which there are x1, . . . , xk ∈ Rn
and λ1, . . . , λk ∈ R≥0 such that x =

∑
i λixi and

∑
i λi = 1. In fact, only convex

combinations of n+ 1 elements of A need to be considered:

Lemma 2.1 (Carathéodory’s Theorem). Let A be a subset of Rn, and let x ∈
conv(A). Then x is a convex combination of affinely independent points in A. In
particular, x is a convex combination of at most n+ 1 points in A.

This is also shown just as for R = R, cf. [39, Theorem 2.2.4]. We record some
consequences of this lemma. First, an obvious yet important observation:

Corollary 2.2. The convex hull of every definable subset of Rn is definable.

Clearly the convex hull of a bounded subset of Rn is bounded. The union of a
line and a point not on it shows that the convex hull of a closed definable set need
not be closed. However, we have:

Corollary 2.3. Let A ⊆ Rn. Then conv(cl(A)) ⊆ cl(conv(A)). Moreover, if R is
definably complete and A is definable and bounded, then conv(cl(A)) = cl(conv(A));
in particular, the convex hull of every closed and bounded definable set is closed.
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Proof. It is easy to see that the closure of a convex set is convex; this yields
conv(cl(A)) ⊆ cl(conv(A)). Now suppose R is definably complete and A is de-
finable and bounded. Then the set

C :=

{
(λ1, . . . , λn+1, x1, . . . , xn+1) : λi ≥ 0, xi ∈ cl(A),

n+1∑
i=1

λi = 1

}

of R(n+1)2 is definable, closed, and bounded. Hence by Proposition 1.4 its image
under the definable continuous map

(λ1, . . . , λn+1, x1, . . . , xn+1) 7→
n+1∑
i=1

λixi ∈ Rn

is also closed and bounded. By Carathéodory’s Theorem, this image is equal to
conv(cl(A)). Thus cl(conv(A)) ⊆ cl(conv(cl(A)) = conv(cl(A)). �

The next fact is also shown as in the case R = R; cf. [39, Theorem 2.2.5].

Lemma 2.4 (Radon’s Lemma). Each finite set of affinely dependent points in Rn

is a union of two disjoint sets whose convex hulls have a common point.

As for R = R, Radon’s Lemma implies Theorem B in the case of a finite family
of convex sets; see [39, Theorem 7.1.1] for a proof. Given a family F = {Fi}i∈I of
sets, we say that F has the n-intersection property if Fi1 ∩ · · · ∩ Fin 6= ∅ for all
i1, . . . , in ∈ I, and we say that F has the finite intersection property if F has
the n-intersection property for some n.

Corollary 2.5 (Helly’s Theorem for finite families). Let A1, . . . , Ak ⊆ Rn be con-
vex. If {Ai}i=1,...,k has the (n+ 1)-intersection property, then A1 ∩ · · · ∩Ak 6= ∅.

The following consequence for arbitrary families of convex sets is perhaps well-
known, but we could not locate it in the literature:

Corollary 2.6. Let C = {Ca}a∈A be a family of convex subsets of Rn, and suppose
p1, . . . , pk ∈ Rn have the property that for all a1, . . . , an+1 ∈ A there is some
i ∈ {1, . . . , k} such that pi ∈ Ca1 ∩ · · · ∩ Can+1 . Then

⋂
C 6= ∅.

Proof. Let P = {p1, . . . , pk}. Then P = {conv(Ca ∩ P )}a∈A is a family of convex
subsets of Rn with only finitely many distinct members, and by assumption, P has
the (n+ 1)-intersection property. Hence ∅ 6=

⋂
P ⊆

⋂
C by Corollary 2.5. �

2.2. Convex functions. Let f : S → R±∞, where S ⊆ Rn. The epigraph of f
is the set

epi(f) =
{

(x, t) ∈ Rn ×R : x ∈ S, t ≥ f(x)
}
.

We say that f is convex if epi(f) is a convex subset of Rn+1, and we say that f is
concave if −f is convex. Clearly if f is convex, then its domain

dom(f) = {x ∈ S : f(x) < +∞}

is a convex subset of Rn, since dom(f) = π(epi(f)) where π : Rn+1 → Rn is the
natural projection onto the first n coordinates. We say that f is proper if epi(f)
is non-empty and contains no vertical lines, i.e., f(x) < +∞ for some x ∈ S and
f(x) > −∞ for all x ∈ S. Otherwise, f is called improper.
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Example 2.7. Suppose S is a convex subset of Rn and f(x) > −∞ for all x ∈ S.
Then f is convex if and only if for all x, y ∈ S and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all λ ∈ [0, 1],

where this inequality is interpreted in R∞. If f is finite and convex, then extending
f by setting f(x) := +∞ for x ∈ Rn \ S yields a convex function Rn → R∞ (and
every proper convex function Rn → R∞ arises in this way from the restriction to its
domain). For example, the constant function 0 on S extends to a convex function
δS : Rn → R∞ with δS |(Rn \ S) ≡ +∞, called the indicator function of S.

We say that f is definable if the restriction of f to the set f−1(R) of points at
which f is finite is definable (as function f−1(R)→ R). Similarly, a family {fa}a∈A
of functions fa : Sa → R±∞ (where A ⊆ Rm and Sa ⊆ Rn for every a ∈ A) is called
definable if the family {fa|f−1

a (R)}a∈A is definable.

2.3. Constructing convex functions. Throughout the rest of this section, we
assume that R is definably complete. The following lemma (which is easy to verify)
shows in particular that the pointwise supremum of a definable family of convex
functions is convex:

Lemma 2.8. Let f : Rn → R±∞, and let {fa}a∈A be a definable family of functions
fa : Rn → R±∞. Then

f = sup
a∈A

fa ⇐⇒ epi(f) =
⋂
a∈A

epi(fa).

The next lemma is also easily proved; it allows the construction of convex func-
tions from fibers of definable convex sets:

Lemma 2.9. Let C be a convex definable subset of Rn+1. Then f : Rn → R±∞
defined by f(x) = inf Cx is convex with domain π(C), where π : Rn+1 → Rn is the
projection onto the first n coordinates.

Let now f : Rn → R±∞ be definable, and let A : Rn → Rm be R-linear. We
denote the definable function

x 7→ inf
{
f(y) : A(y) = x

}
: Rm → R±∞

by Af . Applying the lemma above to C = (A× id)(epi(f)) yields:

Lemma 2.10. Suppose f is convex. Then Af is convex with domain A(dom(f)).

Let f, g : Rn → R∞ be definable. The (infimal) convolution f �g : Rn → R±∞
of f and g is defined by

(f � g)(x) := inf
y∈Rn

(
f(y) + g(x− y)

)
for x ∈ Rn.

By the previous lemma, if f and g are convex, then f � g is convex, with domain
dom(f) + dom(g). (However, if f and g are proper, f � g may fail to be proper, as
the example f = idR, g = − idR shows.) Note that for every x ∈ Rn,

(f � g)(x) = inf
{
s+ t : (y, s) ∈ epi(f), (z, t) ∈ epi(g), y + z = x

}
and hence

(2.1) epi(f) + epi(g) ⊆ epi(f � g) ⊆ cl(epi(f) + epi(g)).
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2.4. The distance function and the metric projection. After this digression
on convex functions, we return to the study of convex sets. For the rest of this
section we fix a non-empty convex closed definable subset C of Rn. Recall that the
distance from x ∈ Rn to C is defined by

d(x,C) = inf
{
||x− c|| : c ∈ C

}
.

We have:

Lemma 2.11. The function x 7→ d(x,C) : Rn → R is convex.

Proof. The function d( · , C) may be expressed as the convolution of the Euclidean
norm and the indicator function of C. �

Lemma 2.12. For every x ∈ Rn, there is a unique element of C of smallest
distance to x.

Proof. We have existence by Corollary 1.11. For uniqueness, let x ∈ Rn, and
suppose y1, y2 ∈ C are both nearest points of C to x. Then z := 1

2 (y1 + y2) ∈ C
and ||x− z|| < ||x− y1|| except if y1 = y2. �

Given x ∈ Rn, we denote the unique nearest point to x in C by p(x,C). The
map x 7→ p(x,C) : Rn → S is called the (metric) projection of C. Note that

d(x,C) = ||x− p(x,C)|| = min
{
||x− y|| : y ∈ C

}
.

Lemma 2.13. For all x ∈ Rn and z ∈ C we have〈
x− p(x,C), z − p(x,C)

〉
≤ 0.

Proof. Let x ∈ Rn, z ∈ C, and put p := p(x,C). For 0 < λ ≤ 1 set zλ :=
λ z + (1− λ) p. Then zλ ∈ C and hence

‖x− p‖2 ≤ ‖x− zλ‖2 = ‖(x− p) + λ(z − p)‖2 .

Subtracting ‖x− p‖2 yields 0 ≤ λ2 ‖z − p‖2 − 2λ〈x− p, z − p〉. Dividing by λ and
taking λ→ 0 yields the lemma. �

Corollary 2.14. The projection p( · , C) is firmly non-expansive.

Proof. Let x, y ∈ Rn; we need to show that

〈x− y, p(x,C)− p(y, C)〉 ≥ ‖p(x,C)− p(y, C)‖2 .
To see this apply Lemma 2.13 to (x, p(y, C)) and (y, p(x,C)) in place of (x, z),
respectively, and add the resulting inequalities. �

The following lemma is used in the proof of Theorem B in the next section:

Lemma 2.15. Suppose C is bounded, and let x ∈ Rn \ C, p = p(x,C), and
z ∈ (x, p]. Then there is a δ > 0 such that ||z − c|| ≤ ||x− c|| − δ for every c ∈ C.

Proof. Suppose not. Then for every δ > 0 the set

Cδ :=
{
c ∈ C : ||z − c|| ≥ ||x− c|| − δ

}
is non-empty, and so we have a decreasing definable family {Cδ}δ>0 of closed and
bounded non-empty sets. Hence by Lemma 1.3 there is some c ∈ C with ||z− c|| ≥
||x− c||. Let a be the point of smallest distance to c on the line through x and p.
Then Pythagoras yields ||a− z|| ≥ ||a− x||, a contradiction to x 6= z. �
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2.5. Supporting hyperplanes. Given p, u ∈ Rn, u 6= 0, and α ∈ R we write

Hu,p =
{
y ∈ Rn : 〈y, u〉 = 〈p, u〉

}
for the hyperplane in Rn through p orthogonal to u. Note that if 〈p, u〉 = 〈p′, u〉
then Hu,p = Hu,p′ , and we sometimes write Hu,α for Hu,p, where α = 〈p, u〉. Given
a hyperplane H = Hu,α, we write

H+ =
{
y ∈ Rn : 〈y, u〉 ≥ α

}
, H− =

{
y ∈ Rn : 〈y, u〉 ≤ α

}
for the two closed halfspaces bounded by H.

Let S ⊆ Rn. Given a hyperplane H = Hu,α and a point x ∈ Rn, we say that H
supports S at x if x ∈ S ∩H and S ⊆ H+ or S ⊆ H−. (In this case necessarily
x ∈ bd(S).)

Lemma 2.16. Let x ∈ Rn \ C. The hyperplane H = Hu,p through p = p(x,C)
orthogonal to u = x − p supports C at p, and C is contained in the halfspace H−

bounded by H which does not contain x.

Proof. By Lemma 2.13 and since x 6= p, for every y ∈ C we have 〈y, x − p〉 ≤
〈x− p, p〉 < 〈x, x− p〉, and this yields the lemma. �

In particular, the previous lemma implies that if C 6= Rn, then C is the inter-
section of all closed halfspaces which contain C.

Corollary 2.17. For each p ∈ bd(C) there exists some y ∈ bd(B1(p)) with p =
p(y, C). Hence for every p ∈ bd(C) there is a hyperplane that supports C at p.

Proof. Let p ∈ bd(C). For every ε with 0 < ε < 1 there is some x ∈ Bε(p) \ C;
then ||p− p(x,C)|| ≤ ||p−x|| < ε by Corollary 2.14, and since the distinct points x
and p(x,C) are in B1(p), there is a (unique) y on the sphere S := bd(B1(p)) with
x ∈ [p(x,C), y]. By Lemma 2.16 we have p(x,C) = p(y, C). This means that for
every ε > 0 the definable set

Sε :=
{
y ∈ S : Bε(p) ∩ [p(y, C), y] 6= ∅

}
is non-empty. It is easily verified that each Sε is closed and bounded. By Lemma 1.3
take y ∈

⋂
ε>0 Sε. Then for every ε > 0 there is some x ∈ [p(y, C), y] with ||x−p|| ≤

ε; hence ||p(y, C)− p|| = ||p(x,C)− p|| ≤ ||x− p|| ≤ ε. Thus p = p(y, C). �

Remark. The existence of a supporting hyperplane through every boundary point
characterizes convex sets among definable closed subsets of Rn with non-empty
interior; this can be shown as in the case R = R, see, e.g., [34, Theorem 1.3.3].

2.6. Separating hyperplanes. Let A,B ⊆ Rn and let H = Hu,α be a hyperplane.
We say that H separates A and B if A ⊆ H− and B ⊆ H+, or vice versa. If
there is a hyperplane separating A and B, we say that A and B can be separated.

Proposition 2.18. Let S ⊆ Rn be definable and non-empty, and let x ∈ Rn \ S.
Suppose S is closed, or S is open. Then S and {x} can be separated.

To see this we use:

Lemma 2.19. Let A ⊆ Rn be convex with non-empty interior. Then int(cl(A)) =
int(A) and hence bd(A) = bd(cl(A)).

Proof. The inclusion int(A) ⊆ int(cl(A)) is trivial. Conversely, let z ∈ int(cl(A)).
Take an arbitrary x ∈ int(A). Then there exists y ∈ cl(A) such that z ∈ [x, y). As in
the case R = R (cf. [34, Lemma 1.1.8]) one shows that this implies z ∈ int(A). �
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Proof (Proposition 2.18). Suppose first that S is closed, and set p = p(x, S), u =
x− p. Then the hyperplane which is parallel to the supporting hyperplane Hu,p of
S at p and passes through (p + x)/2 separates S and {x}. If S is not closed and
x /∈ cl(S), then every hyperplane separating cl(S) and {x} also separates S and
{x}. If S is open and x ∈ cl(S), then x ∈ bd(cl(S)), so by Corollary 2.17 there is a
supporting hyperplane H to cl(S) through x, and H separates S and {x}. �

We obtain a definable version of a special case of the separation theorem for
convex sets [39, Theorem 2.4.10]:

Corollary 2.20. Let A,B ⊆ Rn be definable non-empty convex sets with A∩B = ∅.
If A is open, or if A is closed and B is closed and bounded, then A and B can be
separated.

Proof. The convex set S := A − B does not contain the origin 0 of Rn. If A is
open, then so is S, and if A is closed and B is closed and bounded, then S is closed
(Lemma 1.13). Hence S and {0} can be separated by Proposition 2.18. It is easy
to see that this yields that A and B can be separated. �

3. Proof of Theorem B

Suppose that R is a definably complete expansion of an ordered field, and let
C = {Ca}a∈A be a definable family of closed bounded convex subsets of Rn, with
A 6= ∅. Assume C has the (n+ 1)-intersection property; we need to show

⋂
C 6= ∅.

Fix an arbitrary a0 ∈ A. By Helly’s Theorem for finite families (Corollary 2.5), the
definable family C′ = {Ca ∩ Ca0}a∈A of closed bounded convex subsets of Rn also
has the (n + 1)-intersection property. Hence, after replacing C by C′ if necessary,
we may assume that

⋃
a∈A Ca is bounded. In particular, for each x ∈ Rn, the set of

distances d(x,Ca) (where a ranges over A) is bounded from above, and we obtain
a definable function d : Rn → R given by

d(x) := sup
a∈A

d(x,Ca).

The function d is convex and non-expansive. (Lemmas 1.9 and 2.8, and Corol-
lary 1.10.) In particular, for % > 0 such that B%/2(0) ⊇

⋃
a∈A Ca, the restriction of d

toB%(0) has a minimum. (Corollary 1.5.) This minimum must be attained inB%(0),
and is indeed a global minimum of d. Let x0 ∈ Rn such that d(x0) = minx∈Rn d(x).
If d(x0) = 0 then x0 ∈

⋂
a∈A Ca, and we are done. So assume d(x0) > 0. We obtain

a definable map

a 7→ xa := p(x0, Ca) : A→
⋃
a

Ca.

We have ||x0 − xa|| = d(x0, Ca) for each a ∈ A. Let ε > 0 be given. The definable
set

Aε :=
{
a ∈ A : d(x0)− ε ≤ d(x0, Ca)

}
is non-empty. We let H be the image of Aε under a 7→ xa, and put C :=
cl(conv(H)). (There is no reason to believe that conv(H) is closed, unless, for
example, Aε is finite.)

Claim. x0 ∈ C.
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Proof. Suppose for a contradiction that x0 /∈ C. Let p = p(x0, C), and let z ∈ [x0, p]
such that ||x0 − z|| = ε/2. We show that d(z) < d(x0); this will contradict the
minimality of d(x0). If a /∈ Aε, then d(x0) − ε > d(x0, Ca), and since d( · , Ca) is
non-expansive, we have

d(z, Ca)− d(x0, Ca) ≤ ||z − x0|| = ε/2

and hence
d(z, Ca) ≤ ε/2 + (d(x0)− ε) = d(x0)− ε/2.

Let δ > 0 be as in Lemma 2.15 applied to x = x0. Then for all a ∈ Aε we have

d(z, Ca) ≤ ||z − xa|| ≤ ||x0 − xa|| − δ = d(x0, Ca)− δ ≤ d(x0)− δ.

Hence d(z) ≤ d(x0)−min(ε/2, δ). �

By the claim and Carathéodory’s theorem there are elements a1, . . . , an+1 ∈ Aε
and non-negative λ1, . . . , λn+1 ∈ R with

∑
i λi = 1 and ||x0 −

∑
i λixai

|| < ε2. By
Lemma 2.16, for y ∈ Cai

we have

〈y − x0, xai − x0〉 ≥ ||xai − x0||2,

and since
||xai

− x0|| = d(x0, Cai
) ≥ d(x0)− ε,

we obtain

(3.1) 〈y − x0, xai
− x0〉 ≥ (d(x0)− ε)2.

Take y with y ∈ Cai
for all i. (Such y exists by the assumption of the theorem.)

Then using (3.1) and the Cauchy-Schwarz Inequality we get

(d(x0)− ε)2 ≤
∑
i

λi〈y − x0, xai − x0〉

=

〈
y − x0,

∑
i

λixai
− x0

〉
≤ ||y − x0|| · ε2 ≤ r · ε2,

where r > 0 is such that conv(
⋃
a∈A Ca) ⊆ Br(x0). Hence

(
d(x0)
ε − 1

)2

≤ r, and
this is a contradiction for sufficiently small ε > 0. �

Remark. The proof of Theorem B given above exploits a certain duality between
the intersection properties of convex sets and the representation of elements in the
convex hull. After a first version of this manuscript was completed, we became
aware of Sandgren’s proof of Helly’s Theorem [33] (in the exposition of Valentine
[38]) in which this duality is made more explicit. This proof may probably be
adapted to give another proof of Theorem B above.

3.1. Applications. In this subsection we give some applications of Theorem B.
Throughout we assume that R is a definably complete expansion of an ordered
field. By a translate of A ⊆ Rn we mean a set of the form x+A, for some x ∈ Rn.
The following generalizes Theorem B (which corresponds to the case where K is a
singleton):
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Corollary 3.1. Let C = {Ca}a∈A be a definable family of closed bounded convex
subsets of Rn, and let K ⊆ Rn be definable, closed, bounded and convex. If any
n + 1 elements of C intersect some translate of K non-trivially, then there is a
translate of K intersecting every element of C non-trivially.

Proof. Recall Lemma 1.13 and apply Theorem B to the family {K − Ca}a∈A. �

Combining Helly’s Theorem for finite families (Corollary 2.5) with Theorem B
yields another slight variant:

Corollary 3.2. Suppose C is a definable family of closed convex subsets of Rn, each
n + 1 of which intersect non-trivially, and assume some intersection C of finitely
many members of C is bounded. Then

⋂
C 6= ∅.

By taking complements, Theorem B about intersections of closed sets immedi-
ately gives rise to a result about coverings by open sets:

Corollary 3.3. Let F = {Fa}a∈A be a definable family of open subsets of Rn with
the property that for every a ∈ A, the complement Rn \ Fa is convex. Let C be a
closed bounded convex definable subset of Rn with C ⊆

⋃
F . Then there are n+ 1

members Fa1 , . . . , Fan+1 of F with C ⊆ Fa1 ∪ · · · ∪ Fan+1 .

The hypotheses on F are satisfied, e.g., by the family of open halfspaces in Rn.

Corollary 3.4 (Jung’s Theorem). Let A be a definable subset of Rn of diameter
at most 1 (i.e., ||a − b|| ≤ 1 for all a, b ∈ A). Then there is a closed ball of radius
% =

√
n/(2(n+ 1)) containing A.

Proof. If A has at most n+1 elements, this may be shown as for R = R, cf. [39, The-
orem 7.1.6]. Hence for arbitrary A, by Theorem B there is some x ∈

⋂
a∈AB%(a),

and then A ⊆ B%(x). �

Given a subset A of Rn, a family {Ca}a∈A of subsets of A is called a Knaster-
Kuratowski-Mazurkiewicz family (KKM family for short) if for every finite
subset F of A,

conv(F ) ⊆
⋃
a∈F

Ca.

The KKM Theorem (see [17, 16]) states that if A is a non-empty compact convex
subset of Rn, then every KKM family consisting of closed subsets of A has a non-
empty intersection. From Theorem B we obtain:

Corollary 3.5 (KKM Theorem for definable families of convex sets). Let A be a
closed and bounded non-empty subset of Rn and let C = {Ca}a∈A be a KKM family
where each Ca is closed and convex. Then

⋂
C 6= ∅.

Proof. The argument in the proof of [17, Théorème 1] for the case R = R shows
that C has the finite intersection property. Hence

⋂
C 6= ∅ by Theorem B. �

The KKM Theorem for convex sets has numerous consequences (minimax the-
orems etc.), whose proofs go through for definable objects; cf. [17, 16]. Other
applications of Helly’s Theorem, some of which may also be transferred into the
present context, can be found in [5, 11]. Our last application of Theorem B is used
in the proof of Theorem A in the next sections:
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Corollary 3.6. Let f : A → Rn, A ⊆ Rn, be a definable non-expansive map, and
let x ∈ Rn \A. Then f extends to a non-expansive map A ∪ {x} → Rn.

Proof. We have to show that the set

B :=
⋂
a∈A

{
y ∈ Rn : ‖y − f(a)‖ ≤ ‖x− a‖

}
is non-empty, because if y ∈ B, then we obtain an extension of f to a non-expansive
map A ∪ {x} → Rn by x 7→ y.

Claim. Let x1, . . . , xk ∈ Rm and y1, . . . , yk ∈ Rn for which the inequalities

‖yi − yj‖ ≤ ‖xi − xj‖ (1 ≤ i, j ≤ k)

hold, and let r1, . . . , rk ∈ R>0. If

Br1(x1) ∩ · · · ∩Brk
(xk) 6= ∅,

then
Br1(y1) ∩ · · · ∩Brk

(yk) 6= ∅.

(To see this, repeat the proof for the case R = R given in [20, Lemma 2.7], or use
the fact that the claim can be expressed as a sentence in the language of ordered
rings, and apply Tarski’s Transfer Principle and loc. cit. A stronger version of the
claim for R = R can be found in [18].)

Consider the definable family B = (Ba)a∈A of closed balls in Rn given by

Ba := B||x−a||
(
f(a)

)
=
{
y ∈ Rn : ‖y − f(a)‖ ≤ ‖x− a‖

}
.

Let a1, . . . , an+1 ∈ A. Then yi := f(ai) and xi := x−ai satisfy the conditions of the
claim, hence Ba1 ∩ · · · ∩Ban+1 6= ∅. Thus by Theorem B we have B =

⋂
B 6= ∅. �

Remark. In the context of the previous corollary, suppose that f is firmly non-
expansive. Then there exists an extension of f to a firmly non-expansive map
A ∪ {x} → Rn, by the corollary and Proposition 1.12.

3.2. A related result. Let S be a set and let F be a family of subsets of S. A
subset T of S is called a transversal of F if every member of F intersects T non-
trivially. The following was shown by Peterzil and Pillay [30], as an application of
a result implicit in work of Dolich [6]:

Theorem 3.7. Let R be an o-minimal structure with definable choice function,
and let F = {Fa}a∈A be a definable family of closed and bounded subsets of Rn

parametrized by a subset A of Rm. If F has the N(m,n)-intersection property
where

N(m,n) = (1 + 2m) · (1 + 22m

) · · · (n factors),
then F has a finite transversal.

This theorem gives rise to another proof of Theorem B, kindly communicated
to us by S. Starchenko, in the case where R is an o-minimal expansion of an
ordered field. Suppose R is such an expansion, and let C = {Ca}a∈A be a definable
family of closed bounded convex subsets of Rn, with A 6= ∅, having the (n + 1)-
intersection property. By Helly’s theorem for finite families (Corollary 2.5), the
(definable) family whose members are the intersections of n+ 1 members of C has
the finite intersection property, and hence has a finite transversal by Theorem 3.7.
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That is, there are p1, . . . , pk ∈ Rn such that for all a1, . . . , an+1 ∈ A we have
pi ∈ Ca1 ∩ · · · ∩ Can+1 for some i. Now Corollary 2.6 yields

⋂
C 6= ∅. �

We finish with an example to show that the natural analogue of the Heine-Borel
Theorem fails in the definable category:

Example 3.8. Suppose R is a non-archimedean real closed field, and let ε ∈ R be
a positive infinitesimal. Then the definable family F = {Fa}a∈A of closed and
bounded subsets of A = [0, 1] given by Fa = [0, 1] \ (a− ε, a+ ε) for a ∈ A has the
finite intersection property, but

⋂
F = ∅. However, any two distinct elements of

A ∩Q form a transversal of F . (This is a simplification of an example in [30].)

4. Basic Convex Analysis

In this section we develop a few fundamental results from convex analysis required
for the proof of Theorem A. See [4, 21, 32] for this material in the classical case.

4.1. Lower semicontinuous functions. In this subsection we let f : Rn → R±∞
be a function. One says that f is lower semicontinuous (l.s.c.) if for each x ∈ Rn
and δ > 0, there exists ε > 0 such that f(y) ≥ f(x)− δ for all y ∈ Bε(x). A contin-
uous function Rn → R is clearly l.s.c. Lower semicontinuity may be characterized
geometrically:

Lemma 4.1. The following are equivalent:
(1) f is l.s.c.;
(2) epi(f) is closed;
(3) for every r ∈ R, the sublevel set f−1(R≤r) =

{
x ∈ Rn : f(x) ≤ r

}
of f is

closed.

Proof. Suppose f is l.s.c., and let (x, r) ∈ cl(epi(f)). Let δ > 0 be given, and choose
ε with 0 < ε ≤ δ as in the definition of l.s.c. above. There exists (y, t) ∈ epi(f)
with ||x− y|| < ε and ||r − t|| < ε. Hence

r + δ > t ≥ f(y) ≥ f(x)− δ.

Since this inequality holds for all δ > 0, we obtain r ≥ f(x), that is, (x, r) ∈ epi(f).
This shows (1) ⇒ (2). The implication (2) ⇒ (3) follows from the identity

f−1(R≤r)× {r} = epi(f) ∩ (Rn × {r}).

Suppose all sublevel sets of f are closed, and let x ∈ Rn and δ > 0 be given. Then
x /∈ f−1(R≤r), where r := f(x)− δ if f(x) <∞ and r := 0 otherwise. Hence there
exists ε > 0 such that y /∈ f−1(R≤r) for all y ∈ Bε(x). Thus f is l.s.c. �

For proper convex functions Rn → R∞, we use closed synonymously with l.s.c.,
and we also declare the constant functions +∞ and −∞ to be closed. Note that if
f, g : Rn → R∞ are closed convex, then so is λf + µg, for each λ, µ ∈ R≥0.

The following proposition is an analogue for definable convex functions of the
supporting hyperplane lemma (Lemma 2.16). It is proved similar to the case R = R,
see [21, Proposition IV.1.2.8] or [32, Theorem 12.1]. A function ϕ : Rn → R of the
form x 7→ 〈x, u〉 − α (where u ∈ Rn, α ∈ R) is called affine. Alternatively, ϕ is
affine if and only if ϕ is both convex and concave. The epigraph of an affine function
Rn → R is a closed halfspace in Rn+1. Below we let ϕ (possibly with subscripts)
range over all affine functions Rn → R.
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Proposition 4.2. Suppose f is definable. The following are equivalent:
(1) f is closed convex;
(2) f = sup

{
ϕ : ϕ ≤ f

}
;

(3) f = supa∈A ϕa for some definable family of affine functions {ϕa}a∈A.

Proof. The implication (2)⇒ (3) is trivial, and (3)⇒ (1) follows from Lemma 2.8.
To show (1) ⇒ (2), suppose f is closed convex. We may assume that f is proper,
so epi(f) is a proper non-empty closed convex definable subset of Rn+1. Hence
epi(f) is the intersection of all closed halfspaces containing epi(f). (Lemma 2.16.)
As in the case R = R one now shows that only the hyperplanes corresponding
to epigraphs of affine functions are required in this intersection; cf. proof of [21,
Proposition IV.1.2.8]. (The reference to [21, Proposition 1.2.1] in that proof is
superfluous.) �

4.2. Conjugates. Let f : Rn → R±∞ be definable. The (Fenchel) conjugate of
f is the definable function f∗ : Rn → R±∞ given by

f∗(x∗) := sup
x∈Rn

(
〈x, x∗〉 − f(x)

)
.

Note that if there is x0 ∈ Rn with f(x0) = −∞, then f∗ ≡ +∞, whereas if f ≡ +∞
then f∗ ≡ −∞. Clearly if g : Rn → R±∞ is another definable function and f ≤ g,
then f∗ ≥ g∗. We summarize further properties of conjugates in the next lemma:

Lemma 4.3. Let f : Rn → R±∞ be definable. Then:
(1) The function f∗ is closed convex.
(2) We have f∗∗ := (f∗)∗ ≤ f , with equality if and only if f is closed convex.
(3) If f is proper closed convex, then f∗ is proper, and 〈x, x∗〉 ≤ f(x) + f∗(x∗)

for all x, x∗ ∈ Rn. (Fenchel-Young Inequality.)

Proof. Clearly f∗ is closed convex, being the supremum of a definable family of
affine functions. This shows (1), and also that f is closed convex if f∗∗ = f . It is
easy to check that f∗∗ ≤ f , with equality if f is an affine function Rn → R. Hence
if f is closed convex, then for every affine function ϕ : Rn → R with ϕ ≤ f we
have ϕ = ϕ∗∗ ≤ f∗∗ ≤ f . Thus f∗∗ = f by Proposition 4.2. This shows (2). Note
that (2) implies that if f is proper closed convex, then f∗ is proper, since the only
improper closed convex functions are +∞ and −∞, which are conjugate to each
other. The Fenchel-Young Inequality is now immediate. �

Given λ ∈ R>0 we define

λ ∗ f : Rn → R±∞, (λ ∗ f)(x) = λf(x/λ) for x ∈ Rn.

Note that if f and g : Rn → R∞ are definable and proper, then λ ∗ (f � g) =
(λ ∗ f) � (λ ∗ g). The formulas in the following lemma are useful for computing
conjugates.

Lemma 4.4. Let f, g : Rn → R∞ be definable and convex.
(1) For all λ > 0, we have (λf)∗ = λ ∗ f∗ and (λ ∗ f)∗ = λf∗.
(2) Let A : Rn → Rm be R-linear. Then (Af)∗ = f∗ ◦A∗, where A∗ : Rm → Rn

is the adjoint of A. In particular, (f � g)∗ = f∗ + g∗.
(3) Suppose

f(x) = g(x− a) + 〈x, a∗〉+ α for all x ∈ Rn,
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where a, a∗ ∈ Rn and α ∈ R. Then

f∗(x∗) = g∗(x∗ − a∗) + 〈x∗, a〉+ α∗ for all x∗ ∈ Rn,

where α∗ = −α− 〈a, a∗〉.

Proof. Part (1) is easily verified by direct computation. For (2) see [40, Theo-
rem 2.3.1, (ix)], and for (3) see [32, Theorem 12.3]. �

If g : Rn → R±∞ is definable and concave (so −g is convex), then the conjugate
of g is the definable function g∗ : Rn → R±∞ given by

g∗(x∗) := inf
x∈Rn

(
〈x, x∗〉 − g(x)

)
= −(−g)∗(−x∗).

Next we show a definable version of the Fenchel Duality Theorem [32, Theorem 31.1]
in a special case:

Proposition 4.5. Let f : Rn → R∞ be definable proper convex, and let g : Rn → R
be definable continuous concave. Then

inf
x∈Rn

(
f(x)− g(x)

)
= max
x∗∈Rn

(
g∗(x∗)− f∗(x∗)

)
.

Proof. For all x, x∗ ∈ Rn we have

f(x) + f∗(x∗) ≥ 〈x, x∗〉 ≥ g(x) + g∗(x∗)

by Fenchel-Young, hence infx
(
f(x) − g(x)

)
≥ supx∗

(
g∗(x∗) − f∗(x∗)

)
. Set α :=

infx
(
f(x) − g(x)

)
; we may assume α > −∞. It now suffices to show that there

exists x∗ ∈ Rn such that g∗(x∗) − f∗(x∗) ≥ α. Consider the non-empty definable
convex sets

A := epi(f), B :=
{

(x, t) ∈ Rn+1 : t < g(x) + α
}
.

Then B is open, and A∩B = ∅. Hence by Corollary 2.20 there exists a hyperplane
H in Rn+1 separating A and B. If H were vertical, i.e., of the form H = H ′ × R
for some hyperplane H ′ in Rn, then H ′ would separate dom(f) and Rn, which
is impossible. Therefore H is the graph of an affine function x 7→ 〈x, x∗〉 − α∗

(x∗ ∈ Rn, α∗ ∈ R). Then for all x ∈ Rn we have

f(x) ≥ 〈x, x∗〉 − α∗ ≥ g(x) + α.

This yields α = (α∗ + α)− α ≤ g∗(x∗)− f∗(x∗) as required. �

4.3. Examples of conjugates. The functions discussed in the following examples
will be of constant use below.

Example 4.6. The function x 7→ q(x) := 1
2 ‖x‖

2 : Rn → R is the only definable
closed convex function Rn → R∞ such that q∗ = q.

Proof. To see that q is convex use the identity

‖λx+ µy‖2 = λ ‖x‖2 + µ ‖y‖2 − λµ ‖x− y‖2

which holds for all x, y ∈ Rn and λ, µ ∈ R≥0 with λ+µ = 1. Since q is continuous,
q is closed. Let f : Rn → R∞ be definable closed convex such that f∗ = f . Then
f is proper, and by Fenchel’s Inequality 〈x, x〉 ≤ f(x) + f∗(x) = 2f(x), thus f ≥ q
and hence f = f∗ ≤ q∗ = q, so f = q. �
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Example 4.7. The conjugate of the convex function κ : Rn × Rn → R given by
κ(x, y) := q(x− y) is the function κ∗ : Rn ×Rn → R∞ given by

κ∗(x∗, y∗) =

{
q(x∗), if x∗ = −y∗,
+∞, otherwise.

Proof. Suppose that x∗ 6= −y∗. Then ‖x∗ + y∗‖ > 0, hence

κ∗(x∗, y∗) = sup
(x,y)

(〈
(x∗, y∗), (x, y)

〉
− 1

2 ‖x− y‖
2
)

≥︸︷︷︸
x=y=t(x∗+y∗)

sup
t

〈
(x∗, y∗), t(x∗ + y∗, x∗ + y∗)

〉
= sup

t
t ‖x∗ + y∗‖2 =∞.

We also have
1
2 ‖x

∗‖2 =
〈
(x∗,−x∗), (x∗, 0)

〉
− 1

2 ‖x
∗ − 0‖2 ≤ κ∗(x∗,−x∗)

and

κ∗(x∗,−x∗) = sup
(x,y)

(〈
(x∗,−x∗), (x, y)

〉
− 1

2 ‖x− y‖
2
)

= sup
(x,y)

(
〈x∗, x− y〉 − 1

2 ‖x− y‖
2
)

≤ sup
(x,y)

(
‖x∗‖ ‖x− y‖ − 1

2 ‖x− y‖
2
)

=︸︷︷︸
‖x−y‖=t‖x∗‖

sup
t
‖x∗‖2

(
t− t2

2

)
= 1

2 ‖x
∗‖2 ,

hence κ∗(x∗,−x∗) = 1
2 ‖x

∗‖2. �

Example 4.8. The function ∆: Rn×Rn → R given by ∆(x, y) := q(x+y) = κ(x,−y)
is convex and continuous. Note that ∆ satisfies the useful identity

∆(x, y) = 1
2 ‖x‖

2 + 〈x, y〉+ 1
2 ‖y‖

2
.

Fix (a, b) ∈ Rn ×Rn and define δ : Rn ×Rn → R by

δ(x, y) := ∆(a− x, b− y)− 〈x, y〉.

Let (x∗, y∗) ∈ Rn ×Rn. Then

δ∗(x∗, y∗) = δ(−y∗,−x∗).

Proof. We have

δ(x, y) = q
(
(x, y)− (a, b)

)
−
〈
(x, y), (b, a)

〉
+ 〈a, b〉

and hence by Lemma 4.4, (3):

δ∗(x∗, y∗) = q∗
(
(x∗, y∗) + (b, a)

)
+
〈
(x∗, y∗), (a, b)

〉
+ 〈a, b〉

= q
(
(−y∗,−x∗)− (a, b)

)
−
〈
(−y∗,−x∗), (b, a)

〉
+ 〈a, b〉 = δ(−y∗,−x∗).

�

The following observations about κ are used in the next subsection:
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Lemma 4.9. Let g : Rn → R∞ be definable proper closed convex, and let λ ∈ R>0

and x ∈ Rn. Then

inf
y
g(y) + κ(x, λy) = min

y
g(y) + κ(x, λy).

Proof. By Proposition 4.2, there is an affine function ϕ : Rn → R such that ϕ ≤ g.
So the definable function h : Rn → R∞, h(y) := g(y) + κ(x, λy) is closed convex
such that lim‖y‖→+∞ h(y) = +∞. Take some z ∈ Rn with g(z) < ∞. Then
B := {y ∈ Rn : h(y) ≤ h(z)} is closed and bounded, and the continuous definable
function y 7→ ϕ(y) + κ(x, y) attains a minimum on B. (Corollary 1.5.) Hence the
definable set

epi(h) ∩ {(y, t) ∈ Rn ×R : t ≤ h(z)} = {(y, t) ∈ Rn ×R : h(y) ≤ t ≤ h(z)}

is non-empty, closed, and bounded. So is its projection on the last coordinate.
(Proposition 1.4.) Hence h attains its infimum. �

Lemma 4.10. Let g : Rn×Rn → R∞ be definable and proper closed convex. Then
g � κ∗ is proper closed convex.

Proof. For (x, x∗) ∈ Rn ×Rn, we have

(g � κ∗)(x, x∗) = inf
y∈Rn

g(x− y, x∗ + y) + q(y),

and by the previous lemma, the infimum is attained, so −∞ < g�κ∗ ≤ g, showing
that g � κ∗ is proper. Set C := epi(g) × epi(κ∗) ⊆ Rm, where m = 2(2n + 1). By
(2.1), it remains to show that the definable convex set

epi(g) + epi(κ∗) = {y + z : (y, z) ∈ C}

is closed. (Recall from Section 1.5 that the sum of two closed convex sets is not
closed in general.) Let x ∈ cl(epi(g) + epi(κ∗)) and ε > 0. The definable set

Cε :=
{

(y, z) ∈ C : ‖x− (y + z)‖ ≤ ε
}

is closed, convex, and non-empty.

Claim. Cε is bounded.

Proof of the claim. For t > 0 let Sm(t) := {x ∈ Rm : ‖x‖ = t}. Assume for a
contradiction that Cε is unbounded. Take an arbitrary p = (y, z) ∈ Cε. Then
there is a definable unbounded subset I ⊆ R>0 such that (p+ Sm(t)) ∩ Cε 6= ∅ for
each t ∈ I. By weak definable choice (Lemma 1.2), there is a definable function
γ̃ : I → Cε with γ̃(t) ∈ (p + Sm(t)) ∩ Cε for all t ∈ I. Consider γ : I → Sm(1)
defined by γ(t) := 1

t (γ̃(t) − p). By Proposition 1.6, after replacing I by a suitable
unbounded definable subset, we may assume that γ converges. Let p′ = (y′, z′) :=
limI3t→∞ γ(t) ∈ Sm(1).

Then for every λ ≥ 0, we have p+λp′ ∈ Cε. Indeed, observe that for every t ∈ I
we have [p, p+ tγ(t)] ⊆ Cε. Suppose for a contradiction that λ > 0 satisfies

(4.1) δ := d(p+ λp′, Cε) > 0.

Take t ∈ I such that t ≥ λ and ‖γ(t)− p′‖ < δ/λ. Then

d(p+ λp′, Cε) ≤ ‖p+ λp′ − (p+ λγ(t))‖ = λ ‖p′ − γ(t)‖ < δ,

which contradicts (4.1).
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So we have ‖x− y − z − λ(y′ + z′)‖ ≤ ε for every choice of λ ≥ 0. Hence, y′ =
−z′. Moreover, y+λy′ ∈ epi(g) and z+λz′ ∈ epi(κ∗) for every λ ≥ 0. But the only
possible z′ is z′ = (0, . . . , 0, t) for some t > 0. Therefore, y′ = (0, . . . , 0,−t), which
implies that epi(g) contains a vertical line. This contradicts that g is proper. �

By the claim, {Cε}ε>0 is a monotone definable family of non-empty closed and
bounded sets, so

⋂
ε>0 Cε 6= ∅ by Lemma 1.3. Hence there is (y, z) ∈

⋂
ε>0 Cε ⊆ C

such that y + z = x. �

4.4. Proximal average. Let f, g : Rn → R∞ be definable. The definable function
ψ = ψ(f, g) : Rn → R±∞ given by

ψ(x) := inf
y+z=x

( 1
2 ∗ f)(y) + ( 1

2 ∗ g)(z) + κ(y, z)

is called the proximal average of f and g. This construction (cf. [1, 2]) plays a
key role in extending monotone set-valued maps in the next section.

Lemma 4.11. Suppose f and g are proper closed convex. Then ψ(f, g) is proper
convex, with conjugate

(
ψ(f, g)

)∗ = ψ(f∗, g∗).

Proof. Define A : Rn × Rn → Rn by A(y, z) = y + z; then A∗ : Rn → Rn × Rn
is given by A∗(x∗) = (x∗, x∗). Also define the proper closed convex functions
F,G : Rn ×Rn → R∞ by

G(y, z) = (1
2 ∗ f)(y) + ( 1

2 ∗ g)(z), F (y, z) = G(y, z) + κ(y, z).

So for each x ∈ Rn we have

ψ(x) = (AF )(x) = inf
y
G(y, x− y) + κ(x, 2y).

Hence ψ is convex, and by Lemma 4.9 the infimum is attained, so ψ is proper. By
Lemma 4.10, the definable convex function G∗ � κ∗ is closed, hence

F ∗ = (G+ κ)∗ = (G∗∗ + κ∗∗)∗ = (G∗ � κ∗)∗∗ = G∗ � κ∗.

Now for all y∗, z∗ ∈ Rn,

G∗(y∗, z∗) = 1
2f
∗(y∗) + 1

2g
∗(z∗).

Hence for all x∗ ∈ Rn,(
ψ(f, g)

)∗(x∗) = (AF )∗(x∗)

= F ∗(A∗(x∗))

= (G∗ � κ∗) (x∗, x∗)

= inf
(y∗,z∗)

(
G∗(y∗, z∗) + κ∗ (x∗ − y∗, x∗ − z∗)

)
= inf
y∗+z∗=2x∗

(
1
2f
∗(y∗) + 1

2g
∗(z∗) + q

(
1
2 (y∗ − z∗)

))
=
(
ψ(f∗, g∗)

)
(x∗).

�

Let f : Rn × Rn → R±∞ be definable. We define the transpose f t of f by
f t(x, x∗) := f(x∗, x) for all (x, x∗) ∈ Rn ×Rn. We say that f is autoconjugate if
f∗ = f t. Note that if f is autoconjugate, then f = f∗t is closed convex.

Proposition 4.12. Let f : Rn×Rn → R∞ be definable proper closed convex. Then
the proximal average ψ(f, f∗t) : Rn ×Rn → R∞ of f and f∗t is autoconjugate.
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Proof. Note that f∗t = f t∗ and hence f∗t∗ = f t. So by the previous lemma,(
ψ(f, f∗t)

)∗ = ψ(f∗, f∗t∗) = ψ(f∗, f t) = ψ(f t, f∗) = ψ(f t, f∗tt) =
(
ψ(f, f∗t)

)t
.

�

Remark. In the proof of the result analogous to Proposition 4.12 in [1], appeals to
more general results replace our use of the elementary Lemmas 4.9 and 4.10 above.

5. Proof of Theorem A

Let R be an expansion of a real closed ordered field. In this section we prove Theo-
rem A, which we state here again for the convenience of the reader, in a slightly
strengthened form:

Theorem 5.1. Suppose R is definably complete. Let L ∈ R>0 and let f : A→ B,
where A ⊆ Rm, B ⊆ Rn, be a definable L-Lipschitz map. There exists a definable
L-Lipschitz map F : Rm → cl(conv(B)) such that F |A = f .

In fact, the extra condition F (Rm) ⊆ cl(conv(B)) is easy to achieve once we have
a definable L-Lipschitz map F ′ : Rm → Rn with F ′|A = f : simply take F := p ◦F ′
where p = p(−, cl(conv(B))), and recall that p is non-expansive by Corollary 2.14.

Naturally, the question arises whether the hypothesis of definable completeness
in this theorem is necessary. This question is affirmatively answered by the following
proposition.

Proposition 5.2. Suppose R is not definably complete. Then there exists a de-
finable non-expansive function f : A→ R, where A ⊆ R is closed, which cannot be
extended to a non-expansive function R→ R.

Proof. Since R is not definable complete, there exists a closed non-empty definable
set S ⊆ R which is bounded from above and which does not have a least upper
bound in R. We let

A1 := {a ∈ R : a ≤ x for some x ∈ S}, A2 := R \ (1 +A1).

We have S ⊆ A1 ⊆ 1 + A1 < A2. Both A1 and A2 are closed, hence A := A1 ∪ A2

is a closed definable subset of R. After passing from S to a suitable affine image
a+ bS (a, b ∈ R), we may assume that 1 +A1 6⊆ A1 and so A 6= R.

Let f : A → R be defined by f(x) := 1 if x ∈ A1 and f(x) := 0 if x ∈ A2.
Clearly, f is definable and non-expansive. Assume for a contradiction that there
is a non-expansive F : R → R which extends f . Fix an arbitrary x ∈ R \ A; then
x is an upper bound for A1 and a lower bound for A2. Hence, for all y ∈ A1 and
z ∈ A2, we have

1 + y − x = f(y)− |y − x| ≤ F (x) ≤ f(z) + |z − x| = z − x.
So ζ := F (x) + x is an upper bound for 1 + A1 and a lower bound for A2. Thus
ζ 6∈ 1 + A1 since 1 + A1 has no least upper bound in R, and ζ 6∈ A2 since A2 has
no largest lower bound in R, contradicting R = (1 +A1) ∪A2. �

In the rest of this section we assume that R is definably complete.

We prove Theorem 5.1 at the end of this section. In the rest of this subsection
we mention two special cases of this theorem that are not hard to show directly.
We let f : A → B be a definable map, where A is a non-empty subset of Rm and
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B ⊆ Rn. First, Lemma 1.9 yields Theorem A for a 1-dimensional target space. More
generally, we have the following result; here and below, a function ω : R≥0 → R is
said to be subadditive if ω(s + t) ≤ ω(s) + ω(t) for all s, t ∈ R≥0. For example,
it is easy to see that if A is convex, then the modulus of continuity ωf of f is
subadditive.

Proposition 5.3 (McShane-Whitney). Suppose n = 1 and f has a definable in-
creasing subadditive modulus of continuity ω. Then

x 7→ inf
a∈A

(
f(a) + ω

(
||x− a||

))
, x 7→ sup

a∈A

(
f(a)− ω

(
||x− a||

))
are definable functions Rn → R extending f with modulus of continuity ω.

To prove this, by Lemma 1.9 one only needs to show that given ω as in the
proposition, for each a ∈ A, the function x 7→ ω

(
||x−a||

)
has modulus of continuity

ω, and this follows by a straightforward computation.

Theorem 5.1 for Lipschitz maps with convex domain is also easy to show:

Proposition 5.4. Suppose A is convex, and f is uniformly continuous (L-Lip-
schitz, where L ∈ R≥0). Then there exists a definable map F : Rm → cl(B) with
F |A = f which is uniformly continuous (L-Lipschitz, respectively). If f is convex,
then F can additionally be chosen to be convex.

This is an immediate consequence of Lemma 1.7 and the following lemma:

Lemma 5.5. Suppose A is closed and convex. Then there exists a definable map
F : Rm → B with F |A = f and ωf = ωF .

Proof. For x ∈ Rm put F (x) := f(p(x,A)). Then the map F : Rm → B agrees
with f on A. Moreover, let δ > 0. Then for x1, x2 ∈ Rm with ‖x1 − x2‖ ≤ δ,
setting yi = p(xi, A) for i = 1, 2, we have ‖y1 − y2‖ ≤ δ by Corollary 2.14 and
hence ‖F (x1)− F (x2)‖ = ‖f(y1)− f(y2)‖ ≤ ωf (δ). This yields ωF (δ) ≤ ωf (δ),
and the inequality ωF (δ) ≥ ωf (δ) is immediate. �

5.1. Monotone set-valued maps. The crucial technique in proving Theorem A
is to transfer the extension problem to definable monotone set-valued maps. As we
will prove, these maps stay in one-to-one correspondence with firmly non-expansive
maps. (See [31] for a useful survey on the theory of monotone set-valued maps in
the context of Banach spaces.)

We begin by introducing (definable) set-valued maps as an alternative language
for talking about (definable) families of sets. We use the notation T : Rm ⇒ Rn to
denote a map T : Rm → 2R

n

, and call such T a set-valued map. Such a set-valued
map T is trivial if T (x) = ∅ for all x ∈ Rm. The inverse of a set-valued map
T : Rm ⇒ Rn is the set-valued map T−1 : Rn ⇒ Rm given by

T−1(x∗) =
{
x ∈ Rm : x∗ ∈ T (x)

}
for x∗ ∈ Rn.

Given set-valued maps S, T : Rm ⇒ Rn and λ ∈ R, the set-valued maps S +
T, λS : Rm ⇒ Rn are defined by (S + T )(x) = S(x) + T (x) and (λS)(x) = λS(x)
for x ∈ Rm.

Let T = (Tx)x∈X be a family of subsets of Rn, where X ⊆ Rm. Then T gives rise
to a set-valued map T : Rm ⇒ Rn by setting T (x) := Tx for x ∈ X and T (x) := ∅
for x ∈ Rm \X. A set-valued map Rm ⇒ Rn arising in this way from a definable
family T = (Tx)x∈X of subsets of Rn with X ⊆ Rm is said to be definable.
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Let T : Rm ⇒ Rn be a set-valued map. The graph of T is the subset

graph(T ) :=
{

(x, x∗) ∈ Rm ×Rn : x∗ ∈ T (x)
}

of Rm ×Rn. Note that every map f : X → Rn, X ⊆ Rm, gives rise to a set-valued
map Rm ⇒ Rn, whose graph is the graph of the map f . We continue to denote the
set-valued map associated to f by the same symbol. Given S : Rm ⇒ Rn, we say
that T extends S if graph(S) ⊆ graph(T ), and we say that T properly extends
S if graph(S) ( graph(T ).

Definition. Let T : Rn ⇒ Rn. An element (x, x∗) ∈ Rn × Rn is said to be mono-
tonically related to T if

〈x− y, x∗ − y∗〉 ≥ 0 for all (y, y∗) ∈ graph(T ).

We say that T is monotone if every (x, x∗) ∈ graph(T ) is monotonically related
to T , and T is called maximal monotone if T is monotone, and no (x, x∗) /∈
graph(T ) is monotonically related to T . (Equivalently, T is maximal monotone if
T is monotone but every proper extension of T fails to be monotone).

Clearly T is monotone (maximal monotone) if and only if T−1 is monotone
(maximal monotone, respectively). It is easy to show that if T : Rn ⇒ Rn is
maximal monotone, then T (x) is a convex subset of Rn, for each x ∈ Rn.

Example 5.6. Let f : X → R, where X ⊆ Rn. If f is firmly non-expansive, then
(the set-valued map associated to) f is monotone. If n = 1, then f is monotone if
and only if f is increasing: x ≤ y ⇒ f(x) ≤ f(y), for all x, y ∈ X.

Example 5.7. Let T : Rn → Rn be R-linear. Then T is monotone if and only if
T is positive (i.e., 〈T (x), x〉 ≥ 0 for all x ∈ Rn), and in this case, T is maximal
monotone. (See [31, Example 1.5 (b)].)

Our interest in definable set-valued maps is motivated by the following fact;
compare with [12]. Its proof makes crucial use of Theorem B (the definable version
of Helly’s Theorem).

Proposition 5.8. Let T : Rn ⇒ Rn, and let f := (T + id)−1. Then
(1) T is monotone if and only if f is the graph of a firmly non-expansive map

X → Rn, for some X ⊆ Rn;
(2) if f is the graph of a firmly non-expansive map Rn → Rn, then T is maximal

monotone;
(3) if T is definable and maximal monotone, then f is the graph of a firmly

non-expansive map Rn → Rn.

Proof. We first note that the linear map (x, x∗) 7→ (x+x∗, x) restricts to a bijection
graph(T )→ graph(f) with inverse (y, y∗) 7→ (y∗, y − y∗). So if T is monotone and
(x, x∗i ) ∈ graph(f), where i = 1, 2, then (x∗i , x− x∗i ) ∈ graph(T ) and hence

0 ≤ 〈x∗1 − x∗2, (x− x∗1)− (x− x∗2)〉 = −‖x∗1 − x∗2‖
2

by monotonicity of T , so x∗1 = x∗2. Hence f is the graph of a function X → Rn,
where X ⊆ Rn. Now (1) is a consequence of this observation and the following
identity, valid for all (x, x∗), (y, y∗) ∈ graph(T ):〈

f(x+ x∗)− f(y + y∗), (x+ x∗)− (y + y∗)
〉
− ‖f(x+ x∗)− f(y + y∗)‖2

=
〈
x− y, (x+ x∗)− (y + y∗)

〉
− ‖x− y‖2 = 〈x− y, x∗ − y∗〉.
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For (2), suppose f is the graph of a firmly non-expansive map Rn → Rn, and
S : Rn ⇒ Rn is a monotone set-valued extending T . Then (S + id)−1 is the graph
of a function extending f = (T + id)−1, hence S = T . For (3), suppose that T is
definable and monotone, and X 6= Rn. Let x ∈ Rn \X. Then f extends to a firmly
non-expansive map A ∪ {x} → Rn by Corollary 3.6 and the remark following it.
Hence T can be properly extended to a monotone set-valued map Rn ⇒ Rn, so T
is not maximal. �

Let f : Rn ×Rn → R∞. The set-valued map T : Rn ⇒ Rn with

graph(T ) =
{

(x, x∗) ∈ Rn ×Rn : f(x, x∗) = 〈x, x∗〉
}

is called the set-valued map represented by f . If f is definable proper convex
and autoconjugate, then the Fenchel-Young Inequality implies f(x, x∗) ≥ 〈x, x∗〉
and f∗(x, x∗) ≥ 〈x, x∗〉 for all x, x∗ ∈ Rn. Together with the next proposition
(due to [37] in the classical case), this yields that autoconjugate functions represent
maximal monotone maps:

Proposition 5.9. Let f : Rn × Rn → R∞ be definable proper convex, and let
T : Rn ⇒ Rn be the set-valued map represented by f . If f(x, x∗) ≥ 〈x, x∗〉 for
all x, x∗ ∈ Rn, then T is monotone, and if in addition f∗(x, x∗) ≥ 〈x, x∗〉 for all
x, x∗ ∈ Rn, then T is maximal monotone.

Proof. Suppose f(x, x∗) ≥ 〈x, x∗〉 for all x, x∗ ∈ Rn. Then for (x, x∗), (y, y∗) ∈
graph(T ), using the convexity of f :

1
2 〈x, x

∗〉+ 1
2 〈y, y

∗〉 = 1
2f(x, x∗) + 1

2f(y, y∗) ≥
f
(

1
2x+ 1

2y,
1
2x
∗ + 1

2y
∗) ≥ 〈 1

2x+ 1
2y,

1
2x
∗ + 1

2y
∗〉 ,

and this yields 〈x− y, x∗ − y∗〉 ≥ 0. Now assume f∗(x, x∗) ≥ 〈x, x∗〉 for all x, x∗ ∈
Rn, and let (y, y∗) ∈ Rn×Rn be monotonically related to T , i.e., 〈y−x, y∗−x∗〉 ≥
0 for all (x, x∗) ∈ graph(T ). From Example 4.8 recall the notation ∆(x, y) =
1
2 ‖x+ y‖2 for x, y ∈ Rn. By assumption and since ∆ ≥ 0, with g := (f∗)t we have

g(x, x∗)− 〈x, x∗〉+ ∆(y − x, y∗ − x∗) ≥ 0 for all (x, x∗) ∈ graph(Tf ).

Hence by Proposition 4.5 and Example 4.8 there exists (x, x∗) ∈ Rn×Rn such that

g∗(x∗, x)− 〈x, x∗〉+ ∆(y − x, y∗ − x∗) ≤ 0.

Since g∗(x∗, x) = f∗(x, x∗) therefore

〈x, x∗〉 ≤ f∗(x, x∗) ≤ 〈x, x∗〉 −∆(y − x, y∗ − x∗).

Hence (x, x∗) ∈ graph(T ), thus 〈y − x, y∗ − x∗〉 ≥ 0, and

0 = ∆(y − x, y∗ − x∗) = 1
2 ‖y − x‖

2 + 〈y − x, y∗ − x∗〉+ 1
2 ‖y

∗ − x∗‖2 ,

therefore (y, y∗) = (x, x∗) ∈ graph(T ). �

5.2. The Fitzpatrick function. Let T : Rn ⇒ Rn be a non-trivial definable set-
valued map. The function ΦT : Rn ×Rn → R∞ given by

ΦT (x, x∗) := sup
(a,a∗)∈graph(T )

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
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is the Fitzpatrick function of T . (This concept was introduced in [14].) The
function ΦT is the pointwise supremum of a definable family of affine functions,
hence ΦT is definable and closed convex. For (x, x∗) ∈ Rn ×Rn we have

ΦT (x, x∗) = 〈x, x∗〉 − inf
(a,a∗)∈graph(T )

〈x− a, x∗ − a∗〉.

Hence if T is monotone, then ΦT (x, x∗) = 〈x, x∗〉 for all (x, x∗) ∈ graph(T ), in
particular, ΦT is proper; and if T is maximal monotone, then ΦT represents T .

From now on until the end of this subsection we assume that T is monotone.
Then the set-valued map represented by Φ∗T also extends T :

Lemma 5.10. For all (y, y∗) ∈ graph(T ) we have Φ∗T (y∗, y) = 〈y∗, y〉.

In the following we use tildes to denote elements of Rn×Rn. Given x̃ ∈ Rn×Rn,
we write x̃ = (x, x∗) where x, x∗ ∈ Rn, and we put x̃t = (x∗, x). Below we will
often use the identity

〈x, x∗〉 = 1
2 〈x̃, x̃

t〉 (x̃ = (x, x∗) ∈ Rn ×Rn).

For x̃ ∈ Rn ×Rn we have

ΦT (x̃) = sup
ã∈graph(T )

〈x̃, ãt〉 − 1
2 〈ã, ã

t〉

and hence, for ỹ ∈ Rn ×Rn:

Φ∗T (ỹ) = sup
x̃

(
〈x̃, ỹ〉 − ΦT (x̃)

)
= sup

x̃
inf

ã∈graph(T )

(
〈ỹ − ãt, x̃〉+ 1

2 〈ã, ã
t〉
)
.

Proof of Lemma 5.10. Let ỹ ∈ graph(T ). Then ΦT (ỹ) = 1
2 〈ỹ

t, ỹ〉, so the Fenchel-
Young Inequality applied to ΦT yields Φ∗T (ỹt) ≥ 1

2 〈ỹ
t, ỹ〉. We also have

Φ∗T (ỹt) = sup
x̃

inf
ã∈graph(T )

(
〈ỹt − ãt, x̃〉+ 1

2 〈ã, ã
t〉
)
≤ sup

x̃

1
2 〈ỹ, ỹ

t〉 = 1
2 〈ỹ, ỹ

t〉.

Hence, Φ∗T (ỹt) = 1
2 〈ỹ

t, ỹ〉. �

Let ΨT : Rn ×Rn → R be the proximal average of ΦT and Φ∗T , that is,

ΨT (x̃) = inf
ỹ+z̃=2x̃

(
1
2ΦT (ỹ) + 1

2Φ∗T (z̃t) + 1
4κ(ỹ, z̃)

)
for x̃ ∈ Rn ×Rn.

By Proposition 4.12, the definable function ΨT is proper convex and autoconjugate.

Lemma 5.11. Let x̃ ∈ graph(T ). Then ΦT (x̃) = ΨT (x̃).

Proof. By the Fenchel-Young Inequality, we have on the one hand

2ΨT (x̃) = Ψ∗tT (x̃) + ΨT (x̃) ≥ 〈x̃, x̃t〉.
On the other hand

2ΨT (x̃) ≤ ΦT (x̃) + Φ∗T (x̃t) = 〈x̃, x̃t〉.
So ΨT (x̃) = 1

2 〈x̃, x̃
t〉 = ΦT (x̃). �

By Proposition 5.9 and the previous lemma, we have the following adaptation
of [2, Theorem 5.7]:

Proposition 5.12. The set-valued map T : Rn ⇒ Rn represented by ΨT is a de-
finable maximal monotone extension of T .

We are now able to prove the definable version of the Kirszbraun Theorem.
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5.3. Proof of Theorem 5.1. Let A ⊆ Rm be non-empty, and let f : A→ Rn be a
definable L-Lipschitz function, where L ∈ R>0. If m < n, then let f1 : A×Rn−m →
Rn be given by f1(x1, . . . , xn) := f(x1, . . . , xm). If n ≤ m, then set f1(x) :=
(f(x), 0, . . . , 0) ∈ Rm. Note that f extends to a definable L-Lipschitz map Rm →
Rn if and only if f1 extends to a definable L-Lipschitz map Rk → Rk, where k =
max{m,n}. So after replacing f by f1, we may assume that m = n. Replacing f by
f/L, we may also assume that f is non-expansive. By Proposition 1.12 the definable
map g := 1

2 (id +f) is firmly non-expansive, and it suffices to show that g admits
an extension to a definable firmly non-expansive map Rn → Rn. The definable
set-valued map T := g−1 − id : Rn ⇒ Rn is monotone by Proposition 5.8, (1). By
Proposition 5.12 there is a definable maximal monotone T : Rn ⇒ Rn extending
T . By Proposition 5.8, (3), G := (T + id)−1 is the graph of a definable firmly
non-expansive map Rn → Rn extending g as required. �

Inspection of the proof of Theorem 5.1 given above exhibits a certain uniformity
in the construction:

Corollary 5.13. Let a 7→ La : A → R≥0 be a definable function. Let {fa}a∈A be
a definable family of maps fa : Sa → Rn, where Sa ⊆ Rm, such that each fa is
La-Lipschitz. There exists a definable family {Fa}a∈A of maps Rm → Rn, each Fa
being La-Lipschitz and extending fa.

We finish this section with a question related to Theorem A, to which we do not
know the answer. For a definable set S ⊆ Rn, let Lm(S) be the R-linear space of
all definable Lipschitz maps S → Rm, equipped with the seminorm

f 7→ |f | = sup
x 6=y

‖f(x)− f(y)‖
‖x− y‖

.

Theorem A shows the existence of a map E : Lm(S) → Lm(Rn) such that for all
f ∈ Lm(S), the map E(f) extends f , and |E(f)| ≤ |f |.

Question 5.14. Is there an R-linear map E : Lm(S)→ Lm(Rn) and some C ∈ R
such that for all f ∈ Lm(S), E(f) extends f , and |E(f)| ≤ C |f |?

Note that since we do not require C ≤ 1 (unlike in Theorem A), it is enough to
consider the case m = 1. For R = R and o-minimal R, the answer to this question
is positive, as shown in [29].

6. Some Variants

In this section we discuss a variant of Kirszbraun’s Theorem for locally definable
maps, and the problem of definably extending uniformly continuous maps, which
is related to (but easier than) the problem of definably extending Lipschitz maps.

6.1. Kirszbraun’s Theorem for locally definable maps. Let R be an expan-
sion of the ordered field of real numbers. A set S ⊆ Rn is said to be locally
definable (in R) if for every x ∈ Rn there exists an open ball B with center x such
that B∩S is definable. A map S → Rm, where S ⊆ Rn, is called locally definable if
its graph is locally definable. This notion encompasses both the subanalytic setting
and Shiota’s notion [36] of X families with axiom (v):
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Examples 6.1.
(1) A set S ⊆ Rn is locally definable in the expansion Ran of the ordered

field of real numbers by all restricted analytic functions if and only if S is
subanalytic (cf. [10, p. 507]).

(2) Each X family satisfying axiom (v) gives rise to an o-minimal expansion of
the ordered field of reals with the property that the sets locally definable
in this structure are precisely the sets in the given X family (cf. [35]).

Many of the techniques used to prove the definable version of the Kirszbraun
Theorem in the previous sections cannot be applied to locally definable maps and
sets. In particular, the intersection or union of a locally definable family of sets
is not locally definable anymore in general, and the pointwise infimum of a locally
definable family of functions is also not necessarily locally definable. However:

Lemma 6.2. Suppose for each ` ∈ N we are given a locally definable map f` : A` →
Rn, where A` ⊆ Rm, such that B`(0) ⊆ A` ⊆ A`+1 and f` = f`+1|A` for every `.
Then the map F : Rm → Rn given by F (x) = f`(x), where ` is such that x ∈ A`,
is locally definable. Moreover, if each f` is L-Lipschitz, where L ∈ R≥0, then F is
L-Lipschitz.

This observation together with Theorem 5.1 does yield locally definable variants
of the Kirszbraun Theorem. For this, we fix a locally definable L-Lipschitz map
f : A→ Rn, where L > 0 and A ⊆ Rm is non-empty.

Corollary 6.3. Suppoe f is bounded. Then f extends to a bounded locally definable
L-Lipschitz map Rm → Rn.

Proof. By considering x 7→ C ·f(x+a) (for suitable C ∈ R>0 and arbitrary a ∈ A) in
place of f , we may assume L = 1, f is bounded by 1, and 0 ∈ A. For every ` ∈ N we
construct a locally definable non-expansive map f` : A` := B`(0)∪A→ B1(0) such
that for each ` we have f`+1 = f` on B`(0) and f` = f on A. Set f0 := f . Suppose
now that ` > 0 and the map f`−1 has been constructed already. By Theorem 5.1,
there is a definable non-expansive function g` : Rm → B1(0) such that g` = f`−1 on
A`−1 ∩B`+2(0). For x ∈ A`, set

f`(x) =

{
g`(x) if ‖x‖ ≤ `,
f(x) if ‖x‖ > `.

We claim that f` is non-expansive. Suppose x, y ∈ A`. If ‖x‖ , ‖y‖ ≤ ` or ‖x‖ , ‖y‖ >
`, then clearly ‖f`(x)− f`(y)‖ ≤ ‖x− y‖. Assume now that ‖x‖ ≤ ` and ‖y‖ > `.
If ‖y‖ ≤ `+ 2, then

‖f`(x)− f`(y)‖ = ‖g`(x)− g`(y)‖ ≤ ‖x− y‖ .

If ‖y‖ > `+ 2, then ‖x− y‖ > 2. Since ‖f`‖ ≤ 1, we have

‖f`(x)− f`(y)‖ ≤ ‖f`(x)‖+ ‖f`(y)‖ ≤ 1 + 1 < ‖x− y‖ .

Hence f` is non-expansive. Now apply Lemma 6.2. �

An enhancement of the previous proof leads to the following corollary.

Corollary 6.4. Let ε > 0. Then f extends to a locally definable (L+ ε)-Lipschitz
map Rm → Rn.
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Proof. After replacing f by x 7→ 1
L

(
f(x+ a)− f(a)

)
, where a ∈ A is arbitrary, we

may assume that L = 1 and f(0) = 0. Let (ε`)`∈N be a strictly decreasing sequence
of positive real numbers such that

∑
` ε` < ε. For each ` ∈ N let

L` := 1 +
∑̀
p=0

εp.

We construct for every ` ∈ N a locally definable L`-Lipschitz function f` : A` :=
B`(0) ∪ A → Rn such that for each ` we have f`+1 = f` on B`(0) and f` = f on
A ∩B`(0). Set f0 := f . Suppose ` > 0 and f`−1 has been constructed already. Let

M` = sup
{
‖f`−1(x)‖ : x ∈ A`−1, ‖x‖ ≤ `

}
.

Select r` > ` so big such that ε`r` ≥M`+`L`. By Theorem 5.1, there is a definable
L`−1-Lipschitz map g` : Rm → Rn such that g` = f`−1 on A` ∩ Br`

(0). Define
f` : A` → Rn by

f`(x) =

{
g`(x) if ‖x‖ ≤ `,
f(x) if ‖x‖ > `.

We claim that f` is L`-Lipschitz. Suppose x, y ∈ A`. If ‖x‖ , ‖y‖ ≤ ` or ‖x‖ , ‖y‖ >
`, then ‖f`(x)− f`(y)‖ ≤ L` ‖x− y‖ is evident. Assume now that ‖x‖ ≤ ` and
‖y‖ > `. If ‖y‖ ≤ r`, then

‖f`(x)− f`(y)‖ = ‖g`(x)− g`(y)‖ ≤ L` ‖x− y‖ .
If ‖y‖ > r`, then we have

‖f`(x)− f`(y)‖ ≤ ‖f`(x)‖+ ‖f`(y)‖
≤M` + L`−1 ‖y‖
< ε` ‖y‖ − `L` + L`−1 ‖y‖
= L` ‖y‖ − `L`
≤ L` ‖y‖ − ‖x‖L`
≤ L` ‖x− y‖ .

Hence f` is L`-Lipschitz. Now apply Lemma 6.2. �

The previous two corollaries raise the following question, the answer to which
we do not know:

Question 6.5. Does the Kirszbraun Theorem hold for locally definable maps, i.e.:
given a locally definable L-Lipschitz map f : A→ Rn, where A ⊆ Rm, does f extend
to a locally definable L-Lipschitz map Rm → Rn?

6.2. Extending uniformly continuous maps. In this subsection we let R be a
definably complete expansion of an ordered field. Every Lipschitz map is uniformly
continuous, so in light of Theorem 5.1 it is natural to ask: when does a definable
uniformly continuous map A→ Rn, where A ⊆ Rm, extend to a uniformly contin-
uous map Rm → Rn? The aim of this subsection is to give a complete answer to
this question (see Proposition 6.7), following [19], where this question was treated
for R = R without definability requirements.

For this, let f : A→ B be a definable map, where A ⊆ Rm is non-empty and and
B ⊆ Rn. We also assume that A is closed. (Recall from Lemma 1.7 that a definable
uniformly continuous map always extends to a definable uniformly continuous map
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on the closure of its domain.) Note that f is uniformly continuous if and only
if each of the n coordinate functions of f is uniformly continuous, and similarly
with “continuous” in place of “uniformly continuous.” Hence, in order to study the
extendability of f to a uniformly continuous (or merely continuous) map Rm → Rn,
we may further assume that n = 1, which we do from now on.

Before we study uniformly continuous extensions, it is perhaps worth noting that
if f is continuous, then f always extends to a definable continuous function on Rm:

Lemma 6.6 (Definable Tietze Extension Theorem). Suppose f is continuous.
Then there exists a definable continuous function F : Rm → R with F |A = f .

Proof. First assume B = (1, 2). In this case one simply verifies that the definable
function F : Rm → B with F |A = f and

F (x) := inf
a∈A

f(a) · d(x, a)
d(x,A)

for x ∈ Rm \A

is continuous. This well-known formula is due to Riesz (1923), and related to similar
extension formulas by Hausdorff (1919) and Tietze (1915). For the general case, let
τ be a definable homeomorphism R→ (1, 2), such as

t 7→ 3
2

+
t

2
√

1 + t2
,

and note that if F : Rm → (1, 2) extends τ ◦ f , then τ−1 ◦ F extends f . �

(The proof of the definable version of Tietze Extension above is shorter and more
elementary than the one in [8, Chapter 8], which is only valid for o-minimal R and
uses triangulations.)

The classical counterpart of the following fact was proved in [19]:

Proposition 6.7. Suppose f is uniformly continuous. The following are equivalent:
(1) f extends to a definable uniformly continuous function Rm → R;
(2) f has a definable subadditive modulus of continuity ω such that ω(t) → 0

as t→ 0+;
(3) f has an affine modulus of continuity;
(4) f has a definable concave modulus of continuity ω with ω(t)→ 0 as t→ 0+.

The implication (1) ⇒ (2) is clear. The implications (2) ⇒ (3) and (3) ⇒ (4)
follow from the next two lemmas, for which we fix a definable function ω : R≥0 →
R≥0. The classical proof of the first lemma (as given in [19]) uses the archimedean
property of R.

Lemma 6.8. Suppose ω is subadditive and ω(t)→ 0 as t→ 0+. Then there is an
affine function ω1 : R→ R with ω1 ≥ ω.

Proof. There is δ > 0 such that ω(t) < 1 for all t ∈ [0, δ], hence ω(t) ≤ 2 for
t ∈ [0, 2δ] by subadditivity. We claim that ω1 : R → R given by ω1(t) := 2 + 1

δ t

majorizes ω. Assume for a contradiction that the subset B := {ω > ω1} of R≥0 is
non-empty, and put b := inf B. Evidently, we have b ≥ 2δ. Let s ∈ [b, b+ δ). Then

ω(s) = ω(s− δ + δ) ≤ ω(s− δ) + ω(δ)

< ω1(s− δ) + 1 = 2 + 1
δ (s− δ) + 1 = ω1(s).

Hence B ∩ [b, b+ δ) = ∅, a contradiction. �
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Lemma 6.9 (McShane). Suppose there exists an affine function ω1 with ω1 ≥ ω.
Then there exists a definable concave function ω2 with ω2 ≥ ω; if ω(t) → 0 as
t→ 0+, then ω2 can be chosen so that moreover ω2(t)→ 0 as t→ 0+.

Proof. For a, b ∈ R let ωa,b(t) = a+ bt, and let a0, b0 ∈ R with ω1 = ωa0,b0 . Then

ω2(t) := inf
{
ωa,b(t) : a, b ∈ R, ω ≤ ωa,b

}
is a definable concave function with ω2 ≥ ω. Assume now that lim

t→0+
ω(t) = 0.

To see that lim
t→0+

ω2(t) = 0, let ε > 0 be given. Take δ > 0 such that ω(t) ≤ ε

for 0 ≤ t ≤ δ. Take some b > 0 such that ωε,b(t) > ωa0,b0(t) for t > δ. Then
ω(t) ≤ ωε,b(t) for all t ≥ 0, so ω2(t) ≤ ωε,b(t) for all t ≥ 0. Also, ωε,b(t) → ε as
t→ 0+. This yields the claim. �

The implication (4)⇒ (1) in Proposition 6.7 is a consequence of Proposition 5.3
and the next lemma:

Lemma 6.10. Let ω : R≥0 → R≥0 be a concave function. Then ω is increasing,
and if in addition ω(0) = 0, then ω is subadditive.

Proof. Suppose that s, t are positive elements of R such that s < t and ω(s) > ω(t).
Put ∆ := t − s, and choose λ with 0 < λ < 1 and (1 − λ)ω(s) > ω(t). Then we
have, by concavity of ω:

ω(t) = ω(s+ ∆) ≥ λω
(
s+ 1

λ∆
)

+ (1− λ)ω(s)

and hence

ω
(
s+ 1

λ∆
)
≤ 1

λ (ω(t)− (1− λ)ω(s)) < 0,

a contradiction. Hence ω is subadditive. If ω(0) = 0, note that for s, t > 0, by
concavity ω(s) ≥ s

s+tω(s+ t), and similarly for t in place of s; now add. �

Corollary 6.11. If f is bounded and uniformly continuous, then there is a definable
uniformly continuous function on Rm extending f . In particular, if A is bounded
and f is continuous, then f extends to a definable uniformly continuous function
on Rm.

Proof. If M ∈ R is such that ‖f‖ ≤ M , then ωf ≤ 2M . Hence the first statement
follows from (3) ⇒ (1) in Proposition 6.7. The second statement now follows from
the first by Lemma 1.8. �

Remarks. Suppose f is uniformly continuous.

(1) If B = [1, 2], then the extension F of f to a function on Rm defined as in
the proof of Lemma 6.6 is also uniformly continuous. (This is shown for
R = R in [25], and the proof given there goes through in general.)

(2) If A is convex, then f extends to a definable uniformly continuous function
on Rm with the same modulus of continuity, cf. Lemma 5.5. In [24] it
is shown that given a closed subset S of Rm, each uniformly continuous
function on S has an extension to a function on Rm with the same modulus
of continuity if and only if S is convex.
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