A GENERALIZED BORSUK-ULAM THEOREM IN A REAL CLOSED FIELD

IKUMITSU NAGASAKI, TOMOHIRO KAWAKAMI, YASUHIRO HARA AND FUMIHIRO
USHITAKI

Abstract

Let C_{k} be the cyclic group of order k and $\mathcal{N}=(R,+, \cdot,<, \ldots)$ an o-minimal expansion of a real closed field R. Let X be a definably connected definable set with a free definable C_{k}-action. Assume that there exists a positive integer n such that $H_{q}(X ; \mathbb{Z} / k \mathbb{Z})=0$ for $1 \leq q \leq n$. If Y is a definable set with a free definable C_{k}-action such that $H_{n+1}\left(Y / C_{k}, \mathbb{Z} / k \mathbb{Z}\right)=0$, then there is no definable C_{k}-map from X to Y. We also prove the topological version of this definable version.

1. Introduction

Let C_{k} be the cyclic group of order k. Let \mathbb{S}^{n} be the n-dimensional unit sphere of the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1} with the antipodal C_{2}-action. From the viewpoint of transformation groups, the classical Borsuk-Ulam theorem states that if there exists a continuous C_{2}-map from \mathbb{S}^{n} to \mathbb{S}^{m}, then $n \leq m$. There are several equivalent statements of it and many related generalizations (e.g. [2], [12], [13], [14], [16]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by several authors. For example, J.W. Walker [20], Pedro L. Q Pergher, Denise de Mattos and Edivaldo L. dos Santos [17].

Several C_{k}-versions of the classical Borsuk-Ulam theorem are discussed in [10] and [7]. The following two theorems are C_{k}-versions for topological spaces which are generalizations of [20], [17], [10] and [7].

Theorem 1.1. Let X be an arcwise connected free C_{k}-space and Y a Hausdorff free C_{k} space. If there exists a positive integer n such that $H_{q}(X ; \mathbb{Z} / k \mathbb{Z})=0$ for $1 \leq q \leq n$ and $H_{n+1}\left(Y / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)=0$, then there is no continuous C_{k}-map from X to Y. Here this homology means the singular homology.

Let k be a prime. For a topological space Y, let $D=\left\{\left(y_{1}, \ldots, y_{k}\right) \in Y \times \cdots \times Y \mid y_{1}=\right.$ $\left.\cdots=y_{k}\right\}$ be the diagonal and write $Y^{*}=Y \times \cdots \times Y-D$ admitting the free C_{k}-action defined by $g\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\left(y_{k}, y_{1}, \ldots, y_{k-1}\right)$, where g generates C_{k}.

Theorem 1.2. Let k be a prime and X an arcwise connected free C_{k}-space. If there exists a positive integer n such that $H_{q}(X ; \mathbb{Z} / k \mathbb{Z})=0$ for $1 \leq q \leq n$ and Y is a Hausdorff free C_{k}-space with $H_{n+1}\left(Y^{*} / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)=0$, then every continuous map $f: X \rightarrow Y$ has a

[^0]C_{k}-coincidence point, that is, a point x such that $f(x)=f(g x)$, where g is a generator of C_{k}.

The purpose of this paper is to consider the definable versions of Theorem 1.1 and Theorem 1.2

Let $\mathcal{N}=(R,+, \cdot,<, \ldots)$ be an o-minimal expansion of a real closed field R. Any definable category is a generalization of the semialgebraic category. Many results in the semialgebraic geometry hold in the o-minimal setting and there exist uncountably many ominimal expansions of the standard structure of the field \mathbb{R} of real numbers ([18]). See also [4], [6], [11] for examples and constructions of o-minimal structures. General references on them are [3], [5], [19]. In this paper "definable" means "definable with parameters in \mathcal{N} ", everything is considered in \mathcal{N} and each definable map is continuous unless otherwise stated.

The singular definable homology is introduced in [21].
Theorem 1.3 (Definable Borsuk-Ulam Theorem). Let X be a definably connected definable set with a free definable C_{k}-action. If there exists a positive integer n such that $H_{q}(X ; \mathbb{Z} / k \mathbb{Z})=0$ for $1 \leq q \leq n$ and Y is a definable set with a free definable C_{k}-action such that $H_{n+1}\left(Y / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)=0$, then there is no definable C_{k}-map from X to Y. Here this homology means the singular definable homology.

If Y is a definable set with a definable C_{k}-action, then by 10.2 .18 [3], Y / C_{k} is a definable set and the orbit map $\pi: Y \rightarrow Y / C_{k}$ is definable. If $\operatorname{dim} Y \leq n$, then by 4.1.6 [3] $\operatorname{dim} Y / C_{r} \leq n$. Thus if $\operatorname{dim} Y \leq n$, then $H_{n+1}\left(Y / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)=0$.

Let S^{n} denote the n-dimensional unit sphere of R^{n+1}.
Corollary 1.4. (1) Suppose that $k \geq 3$ and that C_{k} acts on $S^{2 m+1}$ and $S^{2 n+1}$ definably and freely. If there exists a definable $C_{k}-\operatorname{map} f: S^{2 m+1} \rightarrow S^{2 n+1}$, then $m \leq n$.
(2) If S^{m} and S^{n} have free definable C_{2}-actions and there exists a definable C_{2}-map $f: S^{m} \rightarrow S^{n}$, then $m \leq n$.

Corollary 1.4 is a generalization of 1.1 [15].
Theorem 1.5. Let k be a prime and X a definably connected definable set with a free definable C_{k}-action. Assume that there exists a positive integer n such that $H_{q}(X ; \mathbb{Z} / k \mathbb{Z})=0$ for $1 \leq q \leq n$. If Y is a definable set with $H_{n+1}\left(Y^{*} / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)=0$, then every definable map $f: X \rightarrow Y$ has a C_{k}-coincidence point, that is, a point x such that $f(x)=f(g x)$, where g is a generator of C_{k}.

2. Proof of results

We first prove Theorem 1.3. Let $\mathbb{Z} / k \mathbb{Z}\left[C_{k}\right]$ denote the group ring of C_{k} over $\mathbb{Z} / k \mathbb{Z}$. For any $q \in \mathbb{N} \cup\{0\}$, the q-dimensional chain group $C_{q}(X ; \mathbb{Z} / k \mathbb{Z})$ has the standard C_{k}-action. Then this action induces $\mathbb{Z} / k \mathbb{Z}\left[C_{k}\right]$-action on $C_{q}(X ; \mathbb{Z} / k \mathbb{Z})$.

Let g be a generator of $C_{k}, \alpha=1+g+\cdots+g^{k-1}$, and $\beta=1-g$. Then by definition $\alpha \beta=\beta \alpha=0$, for every $q, \alpha C_{q}(X ; \mathbb{Z} / k \mathbb{Z})$ and $\beta C_{q}(X ; \mathbb{Z} / k \mathbb{Z})$ are $\mathbb{Z} / k \mathbb{Z}\left[C_{k}\right]$ submodules of $C_{q}(X ; \mathbb{Z} / k \mathbb{Z})$ and $\alpha \partial=\partial \alpha, \beta \partial=\partial \beta$, where ∂ is the boundary operator of $\left\{C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}$. Therefore $\left\{\alpha C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}$ and $\left\{\beta C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}$ are subchain complexes of $\left\{C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}$.

Proposition 2.1. For every q, the following two sequences are exact.

$$
\begin{aligned}
& 0 \rightarrow \alpha C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{i} C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\beta} \beta C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \rightarrow 0, \\
& 0 \rightarrow \beta C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{j} C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\alpha} \alpha C_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \rightarrow 0,
\end{aligned}
$$

where i, j denote the inclusions and α (resp. β) stands for the multiplication of α (resp. $\beta)$.

Proof. Since $\beta \circ i=0, \alpha \circ j=0, \operatorname{Im} i \subset \operatorname{Ker} \beta, \operatorname{Im} j \subset \operatorname{Ker} \alpha$.
Let $s=\sum_{j} \sum_{i=0}^{k-1} n_{j i} g^{i} \sigma_{j} \in \operatorname{Ker} \beta$, where g is a generator of C_{k}. If $l \neq l^{\prime}$ and $0 \leq i \leq$ $k-1$, then $g^{i} \sigma_{l} \neq \sigma_{l^{\prime}}$. Since $\beta s=0$, for any $j, \sum_{i=0}^{k-1} n_{j i} g^{i}(1-g) \sigma_{j}=0$. Thus for every j, $\sum_{i=1}^{k-1}\left(n_{j i}-n_{j(i-1)}\right) g^{i} \sigma_{i}+\left(n_{j 0}-n_{j(k-1)}\right) \sigma_{j}=0$. Hence for each $j, n_{j 0}=n_{j 1}=\cdots=n_{j k-1}$. We set $n_{j}=n_{j 0}\left(=n_{j 1}=\cdots=n_{j k-1}\right)$. Then We have $s=\sum_{j} n_{j}\left(1+g+\cdots+g^{k-1}\right) \sigma_{j}=$ $\alpha \sum_{j} n_{j} \sigma_{j} \in \operatorname{Im} i$. Therefore Ker $\beta=\operatorname{Im} i$.

Let $s=\sum_{j} \sum_{i=0}^{k-1} n_{j i} g^{i} \sigma_{j} \in \operatorname{Ker} \alpha$. Since $\alpha s=\sum_{j}\left(n_{j 0}+\cdots+n_{j(k-1)}\right)\left(1+\cdots+g^{k-1}\right) \sigma_{j}=$ $0, n_{j 0}+\cdots+n_{j(k-1)}=0$.

Thus $s=\sum_{j}\left(n_{j 0}(1-g)+\left(n_{j 0}+n_{j 1}\right) g(1-g)+\left(n_{j 0}+n_{j 1}+n_{j 2}\right) g^{2}(1-g)+\cdots+\left(n_{j 0}+\right.\right.$ $\left.\left.n_{j 1}+\cdots+n_{j(k-2)}\right) g^{k-2}(1-g)\right) \sigma_{j} \in \operatorname{Im} j$. Therefore Ker $\alpha=\operatorname{Im} j$.

Let $H_{q}^{\alpha}(X, \mathbb{Z} / k \mathbb{Z})\left(\right.$ resp. $\left.H_{q}^{\beta}(X, \mathbb{Z} / k \mathbb{Z})\right)$ denote the homology group induced from the chain complex $\left\{\alpha C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}$ (resp. $\left.\left\{\beta C_{q}(X ; \mathbb{Z} / k \mathbb{Z})\right\}\right)$.

By Proposition 2.1, we have the following theorem.
Theorem 2.2. The following two sequences are exact.

$$
\begin{aligned}
& \cdots \rightarrow H_{q}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{i_{*}} H_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\beta_{*}} H_{q}^{\beta}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\partial_{*}} H_{q-1}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \rightarrow \ldots \\
& \cdots \rightarrow H_{q}^{\beta}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{j_{*}} H_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\alpha_{*}} H_{q}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\partial_{*}^{\prime}} H_{q-1}^{\beta}(X ; \mathbb{Z} / k \mathbb{Z}) \rightarrow \ldots
\end{aligned}
$$

In particular, if $p=2$, then $\alpha=\beta$ and

$$
\cdots \rightarrow H_{q}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{i_{*}} H_{q}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\alpha_{*}} H_{q}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\partial_{*}} H_{q-1}^{\alpha}(X ; \mathbb{Z} / k \mathbb{Z}) \rightarrow \ldots
$$

is exact.
Definable fiber bundles are introduced in [8].
Proposition 2.3. Let X be a definable set with a free definable C_{k}-action. Then (X, π, $X / C_{k}, C_{k}$) is a principal definable C_{k}-fiber bundle, where $\pi: X \rightarrow X / C_{k}$ denotes the orbit map. In particular $\pi: X \rightarrow X / C_{k}$ is a definable covering map.

Let $p: E \rightarrow X$ be a definable map. We say that p has the definable homotopy lifting property if for any definable set Y, each definable homotopy $h: Y \times[0,1] \rightarrow X$ and a definable map $F: Y \rightarrow E$ such that $p \circ F(y)=h(y, 0)$ for all $y \in Y$, there exists a definable homotopy $H: Y \times[0,1] \rightarrow E$ such that $p \circ H=h$ and $H(y, 0)=F(y)$ for all $y \in Y$.

Theorem 2.4 (4.10 [1]). Every definable covering map has the definable homotopy lifting property.
Corollary 2.5. Let X be a definable set with a free definable C_{k}-action. Then the orbit map $\pi: X \rightarrow X / C_{k}$ has the definable homotopy lifting property.
Proposition 2.6. Under the assumptions in Theorem 1.3, for every $q, H_{q}^{\alpha}(Y, \mathbb{Z} / k \mathbb{Z}) \cong$ $H_{q}\left(Y / C_{k}, \mathbb{Z} / k \mathbb{Z}\right)$.

Proof. We first show that the map $\alpha: C(Y ; \mathbb{Z} / k \mathbb{Z}) \rightarrow C(Y ; \mathbb{Z} / k \mathbb{Z})$ and the map $\pi_{*}: C(Y ; \mathbb{Z} / k \mathbb{Z}) \rightarrow C\left(Y / C_{k} ; \mathbb{Z} / k \mathbb{Z}\right)$ induced from the orbit map $\pi: Y \rightarrow Y / C_{k}$ have the same kernel. Let σ be a singular s-simplex of Y. We need only to consider elements of $C\left(C_{k} \sigma\right)$, since $C(Y) \cong \oplus_{[\sigma] \in \Delta(s) / C_{k}} C\left(C_{k} \sigma\right)$, where $\Delta(s)$ is the set of singular s-simplexes of Y and $\Delta(s) / C_{k}$ is its orbit set under the induced action.

Since $\alpha\left(\sum n_{i} g^{i} \sigma\right)=\left(\sum n_{i}\right) \alpha(\sigma), \alpha\left(\sum n_{i} g^{i} \sigma\right)=0$ if and only if $\sum n_{i}=0$, and similarly $\pi_{*}\left(\sum n_{i} g^{i} \sigma\right)=\left(\sum n_{i}\right) \pi \circ \sigma=0$ if and only if $\sum n_{i}=0$; therefore, both kernels coincide.

We next show that π_{*} is surjective; namely, there is a definable lift $\tilde{\tau}: \Delta^{s} \rightarrow Y$ of $\tau: \Delta^{s} \rightarrow Y / C_{k}$, where Δ^{s} denotes the affine span of $(s+1)$-points which are affine independent. Since Δ^{s} is definably contractible, there is a definable homotopy $H^{\prime}: \Delta^{s} \times$ $[0,1] \rightarrow \Delta^{s}$ such that $H^{\prime}(-, 0)=c_{e_{0}}$ and $H^{\prime}(-, 1)=i d_{\Delta^{s}}$, where $c_{e_{0}}$ denotes the constant map whose value is $e_{0} \in \Delta^{s}$. Then the composition $H=\tau \circ H^{\prime}$ is a definable homotopy from the constant map $c_{\tau\left(e_{0}\right)}$ to τ. Let y_{0} be a point of Y such that $\pi\left(y_{0}\right)=\tau\left(e_{0}\right)$, and $c_{y_{0}}: \Delta^{s} \rightarrow Y$ the constant map whose value is y_{0}. Since $H(-, 0)=\pi \circ c_{y_{0}}$, it follows from Corollary 2.5 that there exists a definable lift $\tilde{H}: \Delta^{s} \times[0,1] \rightarrow Y$ of H such that $\tilde{H}(-, 0)=c_{y_{0}}$. Then $\tilde{\tau}:=\tilde{H}(-, 1)$ is a definable lift of $\tau=H(-, 1)$.

Since π_{*} is surjective, $\alpha C(Y ; \mathbb{Z} / k \mathbb{Z})$ and $C\left(Y / C_{p} ; \mathbb{Z} / k \mathbb{Z}\right)$ are isomorphic as chain complexes. Accordingly their homology groups are also isomorphic.

The topological version of Proposition 2.6 is studied in 5.33 [9].
Proof of Theorem 1.3. Assume that there exists a definable C_{k}-map $f: X \rightarrow Y$ under the conditions of Theorem 1.3. Since X is definably connected, $f(X)$ is definable connected. Hence $f(X)$ is contained in a definably connected component of Y. Therefore it is sufficient to prove the case where Y is definably connected.

We first prove the case where $k=2$. Since f is a definable C_{2}-map, $\alpha f_{\sharp}=f_{\sharp} \alpha$.
For simplicity, we abbreviate the coefficient $\mathbb{Z} / 2 \mathbb{Z}$ in the definable homology. By Theorem 2.2 , we have a commutative diagram

$$
\begin{aligned}
& \rightarrow H_{n+1}^{\alpha}(Y) \xrightarrow{\partial_{n}^{Y}} H_{n}^{\alpha}(Y) \xrightarrow{i^{Y}} H_{n}(Y) \xrightarrow{\alpha_{n}^{Y}} H_{n}^{\beta}(Y) \xrightarrow{\partial^{Y}} H_{n-1}^{\alpha}(Y) \rightarrow \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow H_{1}^{\alpha}(Y) \xrightarrow{i_{4}^{Y}} H_{1}(Y) \xrightarrow{\alpha_{*}^{Y}} H_{1}^{\alpha}(Y) \xrightarrow{\partial_{4}^{Y}} H_{0}^{\alpha}(Y) \xrightarrow{i_{4}^{Y}} H_{0}(Y) \xrightarrow{\alpha_{n}^{Y}} H_{0}^{\alpha}(Y) \rightarrow 0
\end{aligned}
$$

with exact rows.
By definition, $\left(i_{*}^{X}\right)_{0}=0$ and $\left(i_{*}^{Y}\right)_{0}=0$. Thus $\left(\alpha_{*}^{X}\right)_{0}: H_{0}(X) \rightarrow H_{0}^{\alpha}(X)$ and $\left(\alpha_{*}^{Y}\right)_{0}:$ $H_{0}(Y) \rightarrow H_{0}^{\alpha}(Y)$ are isomorphisms. By assumption, $H_{0}(X) \cong \mathbb{Z} / 2 \mathbb{Z}$. Hence $H_{0}(X) \cong$
$H_{0}^{\alpha}(X) \cong \mathbb{Z} / 2 \mathbb{Z}$. Similarly, $H_{0}(Y) \cong H_{0}^{\alpha}(Y) \cong \mathbb{Z} / 2 \mathbb{Z}$. Since $\left(f_{*}\right)_{0}: H_{0}(X) \rightarrow H_{0}(Y)$ is an isomorphism and $\left(\alpha_{*}^{Y}\right)_{0} \circ\left(f_{*}\right)_{0}=\left(f_{*}^{\alpha}\right)_{0} \circ\left(\alpha_{*}^{X}\right)_{0},\left(f_{*}^{\alpha}\right)_{0}: H_{0}^{\alpha}(X) \rightarrow H_{0}^{\alpha}(Y)$ is an isomorphism. Since $\left(i_{*}^{X}\right)_{0}=0$, we have $\operatorname{Im}\left(\partial_{*}^{X}\right)_{1}=\operatorname{Ker}\left(i_{*}^{X}\right)_{0}=H_{0}^{\alpha}(X)$. Thus we see that $\left(\partial_{*}^{Y}\right)_{1} \circ\left(f_{*}^{\alpha}\right)_{1}=\left(f_{*}^{\alpha}\right)_{0} \circ\left(\partial_{*}^{X}\right)_{1}: H_{1}^{\alpha}(X) \rightarrow H_{0}^{\alpha}(Y)$ is a non-zero homomorphism. Hence $\left(f_{*}^{\alpha}\right)_{1}: H_{1}^{\alpha}(X) \rightarrow H_{1}^{\alpha}(Y)$ is a non-zero homomorphism. Using the assumptions on X, we see that $\left(\partial_{*}^{X}\right)_{q}: H_{q}^{\alpha}(X) \rightarrow H_{q-1}^{\alpha}(X)$ is an isomorphism for each $1 \leq q \leq n$. Using this fact and by induction, we have the claim that $\left(f_{*}^{\alpha}\right)_{q}: H_{q}^{\alpha}(X) \rightarrow H_{q}^{\alpha}(Y)$ is a non-zero homomorphism for each $0 \leq q \leq n$.

By Proposition 2.6, $H_{n+1}^{\alpha}(Y) \cong H_{n+1}\left(Y / C_{p}\right)$. Thus $H_{n+1}^{\alpha}(Y)=0$. Hence $\left(i_{*}^{Y}\right)_{n}$: $H_{n}^{\alpha}(Y) \rightarrow H_{n}(Y)$ is injective and $\left(i_{*}^{Y}\right)_{n} \circ\left(f_{*}^{\alpha}\right)_{n}: H_{n}^{\alpha}(X) \rightarrow H_{n}(Y)$ is a non-zero homomorphism.

On the other hand, since $H_{n}(X)=0,\left(i_{*}^{Y}\right)_{n} \circ\left(f_{*}^{\alpha}\right)_{n}=\left(f_{*}\right)_{n} \circ\left(i_{*}^{X}\right)_{n}=0$. This contradiction proves the theorem in this case.

Next we prove the case where $k>2$. For simplicity, we abbreviate the coefficient $\mathbb{Z} / k \mathbb{Z}$ in the definable homology. By Theorem 2.2, we have two commutative diagrams

$$
\begin{aligned}
& \rightarrow H_{n}^{\alpha}(Y) \xrightarrow{i_{*}^{Y}} H_{n}(Y) \xrightarrow{\beta_{*}^{Y}} H_{n}^{\beta}(Y) \xrightarrow{\partial_{X}^{Y}} H_{n-1}^{\alpha}(Y) \rightarrow \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow H_{1}^{\alpha}(Y) \xrightarrow{i_{*}^{Y}} H_{1}(Y) \xrightarrow{\beta_{*}^{Y}} H_{1}^{\beta}(Y) \xrightarrow{\partial_{x}^{Y}} H_{0}^{\alpha}(Y) \xrightarrow{i_{*}^{Y}} H_{0}(Y) \xrightarrow{\beta_{*}^{Y}} H_{0}^{\beta}(Y) \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \rightarrow H_{n+1}^{\alpha}(Y) \xrightarrow{\partial_{Y}^{\prime Y}} H_{n}^{\beta}(Y) \xrightarrow{j_{0}^{Y}} H_{n}(Y) \xrightarrow{\alpha_{Y}^{Y}} H_{n}^{\alpha}(Y) \xrightarrow{\partial_{X}^{\prime Y}} H_{n-1}^{\beta}(Y) \rightarrow \ldots
\end{aligned}
$$

with exact rows.
We easily see that $\left(i_{*}^{X}\right)_{0}=0$ and $\left(i_{*}^{Y}\right)_{0}=0$. Thus $\left(\beta_{*}^{X}\right)_{0}: H_{0}(X) \rightarrow H_{0}^{\beta}(X)$ and $\left(\beta_{*}^{Y}\right)_{0}$: $H_{0}(Y) \rightarrow H_{0}^{\beta}(Y)$ are isomorphisms. Since $\left(f_{*}\right)_{0}: H_{0}(X) \rightarrow H_{0}(Y)$ is an isomorphism, we have the claim that $\left(f_{*}^{\beta}\right)_{0}: H_{0}^{\beta}(X) \rightarrow H_{0}^{\beta}(Y)$ is an isomorphism. Similarly we see that $\left(f_{*}^{\alpha}\right)_{0}: H_{0}^{\alpha}(X) \rightarrow H_{0}^{\alpha}(Y)$ is an isomorphism from the second diagram. Since $H_{1}(X)=0$ and $\left(i_{*}^{X}\right)_{0}=0,\left(\partial_{*}^{X}\right)_{1}: H_{1}^{\beta}(X) \rightarrow H_{0}^{\alpha}(X)$ is an isomorphism. Similarly $\left(\partial_{*}^{\prime X}\right)_{1}: H_{1}^{\alpha}(X) \rightarrow$ $H_{0}^{\beta}(X)$ is an isomorphism. Since $\left(\partial_{*}^{Y}\right)_{1} \circ\left(f_{*}^{\beta}\right)_{1}=\left(f_{*}^{\alpha}\right)_{0} \circ\left(\partial_{*}^{X}\right)_{1}$ and $\left(\partial_{*}^{\prime Y}\right)_{1} \circ\left(f_{*}^{\alpha}\right)_{1}=$ $\left(f_{*}^{\beta}\right)_{0} \circ\left(\partial_{*}^{\prime X}\right)_{1},\left(f_{*}^{\alpha}\right)_{1}: H_{1}^{\alpha}(X) \rightarrow H_{1}^{\alpha}(Y)$ and $\left(f_{*}^{\beta}\right)_{1}: H_{1}^{\alpha}(X) \rightarrow H_{1}^{\beta}(Y)$ are non-zero homomorphisms. By induction, we have the claim that $\left(f_{*}^{\alpha}\right)_{q}: H_{q}^{\alpha}(X) \rightarrow H_{q}^{\alpha}(Y)$ and $\left(f_{*}^{\beta}\right)_{q}: H_{1}^{\alpha}(X) \rightarrow H_{q}^{\beta}(Y)$ are non-zero homomorphism for each $0 \leq q \leq n$. By Proposition
2.6, $H_{n+1}^{\alpha}(Y) \cong H_{n+1}\left(Y / C_{p}\right)$. Hence $H_{n+1}^{\alpha}\left(Y / C_{p}\right)=0$ and $\left(j_{*}^{Y}\right)_{n}: H_{n}^{\beta}(Y) \rightarrow H_{n}(Y)$ is injective. Therefore $\left(j_{*}^{Y}\right)_{n} \circ\left(f_{*}^{\beta}\right)_{n}$ is a non-zero homomorphism.

On the other hand, $\left(j_{*}^{Y}\right)_{n} \circ\left(f_{*}^{\beta}\right)_{n}=\left(f_{*}\right)_{n} \circ\left(j_{*}^{X}\right)_{n}=0$ because $H_{n}(X)=0$. This is a contradiction. Therefore the proof is complete.

Proof of Theorem 1.5. Suppose that $f(x) \neq f(g x)$ for any $x \in X$. Then the map $F: X \rightarrow Y^{*}$ defined by $F(x)=\left(f(x), f(g x), \ldots, f\left(g^{k-1} x\right)\right)$ is a definable C_{k}-map. This contradicts Theorem 1.3.

Proof of Theorem 1.1 and Theorem 1.2. Similar proofs of Theorem 1.3 and Theorem 1.5 prove Theorem 1.1 and Theorem 1.2, respectively.

References

[1] E. Baro and M. Otero, On o-minimal homotopy groups, preprint.
[2] Carlos Biasi and Denise de Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. 37 (2006), 127-137.
[3] L. van den Dries, Tame topology and o-minimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
[4] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. of Math. 140 (1994), 183-205.
[5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
[6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377-4421.
[7] Y. Hemmi, T. Kobayashi and T. Yoshida, The Borsuk-Ulam theorem for a \mathbb{Z}_{q}-map from $S^{2 m+1}$ to $a \mathbb{Z}_{p}$-complex, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 8 (1987), 27-30.
[8] T. Kawakami, Homotopy property of definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 53 (2003), 1-6.
[9] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, (1991).
[10] T. Kobayashi, The Borsuk-Ulam theorem for a $\mathbb{Z}_{q}-$ map from a \mathbb{Z}_{q}-space to $S^{2 n+1}$, Proc. Amer. Math. Soc. 97 (1986), 714-716.
[11] C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68, (1994), 79-94.
[12] I. Nagasaki, Isovariant Borsuk-Ulam results for pseudofree circle actions and their converse, Trans. Amer. Math. Soc. 358 (2006), 743-757
[13] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka J. Math. 43 (2006), 689-710.
[14] I. Nagasaki, The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch. Math. (Basel) 81 (2003), 348-359.
[15] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Borsuk-Ulam theorem in a real closed field, Far East J. Math. Sci (FJMS) 33 (2009), 113-124.
[16] I. Nagasaki and F. Ushitaki, Isovariant maps from free C_{n}-manifolds to representation spheres, Topology Appl. 155 (2008), 1066-1076.
[17] Pedro L. Q Pergher, Denise de Mattos and Edivaldo L. dos Santos, The Borsuk-Ulam theorem for general spaces, Arch. Math. (Basel) 81 (2003), 96-102.
[18] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
[19] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
[20] J.W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly 90 (1983), 466-468.
[21] A. Worheide, O-minimal homology, Ph.D. thesis (1996), University of Illinois at Urbana-Champaign.

Department of Mathematics, Kyoto Prefectural University of Medicine, 13 Nishi-Takatsukaso-Cho, Taishogun Kita-ku, Kyoto 603-8334, Japan

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan

E-mail address: nagasaki@koto.kpu-m.ac.jp
E-mail address: kawa@center.wakayama-u.ac.jp
E-mail address: hara@math.sci.osaka-u.ac.jp
E-mail address: ushitaki@ksuvx0.kyoto-su.ac.jp

[^0]: 2000 Mathematics Subject Classification. 57S10, 57S17, 55M20, 55M35, 03C64.
 Keywords and Phrases. The Borsuk-Ulam theorem, o-minimal, real closed fields, finite groups, definable C_{k}-maps, continuous C_{k}-maps.
 The fourth author is partially supported by Kyoto Sangyo University Research Grants.

