A GENERALIZED BORSUK-ULAM THEOREM IN A REAL CLOSED FIELD

IKUMITSU NAGASAKI, TOMOHIRO KAWAKAMI, YASUHIRO HARA AND FUMIHIRO USHITAKI

ABSTRACT. Let C_k be the cyclic group of order k and $\mathcal{N} = (R, +, \cdot, <, ...)$ an o-minimal expansion of a real closed field R. Let X be a definably connected definable set with a free definable C_k -action. Assume that there exists a positive integer n such that $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$ for $1 \leq q \leq n$. If Y is a definable set with a free definable C_k -action such that $H_{n+1}(Y/C_k, \mathbb{Z}/k\mathbb{Z}) = 0$, then there is no definable C_k -map from X to Y. We also prove the topological version of this definable version.

1. INTRODUCTION

Let C_k be the cyclic group of order k. Let \mathbb{S}^n be the *n*-dimensional unit sphere of the (n + 1)-dimensional Euclidean space \mathbb{R}^{n+1} with the antipodal C_2 -action. From the viewpoint of transformation groups, the classical Borsuk-Ulam theorem states that if there exists a continuous C_2 -map from \mathbb{S}^n to \mathbb{S}^m , then $n \leq m$. There are several equivalent statements of it and many related generalizations (e.g. [2], [12], [13], [14], [16]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by several authors. For example, J.W. Walker [20], Pedro L. Q Pergher, Denise de Mattos and Edivaldo L. dos Santos [17].

Several C_k -versions of the classical Borsuk-Ulam theorem are discussed in [10] and [7]. The following two theorems are C_k -versions for topological spaces which are generalizations of [20], [17], [10] and [7].

Theorem 1.1. Let X be an arcwise connected free C_k -space and Y a Hausdorff free C_k -space. If there exists a positive integer n such that $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$ for $1 \le q \le n$ and $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$, then there is no continuous C_k -map from X to Y. Here this homology means the singular homology.

Let k be a prime. For a topological space Y, let $D = \{(y_1, \ldots, y_k) \in Y \times \cdots \times Y | y_1 = \cdots = y_k\}$ be the diagonal and write $Y^* = Y \times \cdots \times Y - D$ admitting the free C_k -action defined by $g(y_1, y_2, \ldots, y_k) = (y_k, y_1, \ldots, y_{k-1})$, where g generates C_k .

Theorem 1.2. Let k be a prime and X an arcwise connected free C_k -space. If there exists a positive integer n such that $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$ for $1 \le q \le n$ and Y is a Hausdorff free C_k -space with $H_{n+1}(Y^*/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$, then every continuous map $f : X \to Y$ has a

²⁰⁰⁰ Mathematics Subject Classification. 57S10, 57S17, 55M20, 55M35, 03C64.

Keywords and Phrases. The Borsuk-Ulam theorem, o-minimal, real closed fields, finite groups, definable C_k -maps, continuous C_k -maps.

The fourth author is partially supported by Kyoto Sangyo University Research Grants.

 C_k -coincidence point, that is, a point x such that f(x) = f(gx), where g is a generator of C_k .

The purpose of this paper is to consider the definable versions of Theorem 1.1 and Theorem 1.2

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an o-minimal expansion of a real closed field R. Any definable category is a generalization of the semialgebraic category. Many results in the semialgebraic geometry hold in the o-minimal setting and there exist uncountably many o-minimal expansions of the standard structure of the field \mathbb{R} of real numbers ([18]). See also [4], [6], [11] for examples and constructions of o-minimal structures. General references on them are [3], [5], [19]. In this paper "definable" means "definable with parameters in \mathcal{N} ", everything is considered in \mathcal{N} and each definable map is continuous unless otherwise stated.

The singular definable homology is introduced in [21].

Theorem 1.3 (Definable Borsuk-Ulam Theorem). Let X be a definably connected definable set with a free definable C_k -action. If there exists a positive integer n such that $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$ for $1 \le q \le n$ and Y is a definable set with a free definable C_k -action such that $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$, then there is no definable C_k -map from X to Y. Here this homology means the singular definable homology.

If Y is a definable set with a definable C_k -action, then by 10.2.18 [3], Y/C_k is a definable set and the orbit map $\pi : Y \to Y/C_k$ is definable. If dim $Y \leq n$, then by 4.1.6 [3] dim $Y/C_r \leq n$. Thus if dim $Y \leq n$, then $H_{n+1}(Y/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$.

Let S^n denote the *n*-dimensional unit sphere of \mathbb{R}^{n+1} .

Corollary 1.4. (1) Suppose that $k \geq 3$ and that C_k acts on S^{2m+1} and S^{2n+1} definably and freely. If there exists a definable C_k -map $f: S^{2m+1} \to S^{2n+1}$, then $m \leq n$.

(2) If S^m and S^n have free definable C_2 -actions and there exists a definable C_2 -map $f: S^m \to S^n$, then $m \leq n$.

Corollary 1.4 is a generalization of 1.1 [15].

Theorem 1.5. Let k be a prime and X a definably connected definable set with a free definable C_k -action. Assume that there exists a positive integer n such that $H_q(X; \mathbb{Z}/k\mathbb{Z}) = 0$ for $1 \le q \le n$. If Y is a definable set with $H_{n+1}(Y^*/C_k; \mathbb{Z}/k\mathbb{Z}) = 0$, then every definable map $f: X \to Y$ has a C_k -coincidence point, that is, a point x such that f(x) = f(gx), where g is a generator of C_k .

2. Proof of results

We first prove Theorem 1.3. Let $\mathbb{Z}/k\mathbb{Z}[C_k]$ denote the group ring of C_k over $\mathbb{Z}/k\mathbb{Z}$. For any $q \in \mathbb{N} \cup \{0\}$, the q-dimensional chain group $C_q(X; \mathbb{Z}/k\mathbb{Z})$ has the standard C_k -action. Then this action induces $\mathbb{Z}/k\mathbb{Z}[C_k]$ -action on $C_q(X; \mathbb{Z}/k\mathbb{Z})$.

Let g be a generator of C_k , $\alpha = 1 + g + \cdots + g^{k-1}$, and $\beta = 1 - g$. Then by definition $\alpha\beta = \beta\alpha = 0$, for every q, $\alpha C_q(X; \mathbb{Z}/k\mathbb{Z})$ and $\beta C_q(X; \mathbb{Z}/k\mathbb{Z})$ are $\mathbb{Z}/k\mathbb{Z}[C_k]$ submodules of $C_q(X; \mathbb{Z}/k\mathbb{Z})$ and $\alpha\partial = \partial\alpha, \beta\partial = \partial\beta$, where ∂ is the boundary operator of $\{C_q(X; \mathbb{Z}/k\mathbb{Z})\}$. Therefore $\{\alpha C_q(X; \mathbb{Z}/k\mathbb{Z})\}$ and $\{\beta C_q(X; \mathbb{Z}/k\mathbb{Z})\}$ are subchain complexes of $\{C_q(X; \mathbb{Z}/k\mathbb{Z})\}$. **Proposition 2.1.** For every q, the following two sequences are exact.

$$0 \to \alpha C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i} C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\beta} \beta C_q(X; \mathbb{Z}/k\mathbb{Z}) \to 0,$$

$$0 \to \beta C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{j} C_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\alpha} \alpha C_q(X; \mathbb{Z}/k\mathbb{Z}) \to 0,$$

where i, j denote the inclusions and α (resp. β) stands for the multiplication of α (resp. β).

Proof. Since $\beta \circ i = 0, \alpha \circ j = 0$, Im $i \subset \text{Ker } \beta$, Im $j \subset \text{Ker } \alpha$.

Let $s = \sum_{j} \sum_{i=0}^{k-1} n_{ji} g^{i} \sigma_{j} \in \text{Ker } \beta$, where g is a generator of C_{k} . If $l \neq l'$ and $0 \leq i \leq k-1$, then $g^{i} \sigma_{l} \neq \sigma_{l'}$. Since $\beta s = 0$, for any j, $\sum_{i=0}^{k-1} n_{ji} g^{i} (1-g) \sigma_{j} = 0$. Thus for every j, $\sum_{i=1}^{k-1} (n_{ji} - n_{j(i-1)}) g^{i} \sigma_{i} + (n_{j0} - n_{j(k-1)}) \sigma_{j} = 0$. Hence for each j, $n_{j0} = n_{j1} = \cdots = n_{jk-1}$. We set $n_{j} = n_{j0} (= n_{j1} = \cdots = n_{jk-1})$. Then We have $s = \sum_{j} n_{j} (1 + g + \cdots + g^{k-1}) \sigma_{j} = \alpha \sum_{i} n_{j} \sigma_{j} \in \text{Im } i$.

Let $s = \sum_{j} \sum_{i=0}^{k-1} n_{ji} g^i \sigma_j \in \text{Ker } \alpha$. Since $\alpha s = \sum_{j} (n_{j0} + \dots + n_{j(k-1)})(1 + \dots + g^{k-1})\sigma_j = 0$, $n_{j0} + \dots + n_{j(k-1)} = 0$.

Thus $s = \sum_{j} (n_{j0}(1-g) + (n_{j0}+n_{j1})g(1-g) + (n_{j0}+n_{j1}+n_{j2})g^2(1-g) + \dots + (n_{j0}+n_{j1}+\dots+n_{j(k-2)})g^{k-2}(1-g))\sigma_j \in \text{Im } j.$

Let $H_q^{\alpha}(X, \mathbb{Z}/k\mathbb{Z})$ (resp. $H_q^{\beta}(X, \mathbb{Z}/k\mathbb{Z})$) denote the homology group induced from the chain complex $\{\alpha C_q(X; \mathbb{Z}/k\mathbb{Z})\}$ (resp. $\{\beta C_q(X; \mathbb{Z}/k\mathbb{Z})\}$).

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact.

$$\cdots \to H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i_*} H_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\beta_*} H_q^{\beta}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\partial_*} H_{q-1}^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \to \dots$$

 $\dots \to H_q^\beta(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{j_*} H_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\alpha_*} H_q^\alpha(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\partial'_*} H_{q-1}^\beta(X; \mathbb{Z}/k\mathbb{Z}) \to \dots$ In particular, if p = 2, then $\alpha = \beta$ and

$$\cdots \to H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{i_*} H_q(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\alpha_*} H_q^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \xrightarrow{\partial_*} H_{q-1}^{\alpha}(X; \mathbb{Z}/k\mathbb{Z}) \to \dots$$

is exact.

Definable fiber bundles are introduced in [8].

Proposition 2.3. Let X be a definable set with a free definable C_k -action. Then $(X, \pi, X/C_k, C_k)$ is a principal definable C_k -fiber bundle, where $\pi : X \to X/C_k$ denotes the orbit map. In particular $\pi : X \to X/C_k$ is a definable covering map.

Let $p: E \to X$ be a definable map. We say that p has the definable homotopy lifting property if for any definable set Y, each definable homotopy $h: Y \times [0,1] \to X$ and a definable map $F: Y \to E$ such that $p \circ F(y) = h(y,0)$ for all $y \in Y$, there exists a definable homotopy $H: Y \times [0,1] \to E$ such that $p \circ H = h$ and H(y,0) = F(y) for all $y \in Y$. **Theorem 2.4** (4.10 [1]). Every definable covering map has the definable homotopy lifting property.

Corollary 2.5. Let X be a definable set with a free definable C_k -action. Then the orbit map $\pi : X \to X/C_k$ has the definable homotopy lifting property.

Proposition 2.6. Under the assumptions in Theorem 1.3, for every q, $H_q^{\alpha}(Y, \mathbb{Z}/k\mathbb{Z}) \cong H_q(Y/C_k, \mathbb{Z}/k\mathbb{Z})$.

Proof. We first show that the map $\alpha : C(Y; \mathbb{Z}/k\mathbb{Z}) \to C(Y; \mathbb{Z}/k\mathbb{Z})$ and the map $\pi_* : C(Y; \mathbb{Z}/k\mathbb{Z}) \to C(Y/C_k; \mathbb{Z}/k\mathbb{Z})$ induced from the orbit map $\pi : Y \to Y/C_k$ have the same kernel. Let σ be a singular s-simplex of Y. We need only to consider elements of $C(C_k\sigma)$, since $C(Y) \cong \bigoplus_{[\sigma] \in \Delta(s)/C_k} C(C_k\sigma)$, where $\Delta(s)$ is the set of singular s-simplexes of Y and $\Delta(s)/C_k$ is its orbit set under the induced action.

Since $\alpha(\sum n_i g^i \sigma) = (\sum n_i)\alpha(\sigma)$, $\alpha(\sum n_i g^i \sigma) = 0$ if and only if $\sum n_i = 0$, and similarly $\pi_*(\sum n_i g^i \sigma) = (\sum n_i)\pi \circ \sigma = 0$ if and only if $\sum n_i = 0$; therefore, both kernels coincide.

We next show that π_* is surjective; namely, there is a definable lift $\tilde{\tau} : \Delta^s \to Y$ of $\tau : \Delta^s \to Y/C_k$, where Δ^s denotes the affine span of (s + 1)-points which are affine independent. Since Δ^s is definably contractible, there is a definable homotopy $H' : \Delta^s \times [0,1] \to \Delta^s$ such that $H'(-,0) = c_{e_0}$ and $H'(-,1) = id_{\Delta^s}$, where c_{e_0} denotes the constant map whose value is $e_0 \in \Delta^s$. Then the composition $H = \tau \circ H'$ is a definable homotopy from the constant map $c_{\tau(e_0)}$ to τ . Let y_0 be a point of Y such that $\pi(y_0) = \tau(e_0)$, and $c_{y_0} : \Delta^s \to Y$ the constant map whose value is y_0 . Since $H(-,0) = \pi \circ c_{y_0}$, it follows from Corollary 2.5 that there exists a definable lift $\tilde{H} : \Delta^s \times [0,1] \to Y$ of H such that $\tilde{H}(-,0) = c_{y_0}$. Then $\tilde{\tau} := \tilde{H}(-,1)$ is a definable lift of $\tau = H(-,1)$.

Since π_* is surjective, $\alpha C(Y; \mathbb{Z}/k\mathbb{Z})$ and $C(Y/C_p; \mathbb{Z}/k\mathbb{Z})$ are isomorphic as chain complexes. Accordingly their homology groups are also isomorphic.

The topological version of Proposition 2.6 is studied in 5.33 [9].

Proof of Theorem 1.3. Assume that there exists a definable C_k -map $f : X \to Y$ under the conditions of Theorem 1.3. Since X is definably connected, f(X) is definable connected. Hence f(X) is contained in a definably connected component of Y. Therefore it is sufficient to prove the case where Y is definably connected.

We first prove the case where k = 2. Since f is a definable C_2 -map, $\alpha f_{\sharp} = f_{\sharp} \alpha$.

For simplicity, we abbreviate the coefficient $\mathbb{Z}/2\mathbb{Z}$ in the definable homology. By Theorem 2.2, we have a commutative diagram

with exact rows.

By definition, $(i_*^X)_0 = 0$ and $(i_*^Y)_0 = 0$. Thus $(\alpha_*^X)_0 : H_0(X) \to H_0^{\alpha}(X)$ and $(\alpha_*^Y)_0 : H_0(Y) \to H_0^{\alpha}(Y)$ are isomorphisms. By assumption, $H_0(X) \cong \mathbb{Z}/2\mathbb{Z}$. Hence $H_0(X) \cong$

 $H_0^{\alpha}(X) \cong \mathbb{Z}/2\mathbb{Z}$. Similarly, $H_0(Y) \cong H_0^{\alpha}(Y) \cong \mathbb{Z}/2\mathbb{Z}$. Since $(f_*)_0 : H_0(X) \to H_0(Y)$ is an isomorphism and $(\alpha_*^Y)_0 \circ (f_*)_0 = (f_*^{\alpha})_0 \circ (\alpha_*^X)_0$, $(f_*^{\alpha})_0 : H_0^{\alpha}(X) \to H_0^{\alpha}(Y)$ is an isomorphism. Since $(i_*^X)_0 = 0$, we have $\operatorname{Im}(\partial_*^X)_1 = \operatorname{Ker}(i_*^X)_0 = H_0^{\alpha}(X)$. Thus we see that $(\partial_*^Y)_1 \circ (f_*^{\alpha})_1 = (f_*^{\alpha})_0 \circ (\partial_*^X)_1 : H_1^{\alpha}(X) \to H_0^{\alpha}(Y)$ is a non-zero homomorphism. Hence $(f_*^{\alpha})_1 : H_1^{\alpha}(X) \to H_1^{\alpha}(Y)$ is a non-zero homomorphism. Using the assumptions on X, we see that $(\partial_*^X)_q : H_q^{\alpha}(X) \to H_{q-1}^{\alpha}(X)$ is an isomorphism for each $1 \leq q \leq n$. Using this fact and by induction, we have the claim that $(f_*^{\alpha})_q : H_q^{\alpha}(X) \to H_q^{\alpha}(Y)$ is a non-zero homomorphism for each $0 \leq q \leq n$.

By Proposition 2.6, $H_{n+1}^{\alpha}(Y) \cong H_{n+1}(Y/C_p)$. Thus $H_{n+1}^{\alpha}(Y) = 0$. Hence $(i_*^Y)_n : H_n^{\alpha}(Y) \to H_n(Y)$ is injective and $(i_*^Y)_n \circ (f_*^{\alpha})_n : H_n^{\alpha}(X) \to H_n(Y)$ is a non-zero homomorphism.

On the other hand, since $H_n(X) = 0$, $(i_*^Y)_n \circ (f_*^\alpha)_n = (f_*)_n \circ (i_*^X)_n = 0$. This contradiction proves the theorem in this case.

Next we prove the case where k > 2. For simplicity, we abbreviate the coefficient $\mathbb{Z}/k\mathbb{Z}$ in the definable homology. By Theorem 2.2, we have two commutative diagrams

and

with exact rows.

We easily see that $(i_*^X)_0 = 0$ and $(i_*^Y)_0 = 0$. Thus $(\beta_*^X)_0 : H_0(X) \to H_0^\beta(X)$ and $(\beta_*^Y)_0 : H_0(Y) \to H_0^\beta(Y)$ are isomorphisms. Since $(f_*)_0 : H_0(X) \to H_0(Y)$ is an isomorphism, we have the claim that $(f_*^\beta)_0 : H_0^\beta(X) \to H_0^\beta(Y)$ is an isomorphism. Similarly we see that $(f_*^\alpha)_0 : H_0^\alpha(X) \to H_0^\alpha(Y)$ is an isomorphism from the second diagram. Since $H_1(X) = 0$ and $(i_*^X)_0 = 0, (\partial_*^X)_1 : H_1^\beta(X) \to H_0^\alpha(X)$ is an isomorphism. Similarly $(\partial_*'^X)_1 : H_1^\alpha(X) \to H_0^\beta(X)$ is an isomorphism. Since $(\partial_*^Y)_1 \circ (f_*^\beta)_1 = (f_*^\alpha)_0 \circ (\partial_*^X)_1$ and $(\partial_*'^Y)_1 \circ (f_*^\alpha)_1 = (f_*^\beta)_0 \circ (\partial_*'^X)_1$, $(f_*^\alpha)_1 : H_1^\alpha(X) \to H_1^\alpha(Y)$ and $(f_*^\beta)_1 : H_1^\alpha(X) \to H_1^\alpha(Y)$ are non-zero homomorphisms. By induction, we have the claim that $(f_*^\alpha)_q : H_q^\alpha(X) \to H_q^\alpha(Y)$ and $(f_*^\beta)_q : H_1^\alpha(X) \to H_q^\beta(Y)$ are non-zero homomorphism for each $0 \le q \le n$. By Proposition

2.6, $H_{n+1}^{\alpha}(Y) \cong H_{n+1}(Y/C_p)$. Hence $H_{n+1}^{\alpha}(Y/C_p) = 0$ and $(j_*^Y)_n : H_n^{\beta}(Y) \to H_n(Y)$ is injective. Therefore $(j_*^Y)_n \circ (f_*^{\beta})_n$ is a non-zero homomorphism.

On the other hand, $(j_*^Y)_n \circ (f_*^\beta)_n = (f_*)_n \circ (j_*^X)_n = 0$ because $H_n(X) = 0$. This is a contradiction. Therefore the proof is complete.

Proof of Theorem 1.5. Suppose that $f(x) \neq f(gx)$ for any $x \in X$. Then the map $F: X \to Y^*$ defined by $F(x) = (f(x), f(gx), \dots, f(g^{k-1}x))$ is a definable C_k -map. This contradicts Theorem 1.3.

Proof of Theorem 1.1 *and Theorem* 1.2. Similar proofs of Theorem 1.3 and Theorem 1.5 prove Theorem 1.1 and Theorem 1.2, respectively. \Box

References

- [1] E. Baro and M. Otero, On o-minimal homotopy groups, preprint.
- [2] Carlos Biasi and Denise de Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. 37 (2006), 127–137.
- [3] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [4] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. of Math. 140 (1994), 183–205.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377–4421.
- [7] Y. Hemmi, T. Kobayashi and T. Yoshida, The Borsuk-Ulam theorem for a Z_q-map from S^{2m+1} to a Z_p-complex, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 8 (1987), 27-30.
- [8] T. Kawakami, Homotopy property of definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 53 (2003), 1–6.
- [9] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, (1991).
- [10] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_q -map from a \mathbb{Z}_q -space to S^{2n+1} , Proc. Amer. Math. Soc. 97 (1986), 714–716.
- [11] C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68, (1994), 79–94.
- I. Nagasaki, Isovariant Borsuk-Ulam results for pseudofree circle actions and their converse, Trans. Amer. Math. Soc. 358 (2006), 743–757
- [13] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka J. Math. 43 (2006), 689–710.
- [14] I. Nagasaki, The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch. Math. (Basel) 81 (2003), 348–359.
- [15] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Borsuk-Ulam theorem in a real closed field, Far East J. Math. Sci (FJMS) 33 (2009), 113-124.
- [16] I. Nagasaki and F. Ushitaki, Isovariant maps from free C_n -manifolds to representation spheres, Topology Appl. 155 (2008), 1066-1076.
- [17] Pedro L. Q Pergher, Denise de Mattos and Edivaldo L. dos Santos, The Borsuk-Ulam theorem for general spaces, Arch. Math. (Basel) 81 (2003), 96–102.
- [18] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
- [19] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [20] J.W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly 90 (1983), 466–468.
- [21] A. Worheide, O-minimal homology, Ph.D. thesis (1996), University of Illinois at Urbana-Champaign.

DEPARTMENT OF MATHEMATICS, KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, 13 NISHI-TAKATSUKASO-CHO, TAISHOGUN KITA-KU, KYOTO 603-8334, JAPAN

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan

E-mail address: nagasaki@koto.kpu-m.ac.jp *E-mail address*: kawa@center.wakayama-u.ac.jp *E-mail address*: hara@math.sci.osaka-u.ac.jp *E-mail address*: ushitaki@ksuvx0.kyoto-su.ac.jp