NIP FOR SOME PAIR-LIKE THEORIES

GARETH BOXALL

ABSTRACT. Generalising work from [2] and [5], we give sufficient conditions for a theory Tp to
inherit NIP from T, where Tp is an expansion of the theory T by a unary predicate P. We
apply our result to a theory, studied in [1], of the real field with a subgroup of the unit circle.

1. INTRODUCTION

We consider the situation where 7' is a complete one-sorted theory with infinite models, L is
the language of T, P is a new unary predicate, Lp = LU {P}, M =T and Tp is the complete
theory of some expansion of M to Lp. Our main result provides sufficient conditions for Tp to
inherit NIP from T'. It is a common generalisation of two other recent results, one of Berenstein,
Dolich and Onshuus in [2] and one of Giinaydin and Hieronymi in [5]. With respect to the result
from [2], our generalisation removes the assumption that P(M) be algebraically closed. With
respect to the result from [5], it has the advantage that it works outside the setting where T is
o-minimal. We apply our result to a theory of the real field with a subgroup of the unit circle
which was studied by Belegradek and Zilber in [1].
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2. A GENERAL RESULT

First order logic is used throughout. The expansion of M to Lp is written as (M, P(M)).
We work in Lp (or Tp) except where we specifically indicate L (or T'). For example, acl denotes
algebraic closure in the sense of Tp while acl; denotes algebraic closure in the sense of T.
Similarly ¢p(a/B) is a complete type in the sense of Tp while tpr(a/B) is a complete type in
the sense of T. Otherwise our notation is fairly standard. We abbreviate A U B to AB and
sometimes sets are treated as tuples or vice versa. For a tuple of variables z = zy...x, we
abbreviate P(z1) A ... A P(z,,) to P(Z). Our main result is the following.

Theorem 2.1. Tp has NIP if, for any (M,P(M)) < (N,P(N)) < (M,P(M)) = Tp such
that all three models are sufficiently saturated, the following conditions are satisfied:

(i) acly, is a pregeometry on M,

(ii) if b € M \ aclp(NP(M)) then tp(b/N) is implied by tpr(b/N) in conjunction with the
information that b & acl,(NP(M)),

(iii) there is some sufficiently saturated (N', P(N')) such that (N,P(N)) < (N',P(N’")) <
(M, P(M)) and, for any finite n > 1 and f € P(M)", there is some x < 2M| and fe P(M)"*
such that f € acl(f) and, for any extension of tp(]?/M) to a complete type q(z) over N such
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that q(Z) is finitely realisable in M, there is an extension of tpL(f/M) to a complete L-type ¢'(2)
over N’ such that ¢'(Z) is finitely realisable in M and q(Z) is implied by ¢'(Z) in conjunction
with tp(f/M),

(iv) T has NIP.

Some of the generality of Theorem 2.1 is obtained at the expense of elegance. The thinking
behind condition (iii) should become clear in the light of Sections 3 and 4. However it would
probably be helpful at this stage to mention a neater version of it which is sufficient for some
interesting applications:

(iii)’ for any finite n > 1 and f € P(M)™, tp(f/N) is implied by tpz(f/N) in conjunction with
the information that f € P(M)".

Clearly when (iii)’ replaces (iii) in the assumptions of Theorem 2.1, these assumptions are if
anything strengthened. We shall comment further on (iii)’ in Section 3.

The independence property (the negation of NIP) was introduced by Shelah in [8]. Our proof
of Theorem 2.1 uses the following fact due to a combination of Shelah and Poizat. Details are
given in chapter 12 of [7].

Fact 2.2. The following conditions are equivalent and T has NIP if and only if they are true:
(1) for any M < N =T such that both models are sufficiently saturated, there are at most 2| M|
complete one-types q(x) over N such that q(x) is finitely realisable in M,

(2) for any finite n > 1 and any M < N =T such that both models are sufficiently saturated,
there are at most 2IM| complete n-types q(%) over N such that q(Z) is finitely realisable in M.

We conclude this section with a proof of Theorem 2.1. Let (M,P(M)) < (N,P(N)) <
(M,P(M)) |= Tp be such that all three models are sufficiently saturated. Let b € M and
suppose tp(b/N) is finitely realisable in M. We show that there are at most 2/™! choices for
tp(b/N).

Case 1: Suppose b ¢ aclp,(NP(M)). By condition (ii), tp(b/N) is implied by tpr(b/N) in
conjunction with the information that b ¢ acly, (N P(M)). Clearly tpy(b/N) is finitely realisable
in M. By condition (iv) and Fact 2.2(1), there are at most 21| choices for tpy,(b/N). Therefore
there are, in this case, at most 2/M! choices for tp(b/N).

Case 2: Suppose b € acly (NP(M)). Let acf be a tuple such that @ € M*, ¢ € N* and
f € P(M)", for some k,l,n < w, and b € acly(acf). We may assume ¢ is of minimal length.
Suppose ¢ is not empty (that is to say [ # 0). It follows by condition (i) that ¢ is not acly-
independent over abf. Let ©(Z,y, z,w) be an L-formula which is realised by a, b, ¢, f and which
witnesses the fact that ¢ is not aclz-independent over abf. Since tp(b/ac) is finitely realisable
in M, the formula ¢(a,y,¢) = (Jw)[P(w) A ¢(a,y,¢ w)] is realisable in M and so ¢ is not
aclp-independent over M P(M). This contradicts the minimality of the length of ¢. Therefore
¢ is empty. Therefore b € acly, (M f).

Let (N, P(N")), x and f be as in condition (iii). Let p(yw) = r(y) A s(yw) where r(y) =
tp(b/N) and s(yw) = tp(bf/M ). Then p(yw) is finitely realisable in M. By a well known
argument (you extend a filter-base to an ultrafilter and extract what you want from that), p(yw)
extends to a complete type p/(y@) over N which is finitely realisable in M. Let V' f’ = p/(y®).

Then tp(¥' /N) = tp(b/N), tp(f' /M) = tp(f/M) and ¥ € acl(Mf").
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By condition (iii), tp(f’ /N) is implied by tp(f/M ) in conjunction with some complete L-type
¢ (w) over N which extends tp L(]?/M ) and is finitely realisable in M. By condition (iv) and Fact
2.2(2), there are at most 21! x k choices for ¢/(@). Therefore there are at most 2/M1x k x 2/M| x &
choices for tp(]?’/N). Therefore there are, in this case, at most 2™ x k x 2Ml x g x| M| x x = 2IM|
choices for tp(b/N).

Adding the two cases together, there are at most 21" choices for tp(b/N). Therefore Tp has
NIP, by Fact 2.2(1).

3. COMPARISON WITH RESULTS IN [2] AND [5]

Theorem 2.7 of [2] makes use of the notion of P-independence which is defined as follows and

makes sense provided acly, is a pregeometry.

Definition 3.1. A set A C M is said to be P-independent if A is acly-independent from P(M)
over AN P(M).

We shall also want to speak of P-tp(a) by which we mean the information that tells us which
members of the tuple a belong to P(M). The following is Theorem 2.7 from [2].

Theorem 3.2. Tp has NIP if, for any sufficiently saturated (M, P(M)) |= Tp, the following
conditions are satisfied:

(a) acly, is a pregeometry on M,

(b) for any finite n > 1, if a,b € M™ are such that both @ and b are P-independent and both
tpr(a) = tpr(b) and P-tp(a) = P-tp(b) then tp(a) = tp(b),

(¢) aclp (P(M)) = P(M),

(d) T has NIP.

The following result establishes that Theorem 2.1 is a generalisation of Theorem 3.2. The
proof is standard and trivial. Note that when we speak of P-independence we mean with respect
to the larger model (M, P(M)).

Proposition 3.3. The assumptions of Theorem 3.2 excluding (c) imply the assumptions of
Theorem 2.1 even when (iii) replaces (iii).

Proof. Suppose the assumptions of Theorem 3.2 are satisfied with the possible exception of (c).
Let (M, P(M)) < (N,P(N)) < (M,P(M)) | Tp be such that all three models are sufficiently
saturated. Conditions (i) and (iv) follow immediately. Since (N, P(N)) is a model it is clear
that, for any finite tuple a from N, there is a finite tuple g from P(N) such that ag is P-
independent. Let b € M \ acly,(NP(M)). For any P-independent tuple @ from N, it is clear
that ba is also P-independent. It follows from condition (b) that tp(b/N) is implied by tpr,(b/N)
in conjunction with the information that b ¢ acl,(NP(M)). So condition (ii) is satisfied. Let
n > 1 be finite and f € P(M)". For any P-independent tuple @ from N it is clear that fa
is also P-independent. It follows from condition (b) that tp(f/N) is implied by tpr(f/N) in
conjunction with the information that f € P(M)". So condition (iii)’ is satisfied. O

Theorem 3.2 is used in [2] to show that if 7" has NIP and is a geometric theory and Tp is
the theory of lovely pairs of models of T', as defined in [3], then Tp has NIP. This provides an
interesting class of examples to which Theorem 2.1 applies even when condition (iii) is replaced

by (iii)’.



There is a typo in the version of [5] currently available from the MODNET Preprint server,
but through private correspondence with one of the authors we understand that their Theorem
1.3 should be as follows.

Theorem 3.4. Suppose T is dense o-minimal. Tp has NIP if, for any (M, P(M)) | Tp, the
following conditions are satisfied:

(e) for any finite n > 1, any definable subset of P(M)™ is a boolean combination of sets of the
form X NY where X is O-definable and Y is L-definable,

(f) any formula 1(Z) without parameters is equivalent modulo Tp to a boolean combination
of formulas of the form (32)[P(Z) A ¢(Z, Z)] where ¢(Z,Z) is an L-formula which also has no
parameters,

(9) (M, P(M)) has o-minimal open core.

The following result establishes that Theorem 2.1 is a generalisation of Theorem 3.4. The
proof overlaps with the argument used in [5] to prove Theorem 3.4.

Proposition 3.5. Suppose T is dense o-minimal. The assumptions of Theorem 3.4 imply the

assumptions of Theorem 2.1.

Proof. Suppose the assumptions of Theorem 3.4 are satisfied. Let (M, P(M)) < (N, P(N)) <
(M, P(M)) = Tp be such that all three models are sufficiently saturated. Conditions (i) and (iv)
are well known consequences of T being a dense o-minimal theory. Let b € M \ acly(NP(M)).
It follows from condition (f) that to know tp(b/N) it is enough to know which formulas of the
form v (y,a) = (32)[P(2) A ¢(y, a, z)] belong to tp(b/N), where (g, Z,z) is an L-formula with
no parameters and @ € N*l. Knowing that b ¢ acly,(NP(M)), it is enough to consider the
case where, for each f € P(M)*l, ¢(y,a, f) defines an open interval in M. In this case the set
defined by 1 (y,a) is an open subset of M. By condition (g) this set is L-definable and so, since
(N,P(N)) is a model, it is L-definable over N. Therefore tp(b/N) is implied by tpr(b/N) in
conjunction with the information that b ¢ acl,(NP(M)). So condition (ii) is satisfied.

Let (N’, P(N’)) be such that (N, P(N)) < (N, P(N")) < (M, P(M)), (N, P(N")) is suffi-
ciently saturated and N’ contains enough parameters so that, whenever Z is definable over N
and Z is a boolean combination of sets of the form X N'Y where X is (-definable and Y is
L-definable, it is possible to choose the sets Y to be L-definable over N'. Let n > 1 be finite
and f € P(M)". Let f' |= tp(f/M) be such that tp(f’/N) is finitely realisable in M. Let
" = tp(f'/N) be such that tpy(f”/N’) is finitely realisable in M. It follows from condition
(e) that tp(f’/N) is implied by tpr(f”/N’) in conjunction with tp(f/M). So condition (iii) is

satisfied with Kk =n and f = f. O

4. AN EXAMPLE

We now consider a theory studied by Belegradek and Zilber in [1]. Let R be the real field and
S the unit circle thought of as a subgroup of the multiplicative group of the complex field C. Let
I'(R) <'S be a subgroup. Let I'(R)M = {¢g" : g € T(R)}. With reference to [6], I'(R) is said in
[1] to have the Lang property if, for any finite n > 1 and algebraic set X C C", X NT'(R)" is a fi-
nite union of cosets of subgroups of I'(R)™. Assume I'(R) satisfies the following three conditions:

o [[(R)[ =R,
e |T(R)/T(R)M| < Ry for every finite n > 1,



e ['(R) has the Lang property.

Let L = {<,+,-,0,1, Re(g), Im(g)}gerr) where Re(g) and Im(g) are suggestively named
constant symbols for the real part and the imaginary part of each member of I'(R). Let T" be
the resulting L-theory of R. Let Re : S — R be the function which assigns to each member
of S its real part. Let P be a new unary predicate and Lp = L U {P}. Interpret P such that
P(R) = Re(I'(R)). Let Tp be the resulting Lp-theory of R. Let I' be a new binary predicate
and Lr = LU{I'}. Let the suggestively named I'(R) be the interpretation of I' in R. Let Tt be
the resulting Lp-theory of R. As is noted in [1], T'(R) = Re~!(Re(I'(R))) and so Tp and T are
definitionally equivalent.

Tt was introduced and studied by Belegradek and Zilber in [1]. They gave axioms for it and
proved a near model completeness result. Expecting a positive answer, they asked if Tt has
NIP. We use Theorem 2.1 to obtain a positive answer. A similar result is given in [5] for a
theory of the real field with a multiplicative subgroup which has the Mann property, this theory
having been studied by van den Dries and Giinaydin in [4].

We check that Tp satisfies the assumptions of Theorem 2.1. Let (M, P(M)) < (N, P(N)) <
(M, P(M)) = Tp be such that all three models are sufficiently saturated. Since T is an ex-
pansion by constants of the theory of real closed ordered fields, it is clear that conditions (i)
and (iv) are satisfied. We deduce conditions (ii) and (iii) from the results in [1]. The argument
overlaps with the reasoning in [1]. Since the predicate I is ()-definable in Tp we shall feel free to
use it. Re will now denote the real part map from the unit circle in the big model (M, P(M)).
So'(M) = Re~'(P(M)). Since L contains constant symbols for all real parts and all imaginary
parts of members of I'(R), we may assume I'(R) < I'(M). Let I'(M)4 be the largest divisible
subgroup of I'(M). As is observed in [1], I'(M)4 has a direct complement H in I'(M) such
that |[H| < 2%. Let I'(M)Z be the torsion subgroup of I'(M)4. Clearly [I'(M)T| < No. Let

={hxg:h € H and g € I'(M)I}. Given the sufficient saturation of M, we may assume
K < T(M).

The following is proved in [1] by means of a back-and-forth argument.

Theorem 4.1. Let F <T'(M) be a subgroup with the following properties:
(o) F={kxd:ke€ K and d € D} for some divisible subgroup D < T'(M),
(B) |F| < 2%,
(v) T(R) < F.
Let n > 1 be finite and let a € M be acly-independent over P(M). Then tp(Fa) is implied

by the information so far mentioned in conjunction with tpr(Fa).

Let b € M\ acl,(NP(M)). Let g be a finite tuple from P(N) and ¢ a finite tuple from N such
that ¢ is acly-independent over P(N) and hence over P(M). Let F < I'(N) satisfy conditions
(a), (B) and (v) and be such that g € delg(F). It follows from Theorem 4.1 that tp(b/gc) is
implied by ¢py(b/F) in conjunction with the information that b ¢ acly(NP(M)). Therefore
tp(b/N) is implied by tpr,(b/N) in conjunction with the information that b ¢ acly (N P(M)). So
condition (ii) is satisfied.

Let n > 1 be finite and f € P(M)™. Let F < T'(M) satisfy conditions (), (8) and () and be
such that f € acl(F). Let F' = tp(F/M) be such that tp(F'/N) is finitely realisable in M. Let

g be a finite tuple from P(N) and ¢ a finite tuple from N such that ¢ is acly-independent over
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P(N) and hence over P(M). Let F < T'(N) satisfy conditions (), (8) and () and be such that
g € dely(F). Tt is clear that the subgroup {a x b: a € F’ and b € F'} also satisfies conditions
(o), (B) and (7). It is also clear that this is a consequence of tp(F’/M) in conjuction with
tp(F/M). Tt follows from Theorem 4.1 that tp(F’/gc) is implied by tpy (F'/F€) in conjunction
with tp(F’/M). Therefore tp(F’/N) is implied by tpr(F’'/N) in conjunction with tp(F’/M).
Setting f = Re(F), condition (iii) is satisfied with (N’, P(N')) = (N, P(N)) and < 2%.
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