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Abstract. Let Ck be the cyclic group of order k and N = (R,+, ·, <, . . . ) an o-minimal
expansion of a real closed field R. Let X be a definably connected definable set with
a free definable Ck-action. Assume that there exists a positive integer n such that
Hq(X; Z/kZ) = 0 for 1 ≤ q ≤ n. If Y is a definable set with a free definable Ck-action
such that Hn+1(Y/Ck, Z/kZ) = 0, then there is no definable Ck-map from X to Y . We
also prove the topological version of this definable version.

1. Introduction

Let Ck be the cyclic group of order k. Let Sn be the n-dimensional unit sphere of
the (n + 1)-dimensional Euclidean space Rn+1 with the antipodal C2-action. From the
viewpoint of transformation groups, the classical Borsuk-Ulam theorem states that if there
exists a continuous C2-map from Sn to Sm, then n ≤ m. There are several equivalent
statements of it and many related generalizations (e.g. [2], [12], [13], [14], [16]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by several au-
thors. For example, J.W. Walker [20], Pedro L. Q Pergher, Denise de Mattos and Edivaldo
L. dos Santos [17].

Several Ck-versions of the classical Borsuk-Ulam theorem are discussed in [10] and [7].
The following two theorems are Ck-versions for topological spaces which are generaliza-
tions of [20], [17], [10] and [7].

Theorem 1.1. Let X be an arcwise connected free Ck-space and Y a Hausdorff free Ck-
space. If there exists a positive integer n such that Hq(X; Z/kZ) = 0 for 1 ≤ q ≤ n and
Hn+1(Y/Ck; Z/kZ) = 0, then there is no continuous Ck-map from X to Y . Here this
homology means the singular homology.

Let k be a prime. For a topological space Y , let D = {(y1, . . . , yk) ∈ Y × · · · × Y |y1 =
· · · = yk} be the diagonal and write Y ∗ = Y × · · · × Y −D admitting the free Ck-action
defined by g(y1, y2, . . . , yk) = (yk, y1, . . . , yk−1), where g generates Ck.

Theorem 1.2. Let k be a prime and X an arcwise connected free Ck-space. If there exists
a positive integer n such that Hq(X; Z/kZ) = 0 for 1 ≤ q ≤ n and Y is a Hausdorff free
Ck-space with Hn+1(Y

∗/Ck; Z/kZ) = 0, then every continuous map f : X → Y has a
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Ck-coincidence point, that is, a point x such that f(x) = f(gx), where g is a generator of
Ck.

The purpose of this paper is to consider the definable versions of Theorem 1.1 and
Theorem 1.2

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed field R. Any
definable category is a generalization of the semialgebraic category. Many results in the
semialgebraic geometry hold in the o-minimal setting and there exist uncountably many o-
minimal expansions of the standard structure of the field R of real numbers ([18]). See also
[4], [6], [11] for examples and constructions of o-minimal structures. General references
on them are [3], [5], [19]. In this paper “definable” means “definable with parameters in
N ”, everything is considered in N and each definable map is continuous unless otherwise
stated.

The singular definable homology is introduced in [21].

Theorem 1.3 (Definable Borsuk-Ulam Theorem). Let X be a definably connected de-
finable set with a free definable Ck-action. If there exists a positive integer n such that
Hq(X; Z/kZ) = 0 for 1 ≤ q ≤ n and Y is a definable set with a free definable Ck-action
such that Hn+1(Y/Ck; Z/kZ) = 0, then there is no definable Ck-map from X to Y . Here
this homology means the singular definable homology.

If Y is a definable set with a definable Ck-action, then by 10.2.18 [3], Y/Ck is a definable
set and the orbit map π : Y → Y/Ck is definable. If dim Y ≤ n, then by 4.1.6 [3]
dim Y/Cr ≤ n. Thus if dim Y ≤ n, then Hn+1(Y/Ck; Z/kZ) = 0.

Let Sn denote the n-dimensional unit sphere of Rn+1.

Corollary 1.4. (1) Suppose that k ≥ 3 and that Ck acts on S2m+1 and S2n+1 definably
and freely. If there exists a definable Ck-map f : S2m+1 → S2n+1, then m ≤ n.

(2) If Sm and Sn have free definable C2-actions and there exists a definable C2-map
f : Sm → Sn, then m ≤ n.

Corollary 1.4 is a generalization of 1.1 [15].

Theorem 1.5. Let k be a prime and X a definably connected definable set with a free de-
finable Ck-action. Assume that there exists a positive integer n such that Hq(X; Z/kZ) = 0
for 1 ≤ q ≤ n. If Y is a definable set with Hn+1(Y

∗/Ck; Z/kZ) = 0, then every definable
map f : X → Y has a Ck-coincidence point, that is, a point x such that f(x) = f(gx),
where g is a generator of Ck.

2. Proof of results

We first prove Theorem 1.3. Let Z/kZ[Ck] denote the group ring of Ck over Z/kZ. For
any q ∈ N∪{0}, the q-dimensional chain group Cq(X; Z/kZ) has the standard Ck-action.
Then this action induces Z/kZ[Ck]-action on Cq(X; Z/kZ).

Let g be a generator of Ck, α = 1 + g + · · · + gk−1, and β = 1 − g. Then by def-
inition αβ = βα = 0, for every q, αCq(X; Z/kZ) and βCq(X; Z/kZ) are Z/kZ[Ck]-
submodules of Cq(X; Z/kZ) and α∂ = ∂α, β∂ = ∂β, where ∂ is the boundary operator
of {Cq(X; Z/kZ)}. Therefore {αCq(X; Z/kZ)} and {βCq(X; Z/kZ)} are subchain com-
plexes of {Cq(X; Z/kZ)}.
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Proposition 2.1. For every q, the following two sequences are exact.

0 → αCq(X; Z/kZ)
i→ Cq(X; Z/kZ)

β→ βCq(X; Z/kZ) → 0,

0 → βCq(X; Z/kZ)
j→ Cq(X; Z/kZ)

α→ αCq(X; Z/kZ) → 0,

where i, j denote the inclusions and α (resp. β) stands for the multiplication of α (resp.
β).

Proof . Since β ◦ i = 0, α ◦ j = 0, Im i ⊂ Ker β, Im j ⊂ Ker α.
Let s =

∑
j

∑k−1
i=0 njig

iσj ∈ Ker β, where g is a generator of Ck. If l 6= l′ and 0 ≤ i ≤
k−1, then giσl 6= σl′ . Since βs = 0, for any j,

∑k−1
i=0 njig

i(1−g)σj = 0. Thus for every j,∑k−1
i=1 (nji−nj(i−1))g

iσi +(nj0−nj(k−1))σj = 0. Hence for each j, nj0 = nj1 = · · · = njk−1.
We set nj = nj0(= nj1 = · · · = njk−1). Then We have s =

∑
j nj(1 + g + · · ·+ gk−1)σj =

α
∑

j njσj ∈ Im i. Therefore Ker β = Im i.

Let s =
∑

j

∑k−1
i=0 njig

iσj ∈ Ker α. Since αs =
∑

j(nj0+· · ·+nj(k−1))(1+· · ·+gk−1)σj =
0, nj0 + · · ·+ nj(k−1) = 0.

Thus s =
∑

j(nj0(1− g) + (nj0 + nj1)g(1− g) + (nj0 + nj1 + nj2)g
2(1− g) + · · ·+ (nj0 +

nj1 + · · ·+ nj(k−2))g
k−2(1− g))σj ∈ Im j. Therefore Ker α = Im j. �

Let Hα
q (X, Z/kZ) (resp. Hβ

q (X, Z/kZ)) denote the homology group induced from the
chain complex {αCq(X; Z/kZ)} (resp. {βCq(X; Z/kZ)}).

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact.

· · · → Hα
q (X; Z/kZ)

i∗→ Hq(X; Z/kZ)
β∗→ Hβ

q (X; Z/kZ)
∂∗→ Hα

q−1(X; Z/kZ) → . . .

· · · → Hβ
q (X; Z/kZ)

j∗→ Hq(X; Z/kZ)
α∗→ Hα

q (X; Z/kZ)
∂′
∗→ Hβ

q−1(X; Z/kZ) → . . . .

In particular, if p = 2, then α = β and

· · · → Hα
q (X; Z/kZ)

i∗→ Hq(X; Z/kZ)
α∗→ Hα

q (X; Z/kZ)
∂∗→ Hα

q−1(X; Z/kZ) → . . .

is exact.

Definable fiber bundles are introduced in [8].

Proposition 2.3. Let X be a definable set with a free definable Ck-action. Then (X, π,
X/Ck, Ck) is a principal definable Ck-fiber bundle, where π : X → X/Ck denotes the orbit
map. In particular π : X → X/Ck is a definable covering map.

Let p : E → X be a definable map. We say that p has the definable homotopy lifting
property if for any definable set Y , each definable homotopy h : Y × [0, 1] → X and a
definable map F : Y → E such that p ◦ F (y) = h(y, 0) for all y ∈ Y , there exists a
definable homotopy H : Y × [0, 1] → E such that p ◦ H = h and H(y, 0) = F (y) for all
y ∈ Y .
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Theorem 2.4 (4.10 [1]). Every definable covering map has the definable homotopy lifting
property.

Corollary 2.5. Let X be a definable set with a free definable Ck-action. Then the orbit
map π : X → X/Ck has the definable homotopy lifting property.

Proposition 2.6. Under the assumptions in Theorem 1.3, for every q, Hα
q (Y, Z/kZ) ∼=

Hq(Y/Ck, Z/kZ).

Proof . We first show that the map α : C(Y ; Z/kZ) → C(Y ; Z/kZ) and the map
π∗ : C(Y ; Z/kZ) → C(Y/Ck; Z/kZ) induced from the orbit map π : Y → Y/Ck have the
same kernel. Let σ be a singular s-simplex of Y . We need only to consider elements of
C(Ckσ), since C(Y ) ∼= ⊕[σ]∈∆(s)/Ck

C(Ckσ), where ∆(s) is the set of singular s-simplexes
of Y and ∆(s)/Ck is its orbit set under the induced action.

Since α(
∑

nig
iσ) = (

∑
ni)α(σ), α(

∑
nig

iσ) = 0 if and only if
∑

ni = 0, and similarly
π∗(

∑
nig

iσ) = (
∑

ni)π ◦ σ = 0 if and only if
∑

ni = 0; therefore, both kernels coincide.
We next show that π∗ is surjective; namely, there is a definable lift τ̃ : ∆s → Y of

τ : ∆s → Y/Ck, where ∆s denotes the affine span of (s + 1)-points which are affine
independent. Since ∆s is definably contractible, there is a definable homotopy H ′ : ∆s ×
[0, 1] → ∆s such that H ′(−, 0) = ce0 and H ′(−, 1) = id∆s , where ce0 denotes the constant
map whose value is e0 ∈ ∆s. Then the composition H = τ ◦H ′ is a definable homotopy
from the constant map cτ(e0) to τ . Let y0 be a point of Y such that π(y0) = τ(e0), and
cy0 : ∆s → Y the constant map whose value is y0. Since H(−, 0) = π ◦ cy0 , it follows

from Corollary 2.5 that there exists a definable lift H̃ : ∆s × [0, 1] → Y of H such that
H̃(−, 0) = cy0 . Then τ̃ := H̃(−, 1) is a definable lift of τ = H(−, 1).

Since π∗ is surjective, αC(Y ; Z/kZ) and C(Y/Cp; Z/kZ) are isomorphic as chain com-
plexes. Accordingly their homology groups are also isomorphic. �

The topological version of Proposition 2.6 is studied in 5.33 [9].

Proof of Theorem 1.3. Assume that there exists a definable Ck-map f : X → Y
under the conditions of Theorem 1.3. Since X is definably connected, f(X) is definable
connected. Hence f(X) is contained in a definably connected component of Y . Therefore
it is sufficient to prove the case where Y is definably connected.

We first prove the case where k = 2. Since f is a definable C2-map, αf] = f]α.
For simplicity, we abbreviate the coefficient Z/2Z in the definable homology. By The-

orem 2.2, we have a commutative diagram

→ Hα
n+1(X)

∂X
∗→ Hα

n (X)
iX
∗→ Hn(X)

αX
∗→ Hα

n (X)
∂X
∗→ Hα

n−1(X) → . . .
fα
∗ ↓ fα

∗ ↓ f∗ ↓ fα
∗ ↓ fα

∗ ↓

→ Hα
n+1(Y )

∂Y
∗→ Hα

n (Y )
iY
∗→ Hn(Y )

αY
∗→ Hβ

n (Y )
∂Y
∗→ Hα

n−1(Y ) → . . .

→ Hα
1 (X)

iX
∗→ H1(X)

αX
∗→ Hα

1 (X)
∂X
∗→ Hα

0 (X)
iX
∗→ H0(X)

αX
∗→ Hα

0 (X) → 0
fα
∗ ↓ f∗ ↓ fα

∗ ↓ fα
∗ ↓ f∗ ↓ fα

∗ ↓ f∗ ↓

→ Hα
1 (Y )

iY
∗→ H1(Y )

αY
∗→ Hα

1 (Y )
∂Y
∗→ Hα

0 (Y )
iY
∗→ H0(Y )

αY
∗→ Hα

0 (Y ) → 0

with exact rows.
By definition, (iX∗ )0 = 0 and (iY∗ )0 = 0. Thus (αX

∗ )0 : H0(X) → Hα
0 (X) and (αY

∗ )0 :
H0(Y ) → Hα

0 (Y ) are isomorphisms. By assumption, H0(X) ∼= Z/2Z. Hence H0(X) ∼=
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Hα
0 (X) ∼= Z/2Z. Similarly, H0(Y ) ∼= Hα

0 (Y ) ∼= Z/2Z. Since (f∗)0 : H0(X) → H0(Y )
is an isomorphism and (αY

∗ )0 ◦ (f∗)0 = (fα
∗ )0 ◦ (αX

∗ )0, (fα
∗ )0 : Hα

0 (X) → Hα
0 (Y ) is an

isomorphism. Since (iX∗ )0 = 0, we have Im (∂X
∗ )1 = Ker (iX∗ )0 = Hα

0 (X). Thus we see
that (∂Y

∗ )1◦(fα
∗ )1 = (fα

∗ )0◦(∂X
∗ )1 : Hα

1 (X) → Hα
0 (Y ) is a non-zero homomorphism. Hence

(fα
∗ )1 : Hα

1 (X) → Hα
1 (Y ) is a non-zero homomorphism. Using the assumptions on X, we

see that (∂X
∗ )q : Hα

q (X) → Hα
q−1(X) is an isomorphism for each 1 ≤ q ≤ n. Using this

fact and by induction, we have the claim that (fα
∗ )q : Hα

q (X) → Hα
q (Y ) is a non-zero

homomorphism for each 0 ≤ q ≤ n.
By Proposition 2.6, Hα

n+1(Y ) ∼= Hn+1(Y/Cp). Thus Hα
n+1(Y ) = 0. Hence (iY∗ )n :

Hα
n (Y ) → Hn(Y ) is injective and (iY∗ )n ◦ (fα

∗ )n : Hα
n (X) → Hn(Y ) is a non-zero homo-

morphism.
On the other hand, since Hn(X) = 0, (iY∗ )n ◦ (fα

∗ )n = (f∗)n ◦ (iX∗ )n = 0. This contra-
diction proves the theorem in this case.

Next we prove the case where k > 2. For simplicity, we abbreviate the coefficient Z/kZ
in the definable homology. By Theorem 2.2, we have two commutative diagrams

→ Hα
n (X)

iX
∗→ Hn(X)

βX
∗→ Hβ

n (X)
∂X
∗→ Hα

n−1(X) → . . .

fα
∗ ↓ f∗ ↓ fβ

∗ ↓ fα
∗ ↓

→ Hα
n (Y )

iY
∗→ Hn(Y )

βY
∗→ Hβ

n (Y )
∂Y
∗→ Hα

n−1(Y ) → . . .

→ Hα
1 (X)

iX
∗→ H1(X)

βX
∗→ Hβ

1 (X)
∂X
∗→ Hα

0 (X)
iX
∗→ H0(X)

βX
∗→ Hβ

0 (X) → 0
fα
∗ ↓ f∗ ↓ fβ

∗ ↓ fα
∗ ↓ f∗ ↓ fβ

∗ ↓ f∗ ↓

→ Hα
1 (Y )

iY
∗→ H1(Y )

βY
∗→ Hβ

1 (Y )
∂Y
∗→ Hα

0 (Y )
iY
∗→ H0(Y )

βY
∗→ Hβ

0 (Y ) → 0

and

→ Hα
n+1(X)

∂′X
∗→ Hβ

n (X)
jX
∗→ Hn(X)

αX
∗→ Hα

n (X)
∂′X
∗→ Hβ

n−1(X) → . . .

fα
∗ ↓ fβ

∗ ↓ f∗ ↓ fα
∗ ↓ fβ

∗ ↓

→ Hα
n+1(Y )

∂′Y
∗→ Hβ

n (Y )
jY
∗→ Hn(Y )

αY
∗→ Hα

n (Y )
∂′Y
∗→ Hβ

n−1(Y ) → . . .

→ Hβ
1 (X)

jX
∗→ H1(X)

αX
∗→ Hα

1 (X)
∂′X
∗→ Hβ

0 (X)
jX
∗→ H0(X)

αX
∗→ Hα

0 (X) → 0
fβ
∗ ↓ f∗ ↓ fα

∗ ↓ fβ
∗ ↓ f∗ ↓ fα

∗ ↓ f∗ ↓

→ Hβ
1 (Y )

jY
∗→ H1(Y )

αY
∗→ Hα

1 (Y )
∂′Y
∗→ Hβ

0 (Y )
jY
∗→ H0(Y )

αY
∗→ Hα

0 (Y ) → 0

with exact rows.
We easily see that (iX∗ )0 = 0 and (iY∗ )0 = 0. Thus (βX

∗ )0 : H0(X) → Hβ
0 (X) and (βY

∗ )0 :

H0(Y ) → Hβ
0 (Y ) are isomorphisms. Since (f∗)0 : H0(X) → H0(Y ) is an isomorphism, we

have the claim that (fβ
∗ )0 : Hβ

0 (X) → Hβ
0 (Y ) is an isomorphism. Similarly we see that

(fα
∗ )0 : Hα

0 (X) → Hα
0 (Y ) is an isomorphism from the second diagram. Since H1(X) = 0

and (iX∗ )0 = 0, (∂X
∗ )1 : Hβ

1 (X) → Hα
0 (X) is an isomorphism. Similarly (∂′X∗ )1 : Hα

1 (X) →
Hβ

0 (X) is an isomorphism. Since (∂Y
∗ )1 ◦ (fβ

∗ )1 = (fα
∗ )0 ◦ (∂X

∗ )1 and (∂′Y∗ )1 ◦ (fα
∗ )1 =

(fβ
∗ )0 ◦ (∂′X∗ )1, (fα

∗ )1 : Hα
1 (X) → Hα

1 (Y ) and (fβ
∗ )1 : Hα

1 (X) → Hβ
1 (Y ) are non-zero

homomorphisms. By induction, we have the claim that (fα
∗ )q : Hα

q (X) → Hα
q (Y ) and

(fβ
∗ )q : Hα

1 (X) → Hβ
q (Y ) are non-zero homomorphism for each 0 ≤ q ≤ n. By Proposition
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2.6, Hα
n+1(Y ) ∼= Hn+1(Y/Cp). Hence Hα

n+1(Y/Cp) = 0 and (jY
∗ )n : Hβ

n (Y ) → Hn(Y ) is
injective. Therefore (jY

∗ )n ◦ (fβ
∗ )n is a non-zero homomorphism.

On the other hand, (jY
∗ )n ◦ (fβ

∗ )n = (f∗)n ◦ (jX
∗ )n = 0 because Hn(X) = 0. This is a

contradiction. Therefore the proof is complete. �

Proof of Theorem 1.5. Suppose that f(x) 6= f(gx) for any x ∈ X. Then the map
F : X → Y ∗ defined by F (x) = (f(x), f(gx), . . . , f(gk−1x)) is a definable Ck-map. This
contradicts Theorem 1.3. �

Proof of Theorem 1.1 and Theorem 1.2. Similar proofs of Theorem 1.3 and Theorem
1.5 prove Theorem 1.1 and Theorem 1.2, respectively. �
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