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Abstract. An expansion of a real closed ordered field is said to have the Banach Fixed
Point Property when for every locally closed definable set E, if every definable contraction
on E has a fixed point, then E is closed. We prove that an expansion of a real closed ordered
field has o-minimal open core if and only if it is definably complete and has the Banach
Fixed Point Property. As consequences, we obtain that the possession of o-minimal open
cores is a first-order property in languages extending the language of the ordered rings and
is preserved under elementary equivalence.

Let (X, d) be a metric space and E ⊆ X. Recall that a contraction f : E → E on E is a
function such that there is 0 < τ < 1 such that if x, y ∈ E, then d(f(x), f(y)) ≤ τ · d(x, y);
and a fixed point of f is a point a ∈ E such that f(a) = a. In 1922, S. Banach introduced
Banach Fixed Point Theorem, which implies that if (X, d) is complete and E is closed then
every contraction on E has a fixed point. This theorem later became an important tool in
many branches of mathematics, especially in Analysis and Differential Equation (see e.g.
[3] and [16]). There are many researches on converses of Banach Fixed Point Theorem (see
e.g. [2], [7], [11], and [15]). By [7], we obtain that for every E ⊆ R if E is locally closed
(that is, E = U ∩ F for some open U and closed F ) and every contraction on E has a
fixed point, then E is closed. In this article, we consider an analogue of this version of
converses of Banach Fixed Point Theorem and its connection to tame expansions of real
closed ordered fields.

Throughout, let R denote a fixed, but arbitrary, expansion of a real closed ordered
field (R, 0, 1, <,+, ·). Unless indicated otherwise, “definable in R” means “definable in R
possibly with parameters”; in addition, we will omit “in R” when it causes no confusion.
For a definable set E, we say that E has the Banach Fixed Point Property if every
definable contraction on E has a fixed point. The expansion R possesses the Banach
Fixed Point Property (BFPP for short) if every locally closed definable set having the
Banach Fixed Point Property is closed. First, we obtain the following:

Proposition A. If R is o-minimal (that is, every unary definable set is a finite union of
points and open intervals), then R possesses the BFPP.

We refer to [6] for backgrounds on o-minimality. In fact, Proposition A is a consequence of
more general results we present in this paper.

Besides o-minimality, researchers found many notions of tameness. Here we are interested
in the following two notions. We say that the structure R is definably complete if every
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nonempty unary definable set that is bounded above has a supremum in R. Next, the
open core of R (denoted by Ro) is the structure on R generated by all definable open sets
in R. We say that R has o-minimal open core if Ro is o-minimal. By [4, Theorem A],
we know that if R is definably complete and has uniform finiteness, then R has o-minimal
open core. In this paper, we prove that:

Theorem A. R has o-minimal open core if and only if R is definably complete and
possesses the BFPP.

By the Cell Decomposition Theorem, definable sets in o-minimal structures are locally
closed. Therefore, Proposition A can be strengthened as follows:

Corollary A. If R is o-minimal, then every definable set possessing the Banach Fixed
Point Property is closed.

We now proceed to more model theoretic points of this paper. Let L be a first-order
language extending the language of ordered rings. Let T be an L-theory. We write T |= DC
if every model of T is definably complete; and write T |= BFPP if every model of T
possesses the BFPP. Recall that (1) a structure M has no dense graphs if the graph
of every function definable in M is nowhere dense; we write T |= NDG if every model
of T has no dense graphs; and (2) a structure M satisfies uniform finiteness if for all
A ⊆Mn×Mm definable in M, if every fiber Ax = {y ∈Mm : (x, y) ∈ A} is finite (x ∈Mn),
then there is N ∈ N such that the cardinality of every Ax is at most N ; we write T |= UF if
every model of T satisfies uniform finiteness. In [4], A. Dolich, C. Miller and C. Steinhorn
gave a nice characterization:

if T |= NDG and extends the theory of densely ordered groups, then T |= DC + UF if
and only if every model of T has o-minimal open core.

However, we know that dense pairs of o-minimal structures have o-minimal open core but
does not have no dense graphs (see [5]); while there are expansions of the real field by
generic predicates that has o-minimal open core and has no dense graphs (see [14]). This
gives rise to the following question:

Can we get a characterization that does not depend on NDG?

Here, by Theorem A, we obtain a surprising result:

Theorem B. Suppose T extends the theory of real closed ordered fields. Then T |=
DC + BFPP if and only if every model of T has o-minimal open core.

(Since the proof of this theorem is not difficult once we have Theorem A, we include it
here.)

Proof of Theorem B. Recall that the theory of real closed ordered fields can be axiomatized
by a theory in the language of ordered rings (see e.g. [12]). We denote this theory by RCF.
Hence, T |= RCF. Let M |= T . Then M is an expansion of a real closed ordered field. By
Theorem A, M is definably complete and has the BFPP if and only if M has o-minimal
open core. This proof is completed. �

Observe that a set E is locally closed if and only if the frontier of E (which is the relative
complement E in its closure) is closed. Therefore, both definable completeness and BFPP
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are first-order schema. In particular, we can conclude that the possession of o-minimal
open cores of expansions of real closed ordered fields is also a first-order scheme in L and
is preserved under elementary equivalence.

Theorem C. Suppose R is an L-structure and has o-minimal open core. If M is an
L-structure and M ≡ R, then M has o-minimal open core.

Acknowledgements. The author acknowledges support by Research Grant for New Scholar,
Chulalongkorn University.

Conventions and notations. Throughout this paper, m and n will range over the set
N = {0, 1, 2, 3, . . . } of natural numbers. Let S ⊆ Rn. We denote by clS = cl(S) the
closure, by frS = fr(S) := cl(S) \ S the frontier, and by intS = int(S) the interior of S.
For a ∈ Rn, let S − a := {x − a : x ∈ S} be the translation of S by a. We denote the
Euclidean norm on Rn by ‖·‖. For S ⊆ Rn, we denote the diameter of S by

diamS := sup{‖x− y‖ : x, y ∈ S}.

1. Preliminaries

In this section, we recall fundamental properties that will be used in the proof of Theo-
rem A.

1.1. Definable completeness.
Throughout this section, assume R is definably complete. First, we recall several prop-

erties of definably complete structures.

1.1. [Miller, [13, Proposition 1.10]] Let E be a closed, bounded and definable subset of Rn

and f : E → Rm be continuous and definable. Then the image f(E) is also closed, bounded
and definable.

1.2. [Aschenbrenner, Fischer, [1, Corollary 1.5]] Let E be a nonempty, closed, bounded and
definable subset of Rn and f : E → R be continuous and definable. Then f achieves a
maximum and a minumum on E.

Let E ⊆ Rn be definable. We say that E is definably connected if for all disjoint
definable open nonempty sets U, V ⊆ Rn such that E = (E ∩ U) ∪ (E ∩ V ), either E ⊆ U
or E ⊆ V .

1.3. [Miller, [13, Proposition 1.6]] Let E ⊆ Rn be definably connected and f : E → Rm be
definable. Then f(E) is also definably connected.

Since the BFPP is related to converses of Banach Fixed Point Theorem, it is natural
to check whether there is a definable version of Banach Fixed Point Theorem in definably
complete context.

1.4. Let E be nonempty, closed and definable. If f is a definable contraction on E, then it
has a fixed point.
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Proof. Let f : E → E be a definable contraction. Then there is 0 < τ < 1 such that
‖f(x)− f(y)‖ ≤ τ · ‖x− y‖ for all x, y ∈ E. By replacing E by E − a (for some a ∈ E),
we may assume that 0 ∈ E. Observe that if ‖x‖ ≥ ‖f(0)‖ /(1 − τ) then ‖f(x)‖ ≤
‖f(x)− f(0)‖+‖f(0)‖ ≤ τ ·‖x‖+(1−τ) ‖x‖ = ‖x‖. Let E0 = {x ∈ E : ‖x‖ ≤ ‖f(0)‖ /(1−
τ)}. By 1.1, the image f(E0) is bounded. Let δ ∈ R such that δ ≥ ‖f(0)‖ /(1 − τ) and
f(E0) ⊆ {x ∈ Rn : ‖x‖ ≤ δ}. Therefore, we may assume further that E is bounded.

To complete this proof, it remains to prove that f has a fixed point. Suppose to the
contrary that f has no fixed points. Define g : E → Rn by g(x) := f(x) − x for every
x ∈ E. Then g(x) 6= 0 for every x ∈ E. Since E is closed, bounded and definable and
g is continuous and definable, by 1.2, ‖g‖ has a minimum on E. Suppose ‖g‖ achieves a
minimum at x0 ∈ E. Therefore,

‖g(x0)‖ ≤ ‖g(f(x0))‖ = ‖f(f(x0))− f(x0)‖
≤ τ · ‖f(x0)− x0‖
≤ τ · ‖g(x0)‖ < ‖g(x0)‖ ,

which is absurd. �

We now know that a definable version of Banach Fixed Point Theorem holds in definably
complete expansions of a real closed ordered field. This result will be used in the proof of
Theorem A.

1.2. O-minimality.
Throughout this part, assume R is o-minimal and E ⊆ Rn is definable. We know

o-minimal structures possess many good geometric properties. Here are some examples.

1.5 (Definable Choice, van den Dries, [6, Proposition 1.2]). Let {Ax}x∈X be a definable
family of nonempty subsets of Rn. Then there is a definable function f : X → Rn such
that f(x) ∈ Ax for all x ∈ X.

1.6 (Curve Selection, van den Dries, [6, Corollary 1.5]). Let a ∈ frE. Then there is a
definable continuous path γ : [0, 1]→ Rn such that γ(0) = a and γ(0, 1] ⊆ E.

Let L ∈ R. A function f : E → Rm is L-Lipschitz if for every x, y ∈ E, ‖f(x)− f(y)‖ ≤
L · ‖x− y‖. We say that a subset C of Rn is an L-Lipschitz cell if there exist a linear
orthogonal isomorphism π : Rn → Rn, a definable open set U ⊆ Rk, and a definable L-
Lipschitz map g : U → Rn−k such that k ≤ n, C = π{(x, g(x)) : x ∈ U}. In [8], A. Fischer
proved the Λm-regular Stratification Theorem. The following is an immediate consequence
of this theorem.

1.7. E is a finite disjoint union of 2n3/2-Lipschitz cells.

Combining the Curve Selection and 1.7, we obtain:

1.8. Let a ∈ frE. Then there is a definable 2n2-Lipschitz path γ : [0, b] → Rn such that γ
is injective, γ(0) = a, and γ(0, b] ⊆ E.

Proof. Observe that the case n = 1 is trivial. Therefore, we assume that n ≥ 2.
Let a ∈ frE. By the Curve Selection, we have a definable continuous path λ : [0, 1]→ Rn

such that λ(0) = a and λ(0, 1] ⊆ E. Let A = γ[0, 1]. Then we have that dimA = 1.
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Therefore, by 1.7, there exist a linear orthogonal isomorphism π : Rn → Rn and a definable
2n3/2-Lipschitz map g : (α1, α2) → Rn−1 such that π((t, g(t))) ∈ A for all t ∈ (α1, α2) and
limt→α1 π((t, g(t))) = a. Let b = α2 − α1. We define γ : [0, b]→ Rn by

γ(s) =

{
π((α1 + s, g(α1 + s))) if s 6= 0;

a if s = 0.

Obviously, we have that γ is a definable injection, γ(0) = a and γ(0, b] ⊆ E. To complete
this proof, we show that γ is 2n2-Lipschitz. Since π is a linear orthogonal isomorphism, it
is 1-Lipschitz. Therefore, it is enough to prove that for all t1, t2 ∈ [α1, α2],

‖(t1, g(t1))− (t2, g(t2))‖ ≤ 2n2 · |t1 − t2| .

Let t1, t2 ∈ [α1, α2]. Since g is 2n3/2-Lipschitz, we obtain that

‖(t1, g(t1))− (t2, g(t2))‖ =

√
(t1 − t2)2 + ‖g(t1)− g(t2)‖2

≤
√

(1 + 4n3) |t1 − t2|2

= 2n2 · |t1 − t2|

as desired. This completes the proof. �

2. Proof of main theorems

For convenience of readers, we recall the statement of Theorem A and Theorem C here.

Theorem A. R has o-minimal open core if and only if R is definably complete and
possesses the BFPP.

Theorem C. Suppose R is an L-structure and has o-minimal open core. If M is an
L-structure and M ≡ R, then M has o-minimal open core.

We now begin the proofs.

2.1. Proof of Theorem A (forward direction). First assume that R has o-minimal
open core. Notice that for every unary definable set A, the set {x ∈ R : x ≤ a for some a ∈
A} is definable in Ro. Since every o-minimal structure is definably complete, we have that
R is definably complete. To prove that R possesses the BFPP, let E be a locally closed,
definable set. Since E is locally closed, we have that E is also definable in Ro. Suppose
E is not closed. We will show that there is a definable contraction on E that has no fixed
points.

Let a ∈ frE. Since Ro is o-minimal and E is definable in Ro, by 1.8, we obtain an
injective 2n2-Lipschitz path γ : [0, b] → Rn such that γ is definable in Ro, γ(0) = a, and
γ(0, b] ⊆ E.

Define H : E → E by

H(x) := γ(min(b, ‖x− a‖)/4n2).
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We first show that H is a contraction. Let x, y ∈ E. Then

‖H(x)−H(y)‖ =
∥∥γ(min(b, ‖x− a‖)/4n2)− γ(min(b, ‖y − a‖)/4n2)

∥∥
≤ 2n2

4n2
· |min(b, ‖x− a‖)−min(b, ‖y − a‖)|

≤ 1

2
‖x− y‖ .

To prove that H has no fixed points, suppose to the contrary that c is a fixed point for
H. Since H(E) ⊆ γ(0, b] and γ is injective, c = H(c) = γ(‖c− a‖ /4n2). Recall that γ is
2n2-Lipschitz. Therefore, we have

‖c− a‖ =
∥∥γ(‖c− a‖ /4n2)− γ(0)

∥∥
≤ 2n2

4n2
· ‖c− a‖

< ‖c− a‖
which is impossible.

Hence, H is a contraction on E that has no fixed points.

2.2. Proof of Theorem A (backward direction). Conversely, assume R is definably
complete and does not have o-minimal open core. By [4], there is a definable, infinite
and discrete subset of R. By the same argument as in [10, Lemma 3] (which was inspired
by [9]), we obtain a definable, infinite, closed and discrete set D. We may assume that
1 ∈ D ⊆ {x ∈ R : x ≥ 1}. Let D−1 = {1/x : x ∈ D} and the predecessor P : D−1 → D−1

be defined by P (t) = sup{s ∈ D−1 : s < t} for all t ∈ D−1. Set

E = (D × [0, 1]) ∪ {(st+ (1− s)P (t), s) : s ∈ [0, 1], t ∈ D−1} (see Figure 1).

(The construction of the set E is inspired by the fact that every contraction on the graph
of x 7→ sin(1/x) : (0, 1]→ R has a fixed point; see [7, Theorem 1.2])

1

1

Figure 1. Illustration of the set E

It is routine to check that E is locally closed but not closed. To finish this proof, we show
that E has the Banach Fixed Point Property.
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Let f : E → E be a definable contraction. Then there is 0 < τ < 1 such that
‖f(x)− f(y)‖ ≤ τ · ‖x− y‖ for all x, y ∈ E. For each ε ∈ [0, 1], let Eε = E ∩ ([0, ε]× [0, 1])
and Eε = E ∩ ([ε, 1] × [0, 1]). Observe that (1) diam(Eε) ≤

√
1 + ε2, (2) Eε is definably

connected, and (3) Eε is closed and bounded.

Claim. There is δ > 0 such that f(E) ⊆ Eδ.

Suppose we have the above claim for now. Let δ > 0 such that f(E) ⊆ Eδ. Hence, f�Eδ

is a contraction on Eδ. Since Eδ is closed and definable, by 1.4, f�Eδ has a fixed point;
therefore, f also has a fixed point.

To finish this proof, we give:

Proof of Claim. Let ε =
√

(1− τ 2)/2τ 2. It is enough to prove that there exist δ1, δ2 >

0 such that f(Eε) ⊆ Eδ1 and f(Eε) ⊆ Eδ2 . Note that ε <
√

(1− τ 2)/τ 2. Therefore,
diam(Eε) < 1/τ ; and so we have diam(f(Eε)) < 1. Hence, Eε ∩ ([0, 1] × {0}) = ∅ or
Eε ∩ ([0, 1] × {1}) = ∅. Since f(Eε) is definably connected, there exists δ1 > 0 such that
f(Eε) ⊆ Eδ1 . Next, we consider f(Eε). Since Eε is closed and bounded, f(Eε) is closed
and bounded. Therefore, there is δ2 > 0 such that f(Eε) ⊆ Eδ2 . �

2.3. Proof of Theorem C. Suppose R has o-minimal open core. Let M be an L-structure
such that M ≡ R. Let T be the theory of R in the language L. Hence M |= T . Since R is
an expansion of a real closed field, T |= RCF; so M is an expansion of a real closed field.
In addition, since R has o-minimal open core, by Theorem A, R is definably complete and
has the BFPP. As discussed in the introduction, both definable completeness and BFPP
are first-order schema. Hence T |= DC + BFPP. Since M |= T , by Theorem B, M has
o-minimal open core.

3. Open question

3.1. We say that R possesses the strong Banach Fixed Point Property (“SBFPP” for
short) if every definable set possessing the BFPP is closed. As mentioned in Corollary A, we
know that if R is o-minimal, then it has the SBFPP. Therefore, a question arises naturally:
does the converse hold? To be precise, we ask:

If R is definably complete and has the SBFPP, is R o-minimal?

Now we do not know the answer. We suspect that the answer is ‘no’. Obviously, if R
is definably complete and possesses the SBFPP, then it has o-minimal open core. One of
our candidates for counterexamples is the expansion of the real field by the set of all real
algebraic numbers.

3.2. It is natural to ask whether a similar result holds in expansions of ordered abelian
groups. Since every abelian group can be considered as a vector space over Q, we can obtain
a weak form of contractions in this context. However, the major problem is the backward
direction in the proof of Theorem A. The given construction of non-closed, locally closed
sets that have the BFPP does not seem to work without multiplication.
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