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Abstract

In “Pseudo-finite fields and related structures” Hrushovski asks (in a more general
context) whether the notion of measure on definable sets in pseudo-finite fields can
be extended to perfect PAC fields whose Galois group is bounded but not Ẑ. We
define a suitable generalization of measure and give an answer to this question: yes
if the Galois group is pro-cyclic, no otherwise.
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1 Introduction

To understand definable sets up to definable bijections, it is helpful to have
invariants of these sets. In the case of pseudo-finite fields, one well-known such
invariant is the measure defined in [1]. By the “measure” of a definable set X,
one should think of the size of the part of highest dimension of X.

In [2], Hrushovski asks (in a more general context) whether this measure can
be generalized to cases where the Galois group is not Ẑ. More precisely, of the
three conditions on pseudo-finite fields—pseudo algebraically closed (PAC),
perfect, and the Galois group is Ẑ—we only keep the first two, and the third
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one is weakened to the requirement that the Galois group is bounded, i.e. it
has only a finite number of quotients of each cardinality. In such fields, one still
has almost-quantifier-elimination as in pseudo-finite fields, so one can hope to
control the definable sets. The question is whether one can find an appropriate
definition of a “measure” on the definable sets of such fields.

Of course, such a measure can not have all the properties of the measure on
pseudo-finite fields. (This was proven in [3].) In particular, one can not hope
to have a “Fubini theorem” as in the case of pseudo-finite fields. Fubini states,
more or less, that for a surjective map X � Y with constant fiber size, the
measure of X is equal to the measure of Y times the measure of a fiber. This is
already false, for example, for the map K× → K×, x 7→ x2 if K is algebraically
closed.

In this article, instead of requiring the measure to satisfy Fubini, we will
just require that it is invariant under definable bijections. The main theorem
(Theorem 15) states that if the Galois group is pro-cyclic, then such a measure
indeed exists, and is—under one additional hypothesis—even unique. In the
case of pseudo-finite fields our measure is just the usual measure of [1]. In the
case of algebraically closed fields, it counts the irreducible components of the
sets. Our definition of measure can be seen as an attempt to find a common
generalization of these two extreme cases.

Note that uniqueness of the measure is a new result even in the case of pseudo-
finite fields: up to now, it was known only if one requires the measure to satisfy
Fubini.

The main theorem only gives a measure if the Galois group is pro-cyclic.
Indeed, if the Galois group is not pro-cyclic but still bounded, then (in general)
no measure exists. In Subsection 7.1, we will give a counter-example which
works for a lot of different non-pro-cyclic Galois groups.

So for fields, the question of Hrushovski is answered: a measure does exist if
and only if the Galois group is cyclic—at least for measures in our sense. See
Subsection 7.2 for further weakenings of the notion of measure.

1.1 Overview over the article

In Section 2 we will define all our notation and state some basic facts. In
Section 3 we state the main theorem and give an idea of the proof. The proof
itself is done in Section 6, after proving some lemmas in the previous section.
In particular, we prove a variant of Chebotarevs density theorem on bounded
Galois groups in Subsection 4.3. In the last section (Section 7) we give the
counter-example when the Galois group is not pro-cyclic and we mention some
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open problems.
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I also want to thank the CNRS for financial support during the year 2005/2006.

2 Preliminaries

2.1 Setting and notation

In the whole article, K will be a perfect PAC field with bounded absolute
Galois group. In some sections, we will additionally require that the Galois
group is pro-cyclic.

We will denote the algebraic closure of K by K̃ and its absolute Galois group
by GalK := Gal(K̃/K).

As the language of schemes is not really necessary in the present work, we
will avoid it as much as possible. The reader can think of an algebraic set as
a set defined by polynomials. Morphisms between algebraic sets will always
be considered to be morphisms between the K̃-valued points of the sets. In
particular, if we have a morphism f : V → W and a point w ∈ W (K) over K,
then f−1(w) denotes the set {v ∈ V (K̃) | f(v) = w} of all points over K̃ in
the fiber, not only the ones over K. (In the language of schemes, this means:
we always work with geometric points and we write W (K) for those geometric
points which factor through K.)

All our definable sets will be definable in the language of rings and with param-
eters in K. Also, all our varieties, algebraic sets, and morphisms between such
will be defined over K, with one exception: absolutely irreducible components
of varieties will (of course) only be defined over K̃.

Sometimes, we will have to consider homomorphisms between groups, in par-
ticular from GalK to some finite group G. We will always want these homo-
morphisms to be continuous. Nevertheless, we will only write Hom(GalK, G)
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to keep the notation light. Think of it as working in the category of topological
groups, where finite groups have the discrete topology.

We will need a notion of dimension. One possible definition of the dimension of
a definable set X ⊂ Kn is to take for dim X the (usual algebraic) dimension
of the Zariski closure of X in K̃n (see [4]). As K is supersimple of rank 1,
another equivalent definition is to take the SU-Rank of X.

As customary (see e.g. [5]), we will describe definable sets in terms of “Ga-
lois stratifications”. In the remainder of this section, we repeat the necessary
definitions and basic facts. However, we have to work in a slightly more gen-
eral context than usual: our Galois group need not be Ẑ, so we will need a
generalized version of the Artin symbol.

2.2 Galois covers

We use the following definition of Galois cover (note the slightly unusual re-
quirement that W is absolutely irreducible).

Definition 1 A Galois cover is a morphism f : V � W such that V is irre-
ducible, W is absolutely irreducible, f is finite and étale and AutW (V ) acts
regularly on the fibers of f (i.e. for any two elements v1, v2 in one fiber, there
exists exactly one morphism in AutW (V ) which maps v1 to v2).

The group G := AutW (V )opp, which acts from the right on V , is called the
group of the Galois cover. (We will avoid to call G “Galois group” to avoid

confusion with the Galois group of K.) We will write f : V
G
� W to say that

f is a Galois cover with group G.

As right actions are a bit difficult to read, we will always write them with a
lower dot, i.e. for example “v.g” if g acts on v.

If V
G
� W is a Galois cover, then we have canonically W ∼= V/G.

The requirement that AutW (V ) acts freely follows from the irreducibility of V
anyway. If V is not irreducible (and AutW (V ) maybe does not act freely), then
one can get a Galois cover by replacing V by one of its irreducible components.

Definition 2 For two Galois covers f : V
G
� W and f ′ : V ′ G′

� W of the same

set W , we say that V ′ G′

� W is a refinement of V
G
� W if there is a finite

étale map g : V ′ � V such that f ′ = f ◦ g.
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If V ′ G′

� W is a refinement of V
G
� W , then we also have a natural surjective

map G′ � G.

Definition 3 If f : V
G
� W is a Galois cover, W ′ ⊂ W an algebraic subset,

and V ′ ⊂ V an irreducible component of f−1(W ′), then f�V ′ : V ′ � W ′ is
again a Galois cover. We call it a restriction of f to W ′.

Remark 4 Denote the group of the restricted cover V ′ � W ′ by G′. If W ′

is dense in W , then f−1(W ′) is irreducible and G′ = G. In general, we have
G′ ↪→ AutW ′(f−1(W ′))←↩ G.

Here are some more well-known facts about Galois covers which we will be
using without further mentioning:

Fact 5 (1) If V
G
� W is a Galois cover and H ⊂ G is a subgroup, then

V
H
� V/H is also a Galois cover. If H is normal, then V/H

G/H
� W is a

Galois cover, too.
(2) If f ◦ g is a Galois cover and both f and g are finite and étale, then g is

a Galois cover, too.

(3) Given two Galois covers V1
G1� W and V2

G2� W of the same set, there
exists a common refinement of both.

(4) If W is absolutely irreducible and f : V → W is a finite étale map, then
there exists an algebraic set Ṽ and a finite étale map g : Ṽ → V such
that f ◦ g is a Galois cover. (In particular, g is also a Galois cover.) If
f is only finite and dominant, then this is still true after replacing W by
some suitable dense open subset W ′ of W and V by f−1(W ′).

2.3 The Artin symbol

Given a Galois cover V
G
� W and an element w ∈ W (K), the usual Artin

symbol of w is a conjugacy class of elements of G, which one gets as images
of a generator of GalK under certain maps from GalK to G. When GalK is
not Ẑ, it is better to consider directly conjugacy classes of maps from GalK
to G. Note that Hom(GalK , G) is a group (under pointwise multiplication),
but by “conjugacy class in Hom(GalK, G)”, we will always mean classes under
conjugation by elements of G (i.e. ρ and ρ′ are conjugate if ρ′ = ρg := Int(g)◦ρ
for some g ∈ G).

Note also that in our setting, the group Hom(GalK, G) is always finite: by the
boundedness of GalK , there are only finitely many quotients of GalK whose
cardinality is less or equal to the cardinality of G and each homomorphism
ρ ∈ Hom(GalK, G) factors through such a quotient. (And of course, there are
only finitely many homomorphisms from that quotient to G.)
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Another remark: When G1 is a subgroup of G2, we will often identify Hom(GalK, G1)
with the corresponding subgroup of Hom(GalK, G2).

Definition 6 Suppose f : V
G
� W is a Galois cover and w ∈ W (K). Then we

have a (left) action of GalK on the fiber f−1(w) ⊂ V (K̃). Suppose v ∈ f−1(w)
lies in that fiber. By the regularity of the action of G on f−1(w), there is a
unique map ρ : GalK → G such that σv = v.ρ(σ) for all σ ∈ GalK. We call
this map the Frobenius symbol of v and denote it by Fr(v).

For w ∈ W (K), we call the set {Fr(v) | v ∈ f−1(w)} the Artin symbol of w
and denote it by Ar(w).

Remark 7 It is easy to check that Fr(v) is a continuous group homomor-
phism from GalK to G and that Ar(w) is exactly one conjugacy class in
Hom(GalK, G) (under conjugation by G).

Definition 8 Given a Galois cover f : V
G
� W and a union C of conjugacy

classes in Hom(GalK, G), we define the subset of W (K) consisting of those
elements whose Artin symbol lies in C:

X(V
G
� W, C) := {w ∈ W (K) | Ar(w) ⊂ C} .

Remark 9 Suppose that f : V
G
� W and f ′ : V ′ G′

� W ′ are two Galois covers
and that C ⊂ Hom(GalK, G) is closed under conjugation.

• If f ′ is a refinement of f , then X(V
G
� W, C) = X(V ′ G′

� W ′, C ′), where
C ′ = {ρ ∈ Hom(GalK, G′) | π ◦ ρ ∈ C} and π is the natural map G′ � G.

• If f ′ is a restriction of f to W ′, then X(V
G
� W, C)∩W ′ = X(V ′ G′

� W ′, C ′),
where C ′ = C∩G′ (here, both G and G′ are identified with the corresponding
subgroup of AutW ′(f−1(W ′))).

2.4 Galois stratifications

The main idea to get hold of definable sets is that given a definable set X ⊂
Kn, we can cut Kn into locally closed subsets such that on each of these

subsets, X has the form X(V
G
� W, C). To make this precise, we define Galois

stratifications.

Definition 10 A Galois stratification A of a variety W consists of:

• a partition of W into finitely many absolutely irreducible locally closed sub-
sets Wi ⊂ W (i ∈ I),

• for each i ∈ I, a Galois cover fi : Vi
Gi� Wi,
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• for each i ∈ I, a union Ci of conjugacy classes of Hom(GalK, Gi).

We shall say that such a Galois stratification defines the following subset of
W (K):

⋃

i∈I

X(Vi
Gi� Wi, Ci)

The data of a Galois stratification denoted by A will always be denoted by Vi,
Wi, Gi, Ci, and analogously with primes for A′, A′′, etc. This will not always
be explicitely mentioned.

Definition 11 Suppose A and A′ are two Galois stratifications. We say that
A′ is a refinement of A, if:

• Each Wi is a union
⋃

j∈Ji
W ′

j for some Ji ⊂ I.

• For each i ∈ I and each j ∈ Ji, the Galois cover V ′
j

G′

j
� W ′

j is a refinement

of a restriction of the Galois cover Vi
Gi� Wi to the set W ′

j.

• C ′
j is constructed out of Ci as described in Remark 9, such that X(V ′

j

G′

j
�

W ′
j, C

′
j) = X(Vi

Gi� Wi, Ci) ∩W ′
j.

By the third condition, A and A′ define the same set.

One important reason for Galois stratifications being handy to use is the
following well-known lemma:

Lemma 12 If A and A′ are two Galois stratifications, then there exist refine-
ments Ã and Ã′ of A resp. A′ which differ only in the sets C̃i (resp. C̃ ′

i).

2.5 Definable sets and Galois stratifications

Lemma 13 For each definable set X ⊂ Kn, there exists a Galois stratification
A of An which defines X.

This is well known if K is a pseudo-finite field. In the case of a perfect PAC
field with bounded Galois group, the same proof works. We give a short sketch
of it.

The following lemma is proven in [2] in a very general context (Corollary 1.16).

Lemma 14 Each definable subset X of Kn can be defined by a formula of
the form ∃y φ(x, y), where φ is quantifier-free and such that for each a ∈ Kn,
there are only finitely many b ∈ Km such that φ(a, b) holds.
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Sketch of a proof of Lemma 13. One can easily eliminate negations in φ by
replacing p(x, y) 6= 0 by p(x, y) · z = 1. So we can suppose that φ defines an
algebraic subset of An+m, which we will denote by V .

Let W be the closure of the image of V in An and write f for the map V →W .
To prove the lemma, we proceed by induction on the dimension of W .

Suppose first that V is absolutely irreducible. Then W is also absolutely ir-
reducible. After restricting to a dense open subset W ′ of W and to V ′ :=

f−1(W ′) ⊂ V we get a Galois cover f̃ = f ◦ g : Ṽ
G
� W ′ where g : Ṽ

H
� V ′ is

also a Galois cover, with group H ⊂ G. We have

X ∩W ′ = f(V ′(K)) = f̃({ṽ ∈ Ṽ (K̃) | σ(g(ṽ)) = g(ṽ) ∀σ ∈ GalK})

= f̃({ṽ ∈ Ṽ (K̃) | im Fr(g) ⊂ H}) = X(Ṽ
G
� W ′, C) ,

where C := Hom(GalK , H)G. By induction, we already have a Galois stratifi-

cation defining X ∩ (W r W ′) = f(V r V ′). Together with X(Ṽ
G
� W ′, C),

this gives a Galois stratification defining X.

Now suppose V is not absolutely irreducible. By the “decomposition-intersection
procedure” described in [1], we can suppose that each irreducible component
of V is already absolutely irreducible. Apply the above argument to each irre-
ducible component of V . We get that X is the union of sets defined by Galois
stratifications. By refining these Galois stratifications, we can suppose that
they only differ in the sets Ci. Define one new Galois stratification by taking
the union of the sets Ci. This Galois stratification defines X. �

Note that the converse of Lemma 13 is also true: Any set defined by a Galois
stratification is definable in the usual sense. Indeed, to speak about the Artin

symbol of an element w ∈ W (K) with respect to a given Galois cover V
G
� W ,

it is enough to work in a finite extension of K (this uses the boundedness of
the Galois group), and finite extensions of K are interpretable in K.

3 The main theorem

3.1 The statement

The main result of this article is the following:

Theorem 15 Let K be a perfect PAC field, with pro-cyclic Galois group. Then
there is exactly one function µ (a “measure”) from the definable sets over K
to Q satisfying:
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(1) µ(K) = 1.
(2) If there is a definable bijection between X1 and X2, then µ(X1) = µ(X2).
(3) Suppose X1 and X2 are disjoint definable sets. If dim X1 = dim X2, then

µ(X1 ∪ X2) = µ(X1) + µ(X2); if dim X1 > dim X2, then µ(X1 ∪ X2) =
µ(X1).

(4) Suppose V
G
� W is a Galois cover where V is absolutely irreducible and

suppose C ⊂ Hom(GalK , G) is a conjugacy class. Then the measure of

X(V
G
� W, C) only depends on C and on G as an abstract group (and

not on V , W , the map V → W and the action of G on V ).

This measure additionally satisfies:

(6) µ(X) ≥ 0 for any X, and µ(X) = 0 if and only if X is empty.
(7) µ(X1 ×X2) = µ(X1) · µ(X2)

Remark 16 Condition (4) is the “additional hypothesis” needed to get unique-
ness mentioned in the introduction. It can be seen in the following way:

To get uniqueness, one has to fix the measure of absolutely irreducible varieties.

This is done by Condition (4) applied to X(id : W
1
� W, 1) for any absolutely

irreducible W (together with Condition (1)). In this sense, Condition (4) is a
generalization of fixing the measure of absolutely irreducible varieties.

We now give the main steps of the proofs. The details will be done later.

3.2 Sketch of the proof of existence

Condition (4) suggests to define a “measure” which associates a value µG(C)
to each finite group G and each each conjugacy class C ⊂ Hom(GalK , G), and

then to define µ(V
G
� W, C) := µG(C). Indeed, to prove the existence, we will

state a theorem similar to Theorem 15 about such a measure µG(C) on the
groups (Theorem 21). In this manner, the whole proof is divided into one part
in which the real work of finding a measure is done, but which is only group
theoretical (Section 5), and one part which consists in transfering the result
to definable sets (Subsection 6.1).

There is one technical complication to this: Condition (4) only treats the
case when V is absolutely irreducible. If V is not absolutely irreducible, then
one has to take into account the action of the Galois group on the absolutely
irreducible components of V . This makes the measure on the groups somewhat
uglier.

The definition of the measure we will give can be interpreted as follows: In
the case of pseudo-finite fields, a measure exists. If the Galois group of K is a
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subgroup of Ẑ, then in a certain sense the lanugage is a “simplification” of the
language of pseudo-finite fields: when defining sets using Galois covers, then
there are fewer possible Artin symbols. Using an embedding GalK ↪→ Ẑ, we
will therefore be able to “pull back” the well-known measure on pseudo-finite
fields to K.

3.3 Sketch of the proof of uniqueness

One idea would be to use the same approach as for the existence: Prove the
uniqueness of a measure on groups and then transfer this result to definable
sets. However, there are a some technical reasons which would make this proof
unnecessarily complicated. In particular we would need a version of Condi-
tion (4) which also treats non-irreducible V . To avoid this, we will prove the
uniqueness directly. However, while doing this, we will still have the above
idea in mind.

4 Some useful lemmas

Before we really start with the proof of the main theorem, we need some
lemmas. In this section, we require the Galois group of K only to be bounded
(not necesarrily pro-cyclic).

4.1 Some fiber sizes

Lemma 17 Suppose f : V
G
� W is a Galois cover and w ∈ W (K) has Artin

symbol C := Ar(w) ⊂ Hom(GalK , G). Choose a ρ ∈ C. Then the number

#
{

v ∈ V (K̃) | f(v) = w ∧ Fr(v) = ρ
}

of elements in the fiber of w with Frobenius symbol ρ is |G|
|C|

.

Proof. For ρ ∈ C, write F (ρ) := {v ∈ V (K̃) | f(v) = w ∧ Fr(v) = ρ} for the
part of the fiber with ρ as Frobenius symbol. We will show that for any two
ρ, ρ′ ∈ C, F (ρ) and F (ρ′) have the same cardinality. As the whole preimage
of w consists of |G| elements, the lemma follows.

Given ρ, ρ′ ∈ C, there exists a g ∈ G such that ρ′ = ρg. Suppose v ∈ F (ρ),
i.e. σv = v.ρ(σ) for all σ ∈ GalK . Then σv.g−1 = v.ρ(σ)g−1 = v.g−1ρ(σ)g =
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v.g−1ρ′(σ), i.e. v.g−1 ∈ F (ρ′). So g−1 maps F (ρ) to F (ρ′). By the same argu-
ment, g maps F (ρ′) to F (ρ), so we have a bijection. �

Lemma 18 Suppose we have the following diagram, where the maps f1 : V →
W1 and f2 : V → W2 are Galois covers with groups G1 resp. G2. Note that we
have naturally G1 ⊂ G2 and Hom(GalK, G1) ⊂ Hom(GalK , G2).

V

W1 W2

f1
f2

φ

Suppose additionally that C1 ⊂ Hom(GalK, G1) is a conjugacy class and set

C2 := CG2

1 ⊂ Hom(GalK , G2). Then the image under φ of X1 := X(V
G1�

W1, C1) is X2 := X(V
G2� W2, C2). In addition, φ restricts to a bijection

X1 → X2 if and only if |G1|
|C1|

= |G2|
|C2|

.

Proof. “φ(X1) ⊂ X2”: Suppose w1 ∈ X1 and suppose v ∈ f−1
1 (w1) is a preim-

age. Then Fr(v) ∈ C1. But v is also a preimage of φ(w1), so Ar(φ(w1)) contains
Fr(v) and is therefore equal to CG2

1 .

“φ(X1) ⊃ X2”: Suppose w2 ∈ X2. As Ar(w2) contains C1, we may choose some
preimage v ∈ V of w2 with Fr(v) ∈ C1. In particular, im Fr(v) ⊂ G1, which
means that GalK fixes v.G1 ∈ V/G1

∼= W1. So the image f1(v) lies in W1(K).
As Ar(f1(v)) contains Fr(v), we have Ar(f1(v)) = C1, so f1(v) is a preimage
of w2.

It remains to check that the fibers of φ�X1
have size one if and only if |G1|

|C1|
= |G2|

|C2|
.

Indeed, we prove that the size of the fibers is |G2|·|C1|
|C2|·|G1|

: Fix any element ρ ∈ C1.

For any w2 ∈ X2, consider the set F2 := {v ∈ f−1
2 (w2) | Fr(v) = ρ}. By

Lemma 17, this set has |G2|
|C2|

elements.

For any v ∈ F2, f1(v) lies in X1 ∩ φ−1(w2) (lying in X1 holds by the same
argument as in “φ(X1) ⊃ X2”). So the sets F1(w1) := {v ∈ f−1

1 (w1) | Fr(v) =

ρ}, w1 ∈ X1 ∩ φ−1(w2), form a partition of F2. By Lemma 17, F1(w1) has |G1|
|C1|

elements, so w2 has |G2|·|C1|
|C2|·|G1|

preimages in X1. �

4.2 A closer look on Galois covers

A Galois cover comes with some additional data which we will need several
times. We now fix notation for that data once and for all. So suppose V

G
� W
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is a Galois cover.

Suppose g ∈ G fixes some absolutely irreducible component V0 of V . Any
other component V ′

0 can be written as V ′
0 = σV0 for some σ ∈ GalK, so

V ′
0 .g = σV0.g = σV0 = V ′

0 . That is, if g fixes any component, then it fixes all
components. One also deduces that the set of g ∈ G fixing the components
form a normal subgroup. We will write S for this subgroup, T := G/S for the
quotient, and τ : G � T for the canonical homomorphism. Note that T acts
regularly on the set of components of V .

Now choose one absolutely irreducible component V0 of V . This yields a map
η : GalK → T defined by V0.η(σ) = σV0. Using the fact that the actions
of T and of GalK on the set of absolutely irreducible componenents of V
commute, we get that η is a (continuous) group homomorphism. As GalK acts
transitively on the set of components, η is surjective.

GalK

S G T

η

τ

Note that another choice of V0 would yield a map GalK → T which is conjugate
to η by some element of T .

In the remainder of this article, whenever we have a Galois cover denoted by

V
G
� W , then S, T, τ, η will always denote the objects described here, and

analogously for V ′ G′

� W ′, Vi
Gi� Wi, etc. with primes resp. indices. This will

not always be explicitely mentioned. (We will of course have to pay attention
to the fact that η depends on the choice of V0.)

4.3 Which of the X(V
G
� W, C) are empty?

Let f : V
G
� W be a Galois cover. To construct the measure, we need to know

precisely for which conjugacy classes C ⊂ Hom(GalK , G) the sets X(V
G
�

W, C) are empty and for which they are not. This is what the following lemma
states. It can be seen as a variant of Chebotarev’s density theorem. In fact, the
idea of the proof was taken from the proof of Chebotarev’s density theorem
in [5].

The second assertion of the lemma will be needed in the proof of the uniqueness
of the measure. It is part of the same lemma because the proof is the same.

Lemma 19 Suppose V
G
� W is a Galois cover and C ⊂ Hom(GalK, G) is
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a conjugacy class. Define S, T, τ, η as in section 4.2. Then X(V
G
� W, C) is

non-empty if and only if there is a ρ ∈ C such that τ ◦ ρ = η. In that case,

dim X(V
G
� W, C) = dim W .

If the conjugacy class C consists of a single element ρ and τ ◦ ρ = η, then

there exists another Galois cover V̂
S
� W where V̂ is absolutely irreducible

and S is as above, and such that X(V
G
� W, C) = X(V̂

S
� W, {1}).

Remark 20 Concerning the choice involved in η, note that the condition that
C contains an element ρ satisfying τ ◦ ρ = η does not change if η is replaced
by an element conjugate to it.

Proof. We start with the easy direction of the first statement: Suppose X(f : V
G
�

W, C) is not empty. Choose w ∈ X(V
G
� W, C) and choose a preimage

v ∈ f−1(w) ∩ V0, where V0 is the absolutely irreducible component of V
which gave rise to η as in Subsection 4.2. The corresponding Frobenius symbol
ρ := Fr(v) is an element of C. This ρ satisfies τ ◦ ρ = η: For any σ ∈ GalK ,
look at the component of V containing the left hand side resp. the right hand
side of v.ρ(σ) = σv. The one on the left is V0.ρ(σ) = V0.τ(ρ(σ)), the one on the
right is σV0 = V0.η(σ). As T acts freely on the set of components, it follows
that τ(ρ(σ)) = η(σ).

For the remainder of the lemma, the goal is to construct a surjective map

f̂ : V̂ � W such that V̂ is absolutely irreducible and f̂(V̂ (K)) ⊂ X(V
G
�

W, C). As K is PAC, it follows that X(V
G
� W, C) is not empty and has the

right dimension. If |C| = 1, then this f̂ will be a Galois cover and we will have

an equality X(V̂
S
� W, {1}) = f̂(V̂ (K)) = X(V

G
� W, C).

Here is a sketch of the construction of V̂ and f̂ :

V ′ ⊂ V × U

V ′/H =: V̂ V

W

H

Gf̂

G′

(1) Define some Galois cover U
Q
� {Pt} and consider the product V × U .

(2) Restrict the map V ×U � W to an irreducible component V ′ of V ×U .
This yields a Galois cover with group G′ ⊂ G×Q.

(3) Find a set C ′ ⊂ Hom(GalK , G′) such that X(V
G′

� W, C ′) = X(V
G
�

W, C).

14



(4) Choose a subgroup H ⊂ G′ such that V̂ := V ′/H is absolutely irreducible.

V ′ H
� V̂ is a Galois cover. Choose a subset C ′′ ⊂ Hom(GalK, H) such that

f̂(X(V ′ H
� V̂ , C ′′)) ⊂ X(V ′ G′

� W, C ′), with equality if |C| = 1.

(5) Check that X(V ′ H
� V̂ , C ′′) = V̂ (K).

(6) Check that, if |C| = 1, then f̂ : V̂ →W is a Galois cover with group S.

Now let’s get to work:

Step 1: First choose ρ0 ∈ C such that τ ◦ ρ0 = η. (This exists by the hypoth-
esis.)

Denote the image im ρ0 ⊂ G by Q and write π0 for the induced map GalK �

Q.

Gal(L/K) GalK

Q

S G T

η

τ

ρ0

π0

⊂

∼

π0

Let L be the extension of K corresponding to the quotient Q of GalK. In
particular, π0 factors over Gal(L/K) and the induced map π0 : Gal(L/K)→
Q is an isomorphism.

As K is perfect, L can be generated by a single element: L = K(u0). Let f be
the minimal polynomial of u0 over K and define U := V (f) to be the set of its
zeros (as an algebraic set defined over K). One easily checks that the group
of automorphisms of U is isomorphic to Qopp and that the isomorphism can
be choosen such that for any σ ∈ GalK , we have σu0 = u0.π0(σ), where the
right action of π0(σ) ∈ Q on U is the one induced by the isomorphism Q →

Aut(U)opp. It is also easy to check that this yields a Galois cover U
Q
� {Pt}.

In other words, U := spec L as a scheme over K. As K is perfect, Aut(U)opp =

Gal(L/K) = Q and U
Q
� {Pt} is a Galois cover. Let u0 be the point of U

defined by the inclusion L ↪→ K̃. Then we have σu0 = u0.π0(σ) for any
σ ∈ GalK .

Step 2: Let V0 be the absolutely irreducible component of V as in Subsec-
tion 4.2. Then for any σ ∈ GalK we have

σV0 = V0.η(σ) = V0.ρ0(σ) = V0.π0(σ) . (1)
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Let V ′ be the irreducible component of V × U containing the absolutely irre-
ducible component V0 × {u0}. We have:

V ′ =
⋃

σ∈GalK

σ(V0 × {u0}) =
⋃

σ∈GalK

σV0 × σ{u0}

(1)
=

⋃

σ∈GalK

V0.π0(σ)× {u0}.π0(σ) =
⋃

q∈Q

V0.q × {u0}.q .
(2)

In particular, the absolutely irreducible components of V ′ are in bijection with
U(K̃) and the diagonal action of Q on these components is regular.

The action of G on V and the action of Q on U induce an action of G×Q on

V × U . This gives rise to a Galois cover V ′ G′

� W , where G′ is the subgroup
of G×Q fixing V ′. We want to understand a bit more precisely how G′ looks
like.

An element (g, q) ∈ G×Q fixes V ′ if and only if it maps V0×{u0} to some other
absolutely irreducible component of V ′. By (2) these absolutely irreducible
components are of the form V0.q

′ × {u0}.q
′ for some q′ ∈ Q. In other words,

(g, q) ∈ G′ is equivalent to: there exists a q′ ∈ Q such that V0.g = V0.q
′ and

u0.q = u0.q
′. As Q acts regularly on U(K̃), it follows that q = q′, so we finally

get:

G′ = {(g, q) ∈ G×Q | V0.g = V0.q}

= {(g, q) ∈ G×Q | τ(g) = τ(q)}
(3)

Step 3: We now want to find a union of conjugacy classes C ′ ⊂ Hom(GalK , G′)

such that X(V
G
� W, C) = X(V ′ G′

� W, C ′).

We have canonically

Hom(GalK, G′) ⊂ Hom(GalK , G×Q) ∼= Hom(GalK, G)× Hom(GalK, Q) .

Using these identifications, define C ′ := (C×πQ
0 )∩Hom(GalK , G′). (C ′ might

consist of several conjugacy classes.)

Claim: X(V
G
� W, C) = X(V ′ G′

� W, C ′).

Proof of the claim: For any w ∈ W (K), we can choose a preimage v ∈ V0(K̃).
This also yields a preimage (v, u0) ∈ V ′(K̃).

w is an element of the left hand side of the claim if and only if there exists
a ρ ∈ C such that v.ρ(σ) = σv for all σ ∈ GalK. w is an element of the
right hand side of the claim if and only if there exists a (ρ, π) ∈ C ′ such that
v.ρ(σ) = σv and u0.π(σ) = σu0 for all σ ∈ GalK.
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Now “⊃” is clear (using the same ρ).

“⊂”: We use the same ρ and we set π := π0. Then we have v.ρ(σ) = σv and
u0.π(σ) = σu0, and it remains to check that (ρ, π0) is indeed an element of C ′.
The only thing which is not clear here is that it is an element of Hom(GalK , G′),
i.e. that the image of (ρ, π0) lies in G′. But (v, u0).(ρ, π0)(σ) = σ(v, u0), so
(ρ, π0)(σ) maps the irreducible component V ′ of V ×U to itself, and therefore
(ρ, π0)(σ) ∈ G′.

So the claim is proven.

Step 4: Define H := {(q, q) ∈ G×Q | q ∈ Q} to be the diagonal embedding
of Q in G×Q. By (2), H is a subgroup of G′ (as it fixes V ′) and acts regularly
on the absolutely irreducible components of V ′. It follows that V̂ := V ′/H is
absolutely irreducible. Denote the map from V̂ to W by f̂ .

Obviously, im(ρ0, π0) ⊂ H, so we can set C ′′ := (ρ0, π0)
H ⊂ Hom(GalK, H).

By Lemma 18, the image of X(V ′ H
� V̂ , C ′′) under f̂ is X(V ′ G′

� W, (ρ0, π0)
G′

),

which is included in X(V ′ G′

� W, C ′).

If |C| = 1, then the conjugation action of G on ρ0 is trivial, i.e. the image
of ρ0 lies in the center of G. In particular, Q is abelian. It follows that C ′ =

(C×πQ
0 )∩Hom(GalK, G′) = {(ρ0, π0)}, so in particular, f̂(X(V ′ H

� V̂ , C ′′)) =

X(V ′ G′

� W, (ρ0, π0)
G′

) = X(V ′ G′

� W, C ′).

Step 5: We want to check that X(V ′ H
� V̂ , C ′′) is the whole of V̂ (K). Suppose

w ∈ V̂ (K). The preimage of w in V ′(K̃) has exactly one element (v, u) for
each second coordinate u ∈ U(K̃), as the composition H ↪→ G′ � Q is an
isomorphism and Q acts regularly on U . Suppose (v, u0) is the preimage with
second coordinate u0. We have to check that σ(v, u0) = (v, u0).(ρ0, π0)(σ).
Both the left and the right hand side are preimages of w, so it is enough to
compare their second coordinates. But indeed, σ(u0) = u0.π0(σ).

Step 6: Now suppose |C| = 1. Then Q is abelian and H ⊂ Z(G) × Q, so H
is a normal subgroup of G × Q and in particular of G′. Therefore, V̂ → W
is a Galois cover with group G′/H. It remains to check that this group is
isomorphic to S.
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(g, q) gq−1

G×Q G

∪ ∪

H ⊂G′ G′/H S

φ

Consider the map φ : G′ → G, (g, q) 7→ gq−1. The kernel of φ is exactly H
(by definition of H), so we get an injective map from G′/H to G. By (3),
τ(gq−1) = 1, so the image of φ lies in the kernel of τ , which is S. On the
other hand, given an element g ∈ S, we get (g, 1) ∈ G′ (again by (3)) and
φ(g, 1) = g; so the image of φ is the whole S. Therefore, the map G′/H → S
is an isomorphism. �

5 The measure on the groups

As mentioned in the sketch of the proof of the main theorem, to get the
existence of the measure, we first define a measure on the groups. In order to
do that, we first have to clarify what exactly we want to associate a measure
to. Then we will state a theorem about the existence of such a measure, and
finally, we will prove it.

In this section, GalK will just be an abstract profinite group for us. However,
we still write GalK to avoid unnecessary confusion.

5.1 The theorem for groups

Fix a subgroup GalK of Ẑ. Suppose we are given the following data:

• A finite group G.
• A quotient T of G. We will write τ for the canonical map G � T and S for

the kernel of τ .
• A continuous surjective map η : GalK � T .
• A subset C ⊂ Hom(GalK, G) which is closed under conjugation by G.

It is to these data that we want to associate a measure. We will denote that
measure by µG,η(C).

Theorem 21 Suppose GalK is a subgroup of Ẑ. Then, there exists a map µ
which associates to each G, T, η, C as above a rational number µG,η(C) ∈ Q

satisfying the following conditions:
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(1) If G, T and η are trivial and C = Hom(GalK, G) is the only existing
morphism, then µG,η(C) = 1.

(2) If C1, C2 ⊂ Hom(GalK , G) are disjoint, then µG,η(C1 ∪ C2) = µG,η(C1) +
µG,η(C2).

(3) Suppose we have the following commutative diagram of groups, where S
resp. S ′ is the kernel of τ resp. τ ′:

S ⊂ G T

GalK
S ′ ⊂ G′ T ′

τ

τ ′

η

η′

π

Suppose further that C ′ ⊂ Hom(GalK, G′) is a conjugacy class and that
C := {ρ ∈ Hom(GalK , G) | π ◦ ρ ∈ C ′} is its preimage. Then µG,η(C) =
µG′,η′(C ′).

(4) Suppose we have the following commutative diagram of groups, where Si

is the kernel of τi:

S1 ⊂ G1

∩ ∩ T GalK
S2 ⊂ G2

τ1

τ2

η

Suppose further that we have a single conjugacy class C1 ⊂ Hom(GalK , G1),
that C2 := CG2

1 is the induced conjugacy class in Hom(GalK, G2), and that

these classes satisfy |G1|
|C1|

= |G2|
|C2|

. Then µG1,η(C1) = µG2,η(C2).

(5) µG,η(C) ≥ 0 for any G, η and C, and µG,η(C) > 0 if and only if C
contains an element ρ which is compatible with η, i.e. such that τ ◦ρ = η.

(6) µG1×G2,(η1,η2)(C1 × C2) = µG1,η1
(C1) · µG2,η2

(C2).

5.2 The proof for groups

Proof of Theorem 21. Fix any injection ι : GalK ↪→ Ẑ. For any finite group G,
composition with ι defines a map from Hom(Ẑ, G) to Hom(GalK, G). Denote
this map by φ.

Suppose G, S, T, τ, η are given as in Subsection 5.1. Then first note that there
is exactly one continuous map η̂ ∈ Hom(Ẑ, T ) such that η̂ ◦ ι = η. Indeed, Ẑ

is the product of all Zp and GalK =
∏

p∈P Zp is a product of some of them. As
T is a quotient of GalK, the prime factors of |T | lie in P . Therefore, the only
map from Zp′ to T for any p′ /∈ P is the trivial one.

It follows that for any ρ̂ ∈ Hom(Ẑ, G), we have τ ◦ ρ̂ = η̂ if and only if
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τ ◦ φ(ρ̂) = η.

GalK Ẑ

G T

ι

τ

η
η̂

Hom(GalK, G) Hom(Ẑ, G)

∪ ∪

{ρ | τ ◦ ρ = η} {ρ̂ | τ ◦ ρ̂ = η̂}

φ

φ

Here is a definition of the measure:

µG,η(C) :=
#{ρ̂ ∈ φ−1(C) | τ ◦ ρ̂ = η̂}

|S|
=
|φ−1({ρ ∈ C | τ ◦ ρ = η})|

|S|
.

We check all the conditions required by the theorem.

Conditions (1) and (2) are clear.

Condition (3): We have the following commutative diagram:

S ⊂ G T

GalK Ẑ

S ′ ⊂ G′ T ′

τ

τ ′

η

η′

η̂

η̂′

π

We also have a conjugacy class C ′ ⊂ Hom(GalK , G′) and its preimage C :=
{ρ ∈ Hom(GalK , G) | π ◦ ρ ∈ C ′}. Fix a generator σ0 of Ẑ. Then maps from Ẑ

to a finite group are in bijection to the elements of that finite group by taking
the image of σ0.

Define D := {ρ̂(σ0) ∈ G | ρ̂ ∈ φ−1(C)} and D′ := {ρ̂′(σ0) ∈ G′ | ρ̂′ ∈ φ−1(C ′)}.
Using this, what we have to check translates to

#{g ∈ D | τ(g) = η̂(σ0)}

|S|
=

#{g′ ∈ D′ | τ(g′) = η̂′(σ0)}

|S ′|
. (4)

Choose g0 ∈ G such that τ(g0) = η̂(σ0). Then the sets in the numerators of (4)
can be rewritten as D∩g0S resp. D′∩π(g0)S

′. The homomorphism π restricts

to a map g0S � π(g0)S
′ with fiber size |S|

|S′|
. So we are finished as soon as we

have checked that D is the preimage of D′ under π. But this follows from the
hypothesis that C is the preimage of C ′: Applying φ−1 to C yields

φ−1(C) = {ρ̂ ∈ Hom(Ẑ, G) | π◦ρ̂◦ι ∈ C ′} = {ρ̂ ∈ Hom(Ẑ, G) | π◦ρ̂ ∈ φ−1(C ′)} .

From this, we get D = {g ∈ G | π(g) ∈ D′}.
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Condition (4): We have the following commutative diagram of groups:

S1 ⊂ G1 GalK
∩ ∩ T

S1 ⊂ G2 Ẑ

η

η̂

ι

We also have a single conjugacy class C1 ⊂ Hom(GalK, G1) and the induced

class C2 := CG2

1 ⊂ Hom(GalK, G2), and these conjugacy classes satisfy |G1|
|C1|

=
|G2|
|C2|

. We want to check that µG1,η(C1) = µG2,η(C2).

To avoid confusion, we will write φi (instead of just φ) for the composition
with ι from Hom(Ẑ, Gi) to Hom(GalK , Gi).

C2 ⊂ Hom(GalK , G2) Hom(Ẑ, G2)

∪ ∪ ∪

C1 ⊂ Hom(GalK , G1) Hom(Ẑ, G1)

φ2

φ1

We will check

#{ρ ∈ C1 | τ1 ◦ ρ = η}

|C1|
=

#{ρ ∈ C2 | τ2 ◦ ρ = η}

|C2|
(5)

and
∣

∣

∣φ−1
1 ({ρ ∈ C1 | τ1 ◦ ρ = η})

∣

∣

∣

#{ρ ∈ C1 | τ1 ◦ ρ = η}
=

∣

∣

∣φ−1
2 ({ρ ∈ C2 | τ2 ◦ ρ = η})

∣

∣

∣

#{ρ ∈ C2 | τ2 ◦ ρ = η}
. (6)

Together with |S2|
|S1|

= |G2|
|G1|

= |C2|
|C1|

, this implies

∣

∣

∣φ−1
1 ({ρ ∈ C1 | τ1 ◦ ρ = η})

∣

∣

∣

|S1|
=

∣

∣

∣φ−1
2 ({ρ ∈ C2 | τ2 ◦ ρ = η})

∣

∣

∣

|S2|
, (7)

which is what we have to show. (In (6), it is possible that a denominator is
zero. However by (5) then both of them have to be zero and it is clear that in
that case both numerators are zero, too, so (7) still holds.)

For the proof of (5), consider the image of Ci in Hom(GalK , T ) under compo-
sition with τi. It is exactly one conjugacy class, and it does not depend on i,
as (τ1◦)(C1) ⊂ (τ2◦)(C2). If this conjugacy class does not contain η, then both
sides of (5) are zero, and there is nothing more to prove. So suppose now that
(τ1◦)(C1) = (τ2◦)(C2) = ηT .

The fibers of the restricted composition map (τi◦)�Ci
all have the same size,

as they are conjugate. The set {ρ ∈ Ci | τi ◦ ρ = η} is one such fiber, so
|Ci| = #{ρ ∈ Ci | τi ◦ ρ = η} · |ηT |. As this is true for both i, (5) follows.
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For the proof of (6), consider the map φ2 restricted to φ−1
2 (C2) → C2. The

fibers are conjugate by elements of G2 and therefore all have the same size,
which we denote by k. So the right hand side of (6) is k.

Now consider φ−1
2 (C1). A priori, this is a set of maps from Ẑ to G2. However, we

will check that the image of these maps lies in G1. This means that φ−1
2 (C1) =

φ−1
1 (C1) and it follows that the left hand side of (6) is k, too.

So suppose ρ̂ ∈ Hom(Ẑ, G2) is such that ρ := φ2(ρ̂) ∈ C1. As |CG1
(im ρ)| =

|G1|
|C1|

= |G2|
|C2|

= |CG2
(im ρ)| and CG1

(im ρ) ⊂ CG2
(im ρ), we have CG1

(im ρ) =

CG2
(im ρ), so in particular CG2

(im ρ) ⊂ G1. Now im ρ̂ is abelian (as Ẑ is
abelian) and contains im ρ, so im ρ̂ ⊂ CG2

(im ρ) ⊂ G1.

Condition (5) is clear.

Condition (6) is straight forward to check. �

6 Proof of the main theorem

6.1 Existence

We know that there exists a measure on the groups as described by Theo-
rem 21. Now we have to define a measure on the definable sets. We do this
by defining the measure of a Galois stratification and then showing that this
measure only depends on the set the Galois stratification defines.

Let A = (fi : Vi
Gi� Wi, Ci)i∈I be a Galois stratification of Kn for some n, and

let Ti, τi, ηi be as usual. Let d be the maximal dimension of those Wi where
µGi,ηi

(Ci) 6= 0, or d := 0 if all µGi,ηi
(Ci) = 0. Then we define the measure of

A to be
µ(A) :=

∑

{i∈I|dimWi=d}

µGi,ηi
(Ci) .

Remember that ηi is only well defined up to conjugacy (Subsection 4.2), so
for this definition to make sense, we have to check that µGi,ηi

(Ci) does only
depend on the conjugacy class of ηi. Indeed, if η′

i = ηt
i for some t ∈ T , then

choose a preimage g ∈ τ−1
i (t) and apply Condition (3) of Theorem 21 with

G = G′ and π := Int g the corresponding internal automorphism.

Remark 22 By Condition (5) of Theorem 21, µGi,ηi
(Ci) 6= 0 if and only if

there is a ρ ∈ Ci such that τi ◦ ρ = ηi. By Lemma 19, this is equivalent to

X(Vi
Gi� Wi, Ci) being non-empty. As in the latter case dim X(Vi

Gi� Wi, Ci) =
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dim Wi (also by Lemma 19), it follows that d is the dimension of the set defined
by A.

Lemma 23 If two Galois stratifications A and A′ define the same set, then
their measures (as defined above) are equal.

Proof. By Lemma 12, there exist refinements Ã resp. Ã′ of A resp. A′ which
only differ in the sets C̃i resp. C̃ ′

i, and the refinements define the same sets as
the originals. So it is enough to check that the measure of two stratifications
A and A′ is equal in two cases: if A′ is a refinement of A and if A and A′

differ only in the Ci.

Suppose first that A = (fi : Vi
Gi� Wi, Ci)i∈I and A′ = (fi : Vi

Gi� Wi, C
′
i)i∈I

differ only in the sets Ci and that both define the same set. We show that for
all i ∈ I, µGi,ηi

(Ci) = µGi,ηi
(C ′

i). For this, it is enough to check that for any
conjugacy class C in Hom(GalK, Gi) with µGi,ηi

(C) 6= 0, either both or none
of Ci and C ′

i contain C.

If X(Vi
Gi� Wi, C) is not empty, then indeed both or none of Ci and C ′

i contain

C, as by assumtion, we have X(Vi
Gi� Wi, Ci) = X(Vi

Gi� Wi, C
′
i). If on the

other hand X(Vi
Gi� Wi, C) is empty, then by Lemma 19, C does not contain

any element ρ such that τi ◦ ρ = ηi. By Condition (5) of Theorem 21 it follows
that µGi,ηi

(C) = 0.

Now suppose A′ is a refinement of A. We have to check that

∑

{i∈I|dimWi=d}

µGi,ηi
(Ci) =

∑

{i∈I|dimW ′

i
=d′}

µG′

i
,η′

i
(C ′

i) ,

where d resp. d′ is the dimension of the set defined by A resp. A′. As A and
A′ define the same set, we have d = d′.

For i ∈ I, write Ji of the set of j ∈ I ′ such that W ′
j ⊂ Wi and set

µi :=
∑

{j∈Ji|dimW ′

j
=d}

µG′

j
,η′

j
(C ′

j) .

The assertion follows from the following claim: If dim Wi < d, then µi = 0.
Otherwise, µi = µGi,ηi

(Ci).

If dim Wi < d, then dim W ′
j < d for all j ∈ Ji, so the sum is empty and

the claim is true. If dim Wi = d, then (as Wi is irreducible), there exists
exactly one W ′

j (j ∈ Ji) such that dim W ′
j = d. So it remains to check that

µG′

j
,η′

j
(C ′

j) = µGi,ηi
(Ci) for this specific j.
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By definition of refinement of a Galois stratification, the Galois cover V ′
j

G′

j
� W ′

j

is a refinement of a restriction of Vi
Gi� Wi to W ′

j. As W ′
j is dense in Wi, this

restriction is fi�V : V
Gi� W ′

j where V := f−1
i (W ′

j) ⊂ Vi. This means we have
the following diagram:

V ′
j

V

W ′
j

G′
j

Gi

On the level of groups, we get:

S ′
j ⊂ G′

j T ′
j

GalK

Si ⊂ Gi Ti

τi

τ ′
j

ηi

η′
j

π

Using C ′
j = {ρ ∈ Hom(GalK, G′

j) | π ◦ρ ∈ Ci} (also by definition of refinement
of a Galois stratification) we get µG′

j
,η′

j
(C ′

j) = µGi,ηi
(Ci) by Condition (3) of

Theorem 21. �

We proved that the measure of a Galois stratification only depends on the
set it defines, so we can define: For any definable set X, choose a Galois
stratification A defining X and set µ(X) := µ(A).

Now we have to check that this measures satisfies all the conditions stated in
Theorem 15. Before we start, note that if a definable set X has can be defined

by a single Galois cover, i.e. X = X(V
G
� W, C), then its measure is µG,η(C)

(as expected). Indeed, this is clear if we take a stratification which has W as
one of its Wi.

Conditions (1), (3) and (7) are straight forward. (For Condition (3), one
chooses Galois stratifications defining the sets X, X ′ and X ′′ := X ∪̇ X ′

which only differ in the sets Ci and such that C ′′
i = Ci ∪̇ C ′

i.)

Condition (2): Suppose we have two definable sets X1 ⊂ Kn1 and X2 ⊂ Kn2

and a definable bijection φ between them. We have to check that X1 and X2

have the same measure. We will do this by simplifying the situation more and
more until we can apply Lemma 18 and Condition (4) of Theorem 21.

The projections Kn1+n2 � Kni induce definable bijections between the graph
of φ and Xi. So it is enough to check that the measure is invariant under
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definable bijections X → X ′ which are induced by the projection π : Kn �

Kn′

, where X ⊂ Kn, X ′ ⊂ Kn′

and n ≥ n′. (In fact, we are not so much
interested in the fact that π is a projection; we only need that it is an algebraic
map.)

Now choose a Galois stratification A defining X. Then π�X decomposes into

definable bijections X(Vi
Gi� Wi, Ci) → π(X(Vi

Gi� Wi, Ci)) (i ∈ I). So it is

enough to check the condition when X is of the form X(f : V
G
� W, C). (Note

that we already checked that the measure is compatible with disjoint union.)

Now choose a Galois stratification A′ defining X ′. Again, we can decompose

π�X , this time into X ∩ π−1(W ′
i ) → X(V ′

i

G′

i� W ′
i , C

′
i). Indeed, an element of

X∩π−1(W ′
i ) is mapped to X ′∩W ′

i , which is precisely X(V ′
i

G′

i� W ′
i , C

′
i). For any

i ∈ I ′, the set X∩π−1(W ′
i ) is defined by a Galois cover which is a restriction of

X(f : V
G
� W, C) to W ∩π−1(W ′

i ). So it is enough to check the condition when

X and X ′ both are defined by single Galois covers: X = X(f : V
G
� W, C)

and X ′ = X(f ′ : V ′ G′

� W ′, C ′). Write φ for the map π restricted to W → W ′.

We claim that we can suppose V = V ′. Indeed: X ′ is contained in im φ and is
Zariski dense in W ′, so φ is dominant. As dim W = dim X = dim X ′ = dim W ′,
φ is finite on a dense open subset of W ′. By replacing W ′ by that dense open
subset (and V ′, W and V by the corresponding preimages), we can suppose
that φ is finite everywhere. (We are allowed to do that because removing parts
of lower dimension doesn’t change the measure.) So φ◦f is finite and dominant,
too, and after shrinking W ′ a second time, we can extend this composition to
a Galois cover V̂ � W ′.

Ṽ

V̂

V V ′

W W ′

f f ′

φ

Now we take a common refinement Ṽ � W ′ of the Galois covers V̂ � W ′

and V ′ G′

� W ′. As Ṽ � W ′ is a Galois cover, so is Ṽ � W . Replace V and
V ′ by Ṽ . (X and X ′ can be defined using the Galois covers Ṽ � W and

Ṽ � W ′, as these are refinements of V
G
� W resp. V ′ G′

� W ′.) So we can

suppose X = X(V
G
� W, C) and X ′ = X(V

G′

� W ′, C ′) and G ⊂ G′.

We decompose φ�X one last time: into φ�
X(Ṽ

G̃
�W,D)

where D ⊂ C ranges over
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the conjugacy classes in C. By Lemma 18, the image φ(X(V
G
� W, D)) is

X(V
G′

� W ′, DG′

). So we can suppose that C consists of a single conjugacy
class and that C ′ = CG′

is the induced class.

As φ�X is a bijection, we can apply the second statement of Lemma 18 and
get |G|

|C|
= |G′|

|C′|
. One esily verifies that on the level of groups, we have the

diagram of Condition (4) of Theorem 21. (T = T ′ follows from the fact that
W is absolutely irreducible.) Therefore, we can apply that condition and get
µ(X) = µG,η(C) = µG′,η′(C ′) = µ(X ′).

Condition (4): As already noted, a set of the form X(V
G
� W, C) has measure

µG,η(C). If V is absolutely irreducible, then T and η are trivial, so µ(X(V
G
�

W, C)) = µG,1(C) only depends on G and C.

Condition (6): µ(X) ≥ 0 is clear and µ(∅) = 0, too. Now suppose µ(X) = 0.
Choose any Galois stratification A defining X. All µGi,ηi

(Ci) have to be zero.
By Condition (5) of Theorem 21, this implies that Ci contains no ρ such that

τi ◦ ρ = ηi. By Lemma 19, it follows that X(Vi
Gi� Wi, Ci) is empty; so X is

empty.

6.2 Uniqueness

Suppose µ is any function satifying the conditions of the theorem.

First note that by Lemma 19, given a fixed Galois cover V
G
� W , all sets

X(V
G
� W, C) (for some C ⊂ Hom(GalK, G) closed under conjugation) which

are not empty have the same dimension. It follows that if C1 and C2 are

disjoint, then µ(X(V
G
� W, C1 ∪ C2)) = µ(X(V

G
� W, C1)) + µ(X(V

G
�

W, C2)).

Each definable set can be written as disjoint union of sets of the form X(f : V
G
�

W, C). We can further decompose these sets so that each C is a single conju-
gacy class. Using Condition (3) of the theorem, it is therefore enough to prove
the uniqueness for such sets. We do this by induction on the size of the group
G.

Suppose first |G| = 1. Then C = Hom(GalK , G) is the only existing con-
jugacy class and f : V → W is an isomorphism. In particular, V is abso-

lutely irreducible (as W is), so (4) applies: µ(X(V
G
� W, C)) is equal to

µ(X(id : K
1
� K, 1)). But X(id : K

1
� K, 1) = K, so its measure is 1 by

Condition (1).

26



Now suppose |G| > 1. We first treat the case where |C| > 1. Choose ρ ∈ C
and let G′ := CG(im ρ) be the centralizer of ρ in G. Define W ′ := V/G′. Then,

V
G′

� W ′ is a Galois cover and we have the following diagram:

V

W ′ W

G′ G

φ

As GalK is cyclic, so is im ρ. Therefore, CG(im ρ) contains im ρ. So we have
ρ ∈ Hom(GalK , G′), and C ′ := {ρ} is a conjugacy class in Hom(GalK , G′).

In addition, |G|
|C|

= |CG(im ρ)| = |G′|
|C′|

, so we are precisely in the situation of

Lemma 18. It follows that φ restricts to a bijection X(V
G′

� W ′, C ′)
1:1
−→

X(V
G
� W, C).

By the assumption |C| > 1, we have |G′| < |G|, so we can apply the induction

hypothesis: We know the measure of X(V
G′

� W ′, C ′). By Condition (2) of

Theorem 15, X(V
G
� W, C) has the same measure.

We are left with the case |C| = 1. Here, we can apply the second part of

Lemma 19. We get another Galois cover V̂
S
� W such that X(V

G
� W, C) =

X(V̂
S
� W, {1}). If S ( G, we know the measure of X(V̂

S
� W, {1}) by

induction hypothesis, so we can suppose S = G.

Let Z ⊂ Hom(GalK , G) be the union of all conjugacy classes of size one (Z =

Hom(GalK, Z(G))). We already know the measure of X(V
G
� W, Hom(GalK , G)r

Z). We also know µ(X(V
G
� W, Hom(GalK, G))) = µ(W (K)) = µ(X(W

1
�

W, 1)) = 1. Therefore, we know X(V
G
� W, Z).

Now, for any conjugacy class C ⊂ Z, using Lemma 19 and Condition (4) (S =

G implies V absolutely irreducible) we get µ(X(V
G
� W, C)) = µ(X(V̂

S
�

W, {1})) = µ(X(V
G
� W, {1})). In other words, µ(X(V

G
� W, C)) is the same

for any conjugacy class C ⊂ Z, so we get µ(X(V
G
� W, C)) = 1

|Z|
µ(X(V

G
�

W, Z)).
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7 Generalizations

7.1 If the Galois group is not pro-cyclic

The main theorem proves the existence of a measure if the Galois group is
pro-cyclic. In this section, we show that one cannot hope for much more. We
give an example which shows that no measure exists for many non-pro-cyclic
bounded Galois groups.

Theorem 24 Suppose K is a perfect PAC field and suppose GalK = P1 ∗ · · ·∗
Pm is a free product of finitely many (copies of) subgroups Pi of Ẑ. Suppose
further that there exists a prime p such that at least two of the groups Pi

contain Zp as a subgroup. Then there does not exist any function µ from the
definable sets over K to Q satisfying Conditions (1) to (4) of theorem 15.

Remark 25 The prerequisites are in particular satisfied if GalK is a free prod-
uct of more that one copy of Ẑ.

Proof of Theorem 24. Let the groups Pi and the prime p be as in the theorem.
Suppose G is any finite p-group and consider the maps from Pi (for some
fixed i) to G. If Pi does contain Zp as a subgroup, then these maps are in
bijection to the elements of G (by taking the image of some generator of Pi);
otherwise, there is only the trivial map from Pi to G. In the following all our
finite groups will be p-groups, so we will fix some generators of the groups Pi

and identify Hom(GalK , G) with Gn, where n is the number of indices i such
that Pi contains Zp.

Suppose a measure µ does exist. We will construct some definable sets which
provide a contradiction.

We will have to deal with Galois covers V
G
� W where V is absolutely ir-

reducible and G ∼= (Z/pZ)2. So suppose we have such a Galois cover and
suppose ρ ∈ Hom(GalK, G) is any homomorphism. As G is abelian, the ar-
guments from the proof of the uniqueness of the main theorem concerning
one-element conjugacy classes yield

µ(X(V
G
� W, {ρ})) =

1

|Hom(GalK , G)|
= p−2n =: µ0 ,

which in particular is greater than zero.

We will now construct definable sets X = X1 ∪̇ . . . ∪̇ Xpn−1 with

µ(X) = µ(X1) = · · · = µ(Xpn−1) = µ0 ,
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which (as pn−1 > 1) will be a contradiction to Condition (3).

Let G be the group defined by the following generators and relations:

G = 〈g1, g2, z | g
p
1 = gp

2 = zp = 1, g1z = zg1, g2z = zg2, g1g2 = g2g1z〉 .

Its center Z := Z(G) is 〈z〉 ∼= Z/pZ, and the quotient Ĝ := G/Z is isomorphic
to (Z/pZ)2. Write π for the canonical map G � Ĝ. The centralizer of g1 is
G′ := CG(g1) = 〈g1, z〉 ∼= (Z/pZ)2.

Now suppose V
G
� W is a Galois cover with this group and that V is absolutely

irreducible. (It is well known how to construct such a Galois cover for any finite

group G.) Define W ′ := V/G′ and V̂ := V/Z. We get Galois covers V
G′

� W ′

and V̂
Ĝ
� W .

V V̂

W ′ W

G
Ĝ ∼= (Z/pZ)2(Z/pZ)2 ∼= G′

Choose ρ̂ := (π(g1), 1, 1, . . . , 1) ∈ Ĝn ∼= Hom(GalK, Ĝ) and consider the set

X := X(V̂
Ĝ
� W, {ρ̂}). It has measure µ0.

This set can also be described using the Galois cover V
G
� W : X := X(V

G
�

W, C), where C = {ρ ∈ Gn | π(ρ) = ρ̂} = (g1Z)×Z×· · ·×Z. The G-conjucacy
classes in C are of the form (g1Z) × {(z2, . . . zn)} for any z2, . . . , zn ∈ Z.
Denote the elements of the form (g1, z2, . . . zn) by ρi (i ∈ I := Zn−1) and the
induced conjugacy classes by Ci := ρG

i . X is the disjoint union of the sets

Xi := X(V
G
� W, Ci).

As ρi ∈ G′n, we may consider the sets X ′
i := X(V

G′

� W ′, {ρi}). Because of
|G|
|Ci|

= p2 = |G′|
|{ρi}|

, Lemma 18 applies and we get a bijection X ′
i → Xi. So

µ(Xi) = µ(X ′
i) = µ0. This terminates the contradiction. �

Note that this counter-example does not depend very much on the target ring
of the measure. In particular, it still works when Q is replaced by any ring of
characteristic zero.

7.2 Some open questions

• Is Condition (4) of the main theorem really necessary for uniqueness? It
would be nice to replace it by a condition which only requires the measure
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of absolutely irreducible varieties to be 1. Indeed, the only place where this
condition is really used is in the proof that for ρ ∈ Hom(GalK, Z(G)) ⊂

Hom(GalK, G), the measure of X(V
G
� W, {ρ}) does not depend on ρ.

• Is Condition (4) of the main theorem necessary to construct the counter-
example of Subsection 7.1? To provide a counter-example without using
that condition, it would be necessary to construct some Galois covers more
explicitely.
• We proved that for non-procyclic Galois groups, no measure in the sense

of the main theorem can exist. However, one might still hope to be able to
define some kind of invariant of definable sets which is not additive.

Note however the following: If one still describes definable sets as unions of

sets of the form X(V
G
� W, C), one will need some kind of relation between

the measure of a union and the components. However, the counter-example
of Subsection 7.1 easily adapts to prove that no sensible invariant exists if
there is any function f such that µ(X1 ∪̇ X2) = f(µ(X1), µ(X2)) for any
definable sets X1 and X2 of the same dimension.
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