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Abstract. In this paper, we undertake a systematic model and valuation theoretic

study of the class of ordered fields which are dense in their real closure. We apply this

study to determine definable henselian valuations on ordered fields, in the language of

ordered rings. In light of our results, we re-examine recent conjectures in the context of

strongly NIP ordered fields.

§1. Introduction. Let Lr = {+,−, ·, 0, 1} be the language of rings and Lor =
Lr∪{<} the language of ordered rings. There is a vast collection of results giving
conditions on Lr-definability1 of henselian valuations in fields, many of which
are from recent years (cf. e.g. [2, 9, 10, 19, 11]). A survey on Lr-definability
of henselian valuations is given in [7]. In this paper, we undertake a systematic
study of definable henselian valuations in ordered fields, which enables us to
consider definability in the richer language Lor. It is natural to expect from
such a study to obtain strenghtenings of existing Lr-definability results. Ordered
fields have been considered valuation theoretically mainly with respect to convex
valuations. Note that due to [13, Lemma 2.1], henselian valuations in ordered
fields are always convex. A general method for the construction of non-trivial
Lor-definable convex valuations in ordered fields which are not dense in their real
closure is given in [12, Proposition 6.5]. By careful analysis of this method, we
obtain sufficient conditions on the residue field and the value group of a henselian
valuation v in order that v is Lor-definable. These conditions motivate the study
of the following two classes of structures: ordered abelian groups which are dense
in their divisible hull, and ordered fields which are dense in their real closure. As
it turns out, the former coincides with the elementary class of regular densely
ordered abelian groups. We study the latter systematically, both from a model
theoretic and an algebraic point of view.
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The structure of this paper is as follows. In Section 2 we gather some ba-
sic preliminaries on ordered and valued abelian groups and fields. In Section 3
we study the class of ordered abelian groups which are dense in their divisible
hull. We show that it coincides with the class of regular densely ordered abelian
groups (see Proposition 3.2) and give a recursive elementary axiomatisation (see
Corollary 3.3). Moreover, in Proposition 3.7 we obtain a characterisation of this
class in terms of Log-definability of convex subgroups (where Log = {+, 0, <} is
the language of ordered groups). Analogously, in Section 4 we study the class
of ordered fields which are dense in their real closure, first model theoretically
in Subsection 4.1. Our main result is Theorem 4.1, from which we deduce that
the property of an ordered field to be dense in its real closure is preserved under
elementary equivalence (see Corollary 4.3). In Subsection 4.2 we briefly review
the connections between dense and immediate extensions of ordered fields (see
Corollary 4.8) and complements to the valuation ring (see Fact 4.12). In Sub-
section 4.3 we relate normal integer parts of ordered fields to dense subfields
regular over Q (see Remark 4.14, Corollary 4.17). Finally, we obtain a char-
acterisation of density in real closure in terms of absolute transcendence bases
(see Corollary 4.18). In Section 5 we study Lor-definable henselian valuations
in ordered fields. In Subsection 5.1, we obtain our main result Theorem 5.3
and compare it to known conditions for Lr-definability of specific henselian valu-
ations. Special emphasis is put on definable valuations in almost real closed fields
in Subsection 5.2. In Section 6, we relate our Lor-definability results of henselian
valuations in ordered fields to open questions regarding strongly NIP ordered
fields.2 We conclude by motivating and collecting open questions inspired by
results throughout this paper in Section 7.

§2. Preliminaries on ordered abelian groups and valued fields. We
denote by N0 the set of natural numbers with 0 and by N the set of natural num-
bers without 0. All notions on valued fields and groups can be found in [17, 4].
Throughout this work, we abbreviate the Lr-structure of a field (K,+,−, ·, 0, 1)
by K, the Lor-structure of an ordered field (K,+,−, ·, 0, 1, <) by (K,<) and the
Log-structure of an ordered group (G,+, 0, <) by G.

Let G ⊆ H be an extension of ordered abelian groups. We say that G is
dense in H or that the extension G ⊆ H is dense if for any a, b ∈ H there is
c ∈ G such that a < c < b. If Z is a convex subgroup of G, then we say that
G is discretely ordered. Otherwise, G is densely ordered, i.e. G is dense
in itself. Throughout this paper, we denote the natural valuation on a given
ordered abelian group by v.3 The value set vG is ordered by v(g1) < v(g2) if
v(g1) 6= v(g2) and |g1| > |g2|. We say that an extension of ordered abelian groups
G ⊆ H is immediate if it is immediate with respect to the natural valuation.4

2A preliminary version of this work is contained in our arXiv preprint [14], which contains

also a systematic study of the class of strongly NIP almost real closed fields. This study, being

of independent interest, will be the subject of the separate publication [15].
3See [17, p. 9] for a definition of the natural valuation, noting that an ordered abelian group

is an ordered Z-module.
4See [17, p. 3] for a definition of an immediate extension.
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Let γ ∈ vG, and let Gγ and Gγ be the following convex subgroups of G:

Gγ = {g ∈ G | v(g) ≥ γ} and Gγ = {g ∈ G | v(g) > γ} .

The archimedean component B(G, γ) of G corresponding to γ is given by
B(G, γ) = Gγ/Gγ . If no confusion arises, we will only write Bγ instead of
B(G, γ). Note that Bγ is an ordered abelian group with the order induced by
G. A valuation w on G is convex if for any g1, g2 ∈ G with 0 < g1 ≤ g2, we
have w(g1) ≥ w(g2). Note that there is a one-to-one correspondence between
non-trivial convex subgroups of G and final segments of vG (cf. [17, p. 50 f.]).

We also consider G as a topological subspace of H under the order topology.
We say that G has a left-sided limit point g0 in H if for any g1 ∈ H with
g1 > 0 the intersection of (g0 − g1, g0) with G is non-empty. Similarly, g0 is a
right-sided limit point if for any g1 ∈ H>0 we have (g0, g0 + g1) ∩ G 6= ∅.
A limit point is a point which is a left-sided or a right-sided limit point. The
divisible hull of G is denoted by Gdiv. Note that G and Gdiv have the same
value set under v, i.e. vG = vGdiv. The closure of G in Gdiv with respect to
the order topology is denoted by cl(G). Note that G is dense in Gdiv if and only
if cl(G) = Gdiv. Note further that G has a limit point in Gdiv \G (i.e. there is
some a ∈ Gdiv \ G such that a is a limit point of G in Gdiv) if and only if G is
not closed in Gdiv.

For any ordered abelian groups G1 and G2, we denote the lexicographic
sum of G1 and G2 by G1 ⊕ G2. This is the abelian group G1 × G2 with
the lexicographic ordering (a, b) < (c, d) if a < c, or a = c and b < d. Let
(Γ, <) be an ordered set and for each γ ∈ Γ, let Aγ 6= {0} be an archimedean
ordered abelian group. For any element s in the product group

∏
γ∈ΓAγ , define

the support of s by supp(s) = {γ ∈ Γ | s(γ) 6= 0}. The Hahn product
Hγ∈ΓAγ is the subgroup of

∏
γ∈ΓAγ consisting of all elements with well-ordered

support. Moreover, Hγ∈ΓAγ becomes an ordered group under the order re-
lation s > 0 :⇔ s(min supp(s)) > 0. We express elements s of Hγ∈ΓAγ by
s =

∑
γ∈Γ sγ1γ , where sγ = s(γ) and 1γ is the characteristic function of γ map-

ping γ to 1 and everything else to 0. The Hahn sum
∐
γ∈ΓAγ is the ordered

subgroup of Hγ∈ΓAγ consisting of all elements with finite support.

Let K be a field and v a valuation on K. We denote the valuation ring
of v in K by Ov, the valuation ideal, i.e. the maximal ideal of Ov, by Mv,
the ordered value group by vK and the residue field Ov/Mv by Kv. For
a ∈ Ov we also denote a+Mv by a. For an ordered field (K,<), a valuation is
called convex (in (K,<)) if the valuation ring Ov is a convex subset of K. In
this case, the relation a < b :⇔ a 6= b ∧ a < b defines an order relation on Kv
making it an ordered field.

Let Lvf = Lr ∪ {Ov} be the language of valued fields, where Ov stands
for a unary predicate. Let (K,Ov) be a valued field. An atomic formula of the
form v(t1) ≥ v(t2), where t1 and t2 are Lr-terms, stands for the Lvf -formula
t1 = t2 = 0 ∨ (t2 6= 0 ∧ Ov(t1/t2)). Thus, by abuse of notation, we also denote
the Lvf -structure (K,Ov) by (K, v). Similarly, we also call (K,<, v) an ordered
valued field. We say that a valuation v is L-definable for some language L ∈
{Lr,Lor} if its valuation ring is an L-definable subset of K.
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Let K be a field and v, w be valuations on K. We write v ≤ w if and only if
Ov ⊇ Ow. In this case we say that w is finer than v and v is coarser than
v. If Ov ) Ow, we write v < w and say that w is strictly finer than v and
that v is strictly coarser than w. Note that ≤ defines an order relation on
the set of convex valuations of an ordered field. We call two elements a, b ∈ K
archimedean equivalent (in symbols a ∼ b) if there is some n ∈ N such that
|a| < n|b| and |b| < n|a|. Let G = {[a] | a ∈ K×} the set of archimedean
equivalence classes of K×. Equipped with addition [a] + [b] = [ab] and the
ordering [a] < [b] :⇔ a 6∼ b ∧ |b| < |a|, the set G becomes an ordered abelian
group. Then v : K× → G defines a convex valuation on K. This is called the
natural valuation on K, denoted by vnat. If not further specified, we say that
an extension of ordered fields (K,<) ⊆ (L,<) is immediate if it is immediate5

with respect to the natural valuation. The extension is dense if K is dense in
L.

Let (k,<) be an ordered field and G an ordered abelian group. We denote
the ordered Hahn field with coefficients in k and exponents in G by k((G)).
We denote an element s ∈ k((G)) by s =

∑
g∈G sgt

g, where sg = s(g) and
tg is the characteristic function on G mapping g to 1 and everything else to
0. The ordering on k((G)) is given by s > 0 :⇔ s(min supps) > 0, where
supps = {g ∈ G | s(g) 6= 0} is the support of s. Let vmin be the valuation on
k((G)) given by vmin(s) = min supps for s 6= 0. Note that vmin is convex and
henselian. Note further that if k is archimedean, then vmin coincides with vnat.

We will repeatedly use the Ax–Kochen–Ershov principle for ordered fields (cf.
[6, Corollary 4.2(iii)]).

Fact 2.1 (Ax–Kochen–Ershov Principle). Let (K,<, v) and (L,<,w) be two
ordered henselian valued fields. Then (Kv,<) ≡ (Lw,<) and vK ≡ wL if and
only if (K,<, v) ≡ (L,<,w).

§3. Regular densely ordered abelian groups. In this section, we study
the class of ordered abelian groups which are dense in their divisible hull. In
the light of ordered fields dense in their real closure and definable henselian
valuations, this class is of interest for the following reasons:

• The divisible hull Gdiv of a non-trivial ordered abelian group G is the smal-
lest extension of G which is a model of the theory of divisible ordered abelian
groups Tdoag. The real closure (Krc, <) of an ordered field (K,<) is the smal-
lest extension of (K,<) which is a model of the theory of real closed fields Trcf .
Thus, the divisible hull of an ordered abelian group can be seen as the group
analogue to the real closure of an ordered field. Moreover, both Tdoag and Trcf

share several model theoretic properties such as completeness, o-minimality and
quantifier elimination. We are therefore interested in exploring algebraic and
model theoretic similarities and differences between these two classes of ordered
structures.
• The property of an ordered abelian group to be dense in its divisible hull

can also be considered as a topological characteristic with respect to the order
topology. To this end, for an ordered henselian valued field (K,<, v), topological

5For the definition of an immediate extension of valued fields, see [17, p. 27]
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conditions on vK as a subspace of vKdiv naturally arise in the context of the
definability of v (see Theorem 5.3 and Corollary 5.7).

Throughout this section, we will prove properties of ordered abelian groups
dense in their divisible hull and point out the analogues for ordered fields in
Section 4.

Our first result, Proposition 3.2, shows that the class of ordered abelian groups
which are dense in their divisible hull coincides with the well-known class of
regular densely ordered abelian groups. Regular ordered abelian groups have
been studied model theoretically in [20] and algebraically in [23]. An ordered
abelian group is regular if it satisfies one of the equivalent conditions in Fact 3.1
(cf. [9, p. 14], [7, p. 137] and [2, p. 1148]).

Fact 3.1. Let G be an ordered abelian group. Then the following are equival-
ent:

1. For any prime p ∈ N and for any infinite convex subset A ⊆ G, there is a
p-divisible element in A.

2. For any n ∈ N and any a, b ∈ G, if there are g1, . . . , gn ∈ G with a ≤ g1 <
. . . < gn ≤ b, then there is some c ∈ G with a ≤ nc ≤ b.

3. For any non-trivial convex subgroup H ⊆ G, the quotient group G/H is
divisible.

Proposition 3.2. Let G be an ordered abelian group. Then G is regular and
densely ordered if and only if G is dense in Gdiv.

Proof. Since for divisible ordered abelian groups the conclusion in trivial, we
assume that G is non-divisible. Suppose that G is regular and densely ordered.
Let a, b ∈ G and n ∈ N such that a

n <
b
n . Since G is densely ordered, there are

g1, . . . , gn ∈ G with a ≤ g1 < . . . < gn ≤ b. By Fact 3.1 (2), there is some c ∈ G
with a ≤ nc ≤ b. Hence, a

n < c < b
n , as required.

Conversely, suppose that G is dense in Gdiv. Then G is densely ordered as
Gdiv is densely ordered. Let p ∈ N be prime, A ⊆ G an infinite convex subset
of G and a, b ∈ A with a < b. Then there is some g ∈ G with a

p < g < b
p

and thus a < pg < b. Hence, A contains a p-divisible element, as required by
Fact 3.1 (1). a

Proposition 3.2 enables us to apply known results on regular densely ordered
abelian groups to ordered abelian groups which are dense in their divisible hull.

Corollary 3.3. There is a recursive Log-theory Σ which axiomatises the
class of non-trivial ordered abelian groups which are dense in their divisible hull.

Proof. Let Σ be the Log-theory consisting of the axioms for non-trivial
densely ordered abelian groups plus the collection of the following sentences
(one for each n ∈ N):

∀a, b (∃g1, . . . , gn a ≤ g1 < . . . < gn ≤ b→ ∃c a ≤ nc ≤ b).

By Fact 3.1 (2), Σ axiomatises the class of non-trivial regular densely ordered
abelian groups, and thus also the class of non-trivial ordered abelian groups
which are dense in their divisible hull by Proposition 3.2. a
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In Corollary 4.5 we will see the analogue of Corollary 3.3 for the class of ordered
fields which are dense in their real closure. We deduce further properties of
ordered abelian groups which are dense in their divisible hull from the following
fact, which is due to [20] and [23].

Fact 3.4. Let G be an ordered abelian group. Then the following hold:

1. G is regular if and only if it has an archimedean model (i.e. there is some
archimedean ordered abelian group H such that H ≡ G).

2. G is regular and discretely ordered if and only if it is a Z-group (i.e. G ≡ Z
as ordered groups).

Corollary 3.5. Let G be an ordered abelian group. Then G is dense in Gdiv

if and only if G has a densely ordered archimedean model.

Proof. Both directions follow immediately from Proposition 3.2 and
Fact 3.4 (1). a

We will see in Corollary 4.4 that the analogue of the backward direction of
Corollary 3.5 also holds for ordered fields, i.e. that any ordered field which has
an archimedean model is dense in its real closure. However, the analogue of the
forward direction of Corollary 3.5 does not hold for ordered fields, as there is
an ordered field which is dense in its real closure but has no archimedean model
(see Proposition 4.6).

In Section 5, we address the question what convex valuations are Lor-definable
in ordered fields. In analogy to Construction 5.2, we will show in Proposition 3.7
that for any densely ordered abelian group which is not dense in its divisible hull,
there exists a proper non-trivial convex Log-definable subgroup. The following
lemma is a useful characterisation of densely ordered abelian groups and will be
applied several times.

Lemma 3.6. Let G be an ordered abelian group. Then the following are equi-
valent:

1. G is densely ordered.
2. 0 is a limit point of G in G.
3. 0 is a limit point of G in Gdiv.
4. Either vG has no last element, or vG has a last element γ and Bγ is densely

ordered.

Proof. We may assume that G 6= {0}, as in the case G = {0} the equiva-
lences are clear. The equivalence of (1) and (2) is an easy consequence of the
definition of a dense order on an abelian group.

Obviously, (3) implies (2). For the converse, suppose that (1) holds. Let

g ∈ G \ {0} and N ∈ N. We need to find c ∈ G with 0 < c < |g|
N . Since G is

densely ordered, there are c1, . . . , cN ∈ G such that 0 < c1 < . . . < cN < |g|.
Let c = min {ci+1 − ci | i ∈ {0, . . . , N}}, where we set c0 = 0 and cN = |g|. We

obtain 0 < c < 2c < . . . < Nc < |g| and thus 0 < c < |g|
N , as required.

It remains to show that (1) and (4) are equivalent. Suppose that vG has a
last element γ and Bγ is not densely ordered. By (2) applied to Bγ , there is
some g ∈ G with g > 0 and v(g) = γ such that there is no element in Bγ strictly
between 0+Gγ and g+Gγ . Let h ∈ G such that 0 < h ≤ g. Then v(h) ≥ v(g) =



ORDERED FIELDS DENSE IN THEIR REAL CLOSURE 7

γ. By maximality of γ, we have v(h) = γ. Thus, 0 + Gγ < h + Gγ ≤ g + Gγ .
This implies h+Gγ = g +Gγ , i.e. v(g − h) > γ. Again, by maximality of γ, we
obtain g = h. Hence, there is no element in G stricly between 0 and g, showing
that G is not densely ordered. This shows that (1) implies (4). For the converse,
suppose that (4) holds. We will show that 0 is a limit point of G in G. Let g ∈ G
with g > 0. If v(g) is not maximal, then let h ∈ G with h > 0 and v(h) > v(g).
Then 0 < h < g, as required. Otherwise, γ = v(g) is the maximum of vG, and
by assumption, Bγ is densely ordered. Thus, there is some h ∈ G with v(h) = γ
such that 0 +Gγ < h+Gγ < g +Gγ , whence 0 < h < g. a

Proposition 3.7. Let G be a densely ordered abelian group. Then exactly
one of the following holds:

1. G is dense in Gdiv.
2. G has a proper non-trivial Log-definable convex subgroup.

Moreover, if G is not dense in Gdiv, then the proper non-trivial Log-definable
convex subgroup of G can be defined by an Log-formula using one parameter.

Proof. First assume that G is not dense in Gdiv. In the following, we will
construct a proper non-trivial convex subgroup of G.

Note that by Corollary 3.5, G is non-archimedean. Thus, vG has more than
one element. Let g0 ∈ Gdiv \ cl(G) with g0 > 0. If γ = v(g0) is the maximum
of vG, then let h ∈ G with v(h) < γ. Note that v(g0 + h) = v(h) < γ and that
g0 + h is not a limit point of G in Gdiv, as g0 is not a limit point of G in Gdiv.
Hence, g0 + h ∈ Gdiv \ cl(G). Hence, by replacing g0 by g0 + h if necessary, we
may assume that v(g0) is not the maximum of vG.

Let g1 ∈ G with g1 > 0 and N ∈ N such that g0 = g1
N . Consider the set

D =
{
g ∈ G≥0 | g < g0

}
=
{
g ∈ G≥0 | Ng < g1

}
.

This set is Log-definable with the parameter g1. Let

A =
{
g ∈ G≥0 | g +D ⊆ D

}
.

Again, A is Log-definable with the parameter g1. Note that A is convex. Obvi-
ously, A 6= G≥0, as for any g ∈ D and h ∈ G≥0 with h > g0−g we have g+h > g0

and thus h /∈ A. Assume that A = 0. Then for any g ∈ G>0, let g′ ∈ G≥0 with
g′ < g0 and g + g′ > g0 and set cg = g + g′. Then g0 < cg < g0 + g. Since by
Lemma 3.6 (3), 0 is a limit point of G in Gdiv, for any h ∈ Gdiv with h > 0, there
exists some g ∈ G such that 0 < g < h. Thus, g0 < cg < g0 + g < g0 + h. This
shows that g0 is a limit point of G in Gdiv, contradicting the choice of g0 /∈ cl(G).
Hence, A 6= 0.

Now for any a, b ∈ A with 0 < a < b, we have (a+b)+D ⊆ a+D ⊆ D, whence
a + b ∈ A. Moreover, 0 < b − a < b and −b < a − b < 0. Thus, by convexity,
b − a ∈ A and a − b ∈ −A. Similarly, for any a, b ∈ −A with a < b < 0, we
have a ± b ∈ −A and b − a ∈ A. This shows that H = −A ∪ A is closed under
addition and thus a Log-definable convex subgroup of G. Since 0 6= A 6= G≥0,
we also have that H is a proper non-trivial subgroup of G.

Assume for the converse that G is dense in Gdiv. By Proposition 3.2, G
is regular. Thus, by Fact 3.4 (1) G has an archimedean model G′, say. Let
ϕ(x, y) be an Log-formula and let ψ be the Log-sentence stating that for any y,



8 L. S. KRAPP, S. KUHLMANN, AND G. LEHÉRICY

if ϕ(x, y) defines a proper convex subgroup, then it is the trivial one. Since G′

is archimedean, its only convex subgroups are {0} and G′. Thus, ψ holds in G′.
By elementary equivalence, ψ also holds in G. Hence, for any b ∈ G, the formula
ϕ(x, b) does not define a proper non-trivial convex subgroup of G. a

Remark 3.8. Note that a divisible ordered abelian group G never admits a
proper non-trivial Log-definable convex subgroup. Indeed, since G is o-minimal,
any Log-definable convex subset of G is an interval with endpoints in G∪{±∞},
and thus the only Log-definable convex subgroups of G are {0} and G.

Next we want to study the extension of ordered abelian groups G ⊆ Gdiv

valuation theoretically. It is known that any dense extension of ordered fields is
immediate (cf. [17, p. 29 f.]). We will investigate when this is also the case for
dense extensions of ordered abelian groups. Note that for any γ ∈ vG, we have

B(γ,Gdiv) = B(γ,G)
div

. Hence, the extension G ⊆ Gdiv is immediate if and
only if all archimedean components of G are divisible.

Proposition 3.9. Let G ⊆ H be a dense extension of ordered abelian groups.
Suppose that vG has no last element. Then the extension G ⊆ H is immediate.

Proof. In order to show that G ⊆ H is immediate, we need to show that for
any a ∈ H there exists b ∈ G such that v(a− b) > v(a). Note that the density of
G in H implies vG = vH. Let a ∈ H with a > 0. Since vG has no last element,
there is some c ∈ G>0 such that v(c) > v(a). By density of G in H, there is
some b ∈ G such that a − c < b < a + c. We obtain v(a − b) ≥ v(c) > v(a), as
required. a

Corollary 3.10. Let G ⊆ Gdiv be a dense extension of ordered abelian groups
such that vG has no last element. Then the extension G ⊆ Gdiv is immediate.

Proof. Apply Proposition 3.9 to H = Gdiv. a
Corollary 3.10 does not hold in general in the case where vG has a last element,

as the following example will show.

Example 3.11. Let A =
{
a

2n

∣∣ a, n ∈ Z
}

. Note that A is dense in Adiv = Q.

For G = Q ⊕ A we have Gdiv = Q ⊕ Q. Moreover, G is dense in Gdiv, as A
is dense in Q. However, the extension is not immediate, as the archimedean
components do not coincide.

We will now consider the converse direction, that is, under what conditions an
immediate extension of ordered abelian groups is dense.

Lemma 3.12. Let G,A1, A2, . . . be ordered abelian groups such that G ⊆ H =
Hn∈ωAn is immediate. Let a ∈ Hn∈ωAn. Then there exists a sequence (dn)n∈ω
in G such that for any k ∈ ω and any i ≤ k we have (d0 + . . .+ dk)(i) = a(i).

Proof. Since G ⊆ H is immediate, there is some d0 ∈ G such that v(a−d0) >
v(a). Then d0(0) = a0. Suppose that d0, . . . , dk ∈ G are already constructed
such that d′ = d0 + . . .+dk satisfies d′(i) = a(i) for i ≤ k. Again, since G ⊆ H is
immediate, there is some dk+1 ∈ G such that v((a−d′)−dk+1) > v(a−d′) ≥ k+1.
Thus, dk+1(i) = (a − d′)(i) = 0 for i ≤ k and dk+1(k + 1) = (a − d′)(k + 1).
We obtain (d0 + . . . + dk+1)(i) = a(i) for i ≤ k and (d0 + . . . + dk+1)(k + 1) =
(d′ + dk+1)(k + 1) = a(k + 1), as required. a
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Proposition 3.13. Let G ⊆ H be an immediate extension of ordered abelian
groups such that H is densely ordered and vH ⊆ ω. Then G is dense in H.

Proof. Let Γ = vH. By the Hahn Embedding Theorem (cf. [17, p. 14]),
we may consider H as a subgroup of the Hahn product Hn∈ωBn, where we set
Bn = {0} for n /∈ Γ. Note that H ⊆ Hn∈ωBn is an immediate extension. Let
a, b ∈ H with 0 < a < b. By Lemma 3.12, there exists a sequence (dn)n∈ω in G
such that for any k ∈ ω and any i ≤ k we have (d0 + . . .+dk)(i) = a(i). Suppose
that k is the last element of vG. Then by Lemma 3.6 (4), Bk is densely ordered.
Let c ∈ G with v(c) = k and a(k) < c(k) < b(k). Then d′ = d1+. . .+dk−1+c ∈ G
and a < d′ < b, as required. Now suppose that vG has no last element. Then let
c ∈ G with v(c) = m > k and c(m) > a(m). Then d′ = d1 + . . .+ dm−1 + c ∈ G
and a < d′ < b, as required. a

Corollary 3.14. Let G be an ordered abelian group. Suppose that the exten-
sion G ⊆ Gdiv is immediate and that vG ⊆ ω. Then G is dense in Gdiv.

Proof. Apply Proposition 3.13 to H = Gdiv. a
Note that withouth the condition vG ⊆ ω in Corollary 3.14, the conclusion

that G is dense in Gdiv does not hold in general, as the following example will
show.

Example 3.15. Let H be the Hahn product Hγ∈ω+1Q. Let H ′ be the Hahn
sum H ′ =

∐
γ∈ω+1 Q ⊆ H. Note that H ′ ⊆ H is an immediate extension

(cf. [17, p. 3]). It follows that for any ordered abelian groups G1 and G2 with
H ′ ⊆ G1 ⊆ G2 ⊆ H, also the extension G1 ⊆ G2 is immediate.

Let G ⊆ H be given by

G = H ′ + aZ, where a =
∑
γ∈ω

1γ .

Now Gdiv = H ′ + aQ ⊆ H, and the extension G ⊆ Gdiv is immediate. Let
c = 1

2a + 1
31ω and d = 1

2a + 2
31ω. Then c, d ∈ Gdiv with 0 < c < d. However,

there is no element in G strictly between c and d. Thus G is not dense in Gdiv.

Remark 3.16. By Corollary 3.10 and Corollary 3.14, we obtain the following:
Let G be an ordered abelian group and vG ∼= ω. Then the extension G ⊆ Gdiv

is dense if and only if it is immediate.

The final results of this section are on ordered abelian groups which are not
dense in their divisible hull. These will be used in Subsection 5.2 to compare
Lr- and Lor-definability of henselian valuations with real closed residue field in
almost real closed fields. We start by giving some useful examples of ordered
abelian groups which are not regular and thus not dense in their divisible hull.

Example 3.17. 1. Z⊕ Z is a discretely ordered group which is not regular.
2. Let A be as in Example 3.11. Consider G = A ⊕ A. Since A is densely

ordered, so is G by Lemma 3.6. Since there is no element in G between
(

1
3 , 0
)

and
(

1
3 , 1
)
, which both lie in Gdiv = Q⊕Q, it follows that G is not dense in Gdiv

and thus not regular. However, G has limit points in Gdiv \G, e.g.
(
0, 1

3

)
.
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Example 3.17 (2) shows that it is possible for an ordered abelian group to have
limit points in its divisible hull but not to be dense in it. We can go even further
and construct a non-divisible densely ordered abelian group G which does not
have any limit points in Gdiv \ G; or, in other words, G is closed in Gdiv. We
conclude this section by proving results on non-divisible densely ordered abelian
groups which are closed in their divisible hull. A natural example of these are
non-divisible Hahn products.

Proposition 3.18. Let Γ 6= ∅ be a totally ordered set without a last element,
and for any γ ∈ Γ, let Aγ 6= {0} be an archimedean ordered abelian group.
Suppose that G = Hγ∈ΓAγ is non-divisible. Then G is closed in Gdiv.

Proof. Let s ∈ Gdiv \ G, and let γ0 ∈ Γ with γ0 > min{γ ∈ Γ | sγ /∈ Aγ}.
Such γ0 exists, as Γ has no last element. Then the interval (s − 1γ0 , s + 1γ0)
does not contain any element of G. Hence, s is not a limit point of G. a

Proposition 3.18 shows in particular that any non-divisible Hahn product
whose value set has no last element is not dense in its divisible hull. Thus, by
Fact 3.4 (1), any such Hahn product has no archimedean model. A similar result
holds for ordered Hahn fields which are not real closed (see Corollary 4.10). The
final results of this section will give sufficient conditions for an ordered abelian
group to be closed in its divisible hull.

Proposition 3.19. Let G be an ordered abelian group. Suppose that for every
prime p ∈ N, there is a p-divisible convex subgroup Gp 6= {0} of G. Then G is
closed in Gdiv.

Proof. If G is divisible, then the conclusion is trivial. Otherwise, let a ∈ G
and N ∈ N such that a

N ∈ G
div \G. Let N = p1 . . . pm be the prime factorisation

of N . Consider the non-trivial N -divisible convex subgroup H =
⋂m
i=1Gpi . Let

h ∈ H with h > 0. Consider the interval I =
(
a
N − h,

a
N + h

)
in Gdiv. Assume

that I ∩G 6= ∅. Then for any g ∈ I ∩G we have v(Ng − a) = v
(
g − a

N

)
≥ v(h)

and thus Ng − a ∈ H. Since H is N -divisible, we obtain g − a
N ∈ H and thus

a
N ∈ G, a contradiction. This gives us I ∩G = ∅, as required. a

Corollary 3.20. Let G be an ordered abelian group. Suppose that G has a
convex divisible subgroup H 6= {0}. Then G is closed in Gdiv.

Proof. For any prime p, let Gp = H. The conclusion follows from Proposi-
tion 3.19. a

The following example will show that the converse of Proposition 3.19 does
not hold.

Example 3.21. Let 2 = p0 < p1 < p2 < . . . be a complete list of all prime
numbers. For n ∈ N, let An be the following ordered abelian group

An =

{
a

pm1
1 . . . pmn

n

∣∣∣∣ a,m1, . . . ,mn ∈ Z
}
.

Then An is pi-divisible for i = 1, . . . , n. Let G = Hn∈NAn. Note that Gdiv =
Hn∈NQ. Since An is not 2-divisible for any n ∈ N, there is no non-trivial 2-
divisble convex subgroup of G. In particular G is not divisible and thus closed
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in Gdiv by By Proposition 3.18. Moreover, for any prime pi 6= 2, the maximal
pi-divisible subgroup of G is Hn∈N≥i

An.

§4. Density in Real Closure. We now turn to ordered fields which are
dense in their real closure.

4.1. Model theoretic properties. In this subsection, we study model the-
oretically the class of ordered fields which are dense in their real closure. At first,
we change to a more general setting of complete theories which admit quanti-
fier elimination. Since Tdoag is an example of such a theory, we can consider
these model theoretic results as a generalisation of some results in Section 3. We
then also apply these generalisations to Trcf to obtain properties of ordered fields
dense in their real closure analogous to the ones in Section 3 of ordered abelian
groups dense in their divisible hull. For a structure M and a subset A ⊆ M ,
denote the definable closure of A in M by dcl(A;M).

Theorem 4.1. Let L be a language expanding Log, let T ⊇ Tdoag be a complete
L-theory which admits quantifier elimination and let Σ ⊆ T be a theory extending
the theory of ordered abelian groups. Then there is a theory Σ′ ⊇ Σ such that for
any M′ |= T and any M⊆M′ with dcl(M ;M′) = M ′ we have that M |= Σ′ if
and only if M |= Σ and M is dense in M ′. Moreover, if Σ and T are recursive,
then we can also choose Σ′ to be recursive.

Proof. For any 0-definable function f in T , let ϕf (x, z) be a quantifier-free
formula which is equivalent to z < f(x) in T . Let A be the set of all pairs (f, g)
of 0-definable functions in T with the same arity such that T |= ∀x (f(x) =
g(x) → x = 0). In other words, A consists of all pairs of 0-definable functions
which are distinct everywhere except possibly in 0. Set

Σ′ = Σ ∪ {∀x (x 6= 0→ ¬∀z (ϕf (x, z)↔ ϕg(x, z))) | (f, g) ∈ A} .
Note that if Σ and T are recursive, then so is Σ′, as it is decidable whether a
given L-formula defines a function.

LetM′ |= T and letM⊆M′ with dcl(M ;M′) = M ′. Suppose thatM |= Σ′.
We need to show that M is dense in M ′. Let α, β ∈ M ′ such that α 6= β.
Let f and g be 0-definable functions and let a ∈ M such that f(a) = α and
g(a) = β. Since also dcl(M \ {0} ;M′) = M ′, we may assume that a 6= 0.
Hence, M |= ¬∀z (ϕf (a, z) ↔ ϕg(a, z)). This implies that for some b ∈ M
we have M |= ϕf (a, b) ∧ ¬ϕg(a, b) or M |= ¬ϕf (a, b) ∧ ϕg(a, b). Since ϕf
and ϕg are quantifier-free, we obtain that either M′ |= ϕf (a, b) ∧ ¬ϕg(a, b)
or M′ |= ¬ϕf (a, b) ∧ ϕg(a, b). Hence, either α = f(a) ≤ b < g(a) = β or
β = g(a) ≤ b < f(a) = α. This implies that M is dense in M ′. Conversely,
suppose that M |= Σ and M is dense in M ′. Let (f, g) ∈ A and a ∈ M with
a 6= 0. We need to show that M |= ¬∀z (ϕf (a, z) ↔ ϕg(a, z)). Let α = f(a)
and β = g(a). By assumption on A, we have α 6= β, say α < β. Since M is
dense in M ′, there is c ∈ M such that α < c < β. Hence, M′ |= ¬ϕf (a, c) but
M′ |= ϕg(a, c). Since ϕf and ϕg are quantifier-free, we obtain M |= ¬ϕf (a, c)
and M |= ϕg(a, c), as required. a

Corollary 4.2. Let L be a language expanding Log and let M = (M,+, 0, <
, . . . ) and N = (N,+, 0, <, . . . ) be ordered L-structures such that (M,+, 0, <)
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is a non-trivial ordered abelian group and M ≡ N . Suppose that there exists a
complete L-theory T ⊇ Tdoag admitting quantifier elimination such that there are
M′,N ′ |= T with M ⊆M′, N ⊆ N ′, dcl(M ;M′) = M ′ and dcl(N ;N ′) = N ′.
Suppose further that M is dense M ′. Then N is also dense in N ′.

Proof. By applying Theorem 4.1 to Σ = Th(M), we obtain a theory Σ′ such
that M |= Σ′. Moreover, since M ≡ N , we obtain N |= Σ′. Hence, N is dense
in N ′.

a
We now apply the results above to the o-minimal complete theory of real closed

fields Trcf .

Corollary 4.3. Let (K,<) and (L,<) be ordered fields such that (K,<) ≡
(L,<). Suppose that K is dense in Krc. Then L is dense in Lrc.

Proof. Note that due to o-minimality of Trcf , for any ordered field (K,<),
the definable closure of K in Krc is Krc. Thus, the proof follows directly from
Corollary 4.2 applied to T = Trcf . a

Let (K,<) be an archimedean ordered field. Then Q ⊆ K ⊆ Krc ⊆ R. Since
Q is dense in R, also K is dense in Krc. In other words, any archimedean ordered
field is dense in its real closure. We thus obtain the following.

Corollary 4.4. Let (K,<) be an ordered field which has an archimedean
model. Then K is dense in Krc.

Proof. Since any archimedean ordered field is dense in its real closure, we
obtain from Corollary 4.3 that K is dense in Krc. a

The next result shows that the class of ordered fields which are dense in their
real closure can be recursively axiomatised

Corollary 4.5. There is a recursive Lor-theory Σ′ which axiomatises the
class of ordered fields which are dense in their real closure.

Proof. We apply Theorem 4.1 to the recursive Lor-theory T = Trcf and the
axiom system Σ for ordered fields in order to obtain a recursive Lor-theory Σ′

with the required properties. a
By Corollary 4.4, any ordered field with an archimedean model is dense in

its real closure. We will use Corollary 4.5 to show that the converse does not
hold, i.e. that there exists an ordered field which is dense in its real closure but
has no archimedean model. Let (K,<) be an ordered field. An integer part
of K is a discretely ordered subring (Z,<) ⊆ (K,<) with 1 as least positive
element such that for any x ∈ K there exists z ∈ Z with z ≤ x < z + 1. The
connections between integer parts and density in real closure are further explored
in Subsection 4.3.

Proposition 4.6. There is an ordered field (K,<) such that K is dense in
Krc but (K,<) has no archimedean model.

Proof. Let ϕ(x) be an Lor-formula defining Z in (Q, <) (cf. [21, The-
orem 3.1]). Let Σ1 be the Lor-theory Σ′ from Corollary 4.5 and let Σ2 be a set of
axioms stating that ϕ(x) defines an integer part. For any Lor-formula α, let α̃ be
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the formula in which all quantifiers ∃x and ∀x are bounded by ϕ(x), that is, all
instances of subformulas of the form ∃xθ(x, y) are replaced by ∃x(ϕ(x)∧ θ(x, y))
and all instances of subformulas of the form ∀xθ(x, y) are replaced by ∀x(ϕ(x)→
θ(x, y)). Let Σ be the deductive closure of Σ1∪Σ2. Note that Σ is recursive and
(Q, <) |= Σ. If for every Lor-sentence α ∈ Th(Z,+,−, ·, 0, 1, <), we had Σ ` α̃,
then Th(Z,+,−, ·, 0, 1, <) would be decidable. Hence, there is an Lor-sentence

σ such that ¬σ ∈ Th(Z,+,−, ·, 0, 1, <) and σ̃,¬σ̃ /∈ Σ. Let Σ̃ be the consistent

Lor-theory Σ ∪ {σ̃} and let (K,<) |= Σ̃. Assume that (K,<) is archimedean.
Since (K,<) |= Σ2, the formula ϕ(x) defines the integer part Z of K. But then
(K,<) |= ¬σ̃, a contradiction. Hence, (K,<) cannot have any archimedean
models. However, since (K,<) |= Σ1, we have that K is dense in Krc. a

4.2. Dense and immediate extensions. We now analyse algebraic proper-
ties of ordered fields which are dense in their real closure. As pointed out above,
there is an intimate connection between integer parts and dense extensions of
ordered fields. This connection is explored in [1] and will further be addressed
here. Throughout this section, we denote the natural valuation vnat simply by
v.

We start by investigating the connection between dense and immediate exten-
sions of ordered fields. Let (K,<) ⊆ (L,<) be an extension of ordered fields and
let w be a convex valuation on L. We say that K is w-dense in L if for any
a ∈ L and any α ∈ wL, there exists b ∈ K such that w(a− b) > α.

Proposition 4.7. Let (K,<) ⊆ (L,<) be an extension of ordered fields and
let w be a convex valuation on L. Then K is w-dense in L if and only if K is
dense in L.

Proof. Suppose that K is w-dense in L. Let a, b ∈ L with 0 < a < b. Let
α = max{w(a), w(b), w(b − a)} and let c1, c2 ∈ K such that w(c1 − a) > α and
w(c2 − b) > α. Set c = c2−c1

2 . Then w
(
b−a

2 − c
)

= w((b − a) − (c2 − c1)) =

w((c1 − a) − (c2 − b)) > α and w
(
b− b−a

2

)
= w

(
b−a

2 − a
)
≤ α. Hence, either

a ≤ c ≤ b−a
2 < b or a < b−a

2 ≤ c ≤ b.
Conversely, suppose that K is dense in L. Let a ∈ L and α ∈ wL. Let b ∈ L>0

with w(b) > α. By density of K in L, there exists c ∈ K with a < c < a + b.
Thus, w(c− a) ≥ w(b) > α. a

By [17, Lemma 1.31], any w-dense extension of ordered fields is also immediate
with respect to w. We thus obtain the following corollary to Proposition 4.7.

Corollary 4.8. Let (K,<) ⊆ (L,<) be a dense extension of ordered fields.
Then this extension is immediate with respect to any convex valuation on L.

Corollary 4.8 can be applied to ordered Hahn fields as follows: Let (k,<) be
an ordered field and G 6= {0} an ordered abelian group. Suppose that k((G)) is
dense in k((G))

rc
. By Corollary 4.8, k((G)) ⊆ k((G))

rc
is an immediate extension

with respect to the valuation vmin. Hence, k = krc and G = Gdiv. This implies
that k((G)) is real closed. Hence, if k((G)) is not real closed, then it is not dense
in its real closure. This can be strengthened with the following proposition.

Proposition 4.9. Let (k,<) be an ordered field and G 6= {0} an ordered
abelian group. Then k((G)) is closed in k((G))

rc
.



14 L. S. KRAPP, S. KUHLMANN, AND G. LEHÉRICY

Proof. Let K = k((G)) and R = Krc. We need to show that R \K is open
in R. If K = R, then R \K = ∅. Hence, assume that K ( R. Let atg0 be the
monomial of s of least exponent which is not contained in K, and let g1 ∈ G>g0
be arbitrary. Then the open interval

I = (s− tg1 , s+ tg1) ⊆ R
contains s. However, any element in I contains the monomial atg0 and is thus
not contained in K. Hence, s is contained in an open neighbourhood in R \K,
as required. a

Corollary 4.10. Let (k,<) be an ordered field and let G 6= {0} be an ordered
abelian group. Suppose that k((G)) is not real closed. Then (k((G)) , <) has no
archimedean model.

Proof. By Proposition 4.9, k((G)) is not dense in k((G))
rc

. Thus, by Corol-
lary 4.4 (k((G)) , <) has no archimedean model. a

We obtain the following result regarding the existence of henselian valuations
in ordered fields which are dense in their real closure.

Corollary 4.11. Let (K,<) be an ordered field which is not real closed but
dense in Krc. Then K does not admit a non-trivial henselian valuation.

Proof. If K is archimedean, then the only possible henselian valuation on K
is the trivial one. If K is non-archimedean, let w be a henselian valuation on K.
By Fact 2.1, we have (K,<) ≡ (Kw((wK)) , <). By Corollary 4.3, Kw((wK)) is
dense in Kw((wK))

rc
. By Proposition 4.9, this is only possible if wK = {0}, i.e.

w is the trivial valuation. a
We now focus on immediate extension with respect to the natural valuation v.

For an ordered field K, let AK be a group complement to Ov in K, i.e. AK is
an ordered subgroup of K such that K = AK ⊕Ov. Note that for an extension
of ordered field (K,<) ⊆ (L,<), the group complement AK can be extended to
a group completement AL. The following is a useful characterisation of dense
extensions of ordered field (cf. [17, Lemma 1.32]).

Fact 4.12. Let (K,<) ⊆ (L,<) be an extension of ordered fields. Then K is
dense in L if and only if AK = AL.

Whenever the extension of ordered fields (K,<) ⊆ (Krc, <) is dense and thus
immediate, then Kv is real closed and vK is divisible. The converse holds under
the additional assumption that vK is archimedean (cf. [16, Lemma 19]).

Fact 4.13. Let (K,<) be an ordered field such that Kv is real closed and vK
is divisible and archimedean. Then K is dense in Krc.

[1, Remark 3.5] provides an example of an ordered field field (K,<) such that
Kv is real closed and vK can be chosen to be divisible and non-archimedean
(i.e. K ⊆ Krc is immediate) but AK 6= AKrc , whence K is not dense in Krc.

4.3. Normal integer parts. We now turn to normal integer parts in con-
nection to ordered fields dense in their real closure. Due to [18], every real
closed field admits an integer part. In [1, Remark 3.3 (iii)] the question is asked
whether every real closed fields admits a normal integer part, i.e. an integer
part Z which is integrally closed in its field of fractions ff(Z).
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Remark 4.14. For an ordered field (K,<), if Z is an integer part of K, then
ff(Z) is dense in K. Moreover, if Z is normal, then Q ⊆ ff(Z) is regular, i.e. Q
is relatively algebraically closed in ff(Z). Hence, if an ordered field admits an
normal integer part, then it has a dense subfield which is regular over Q. Note
that any archimedean ordered field has Z as a normal integer part. Hence, the
following question is closely related to the one in [1, Remark 3.3 (iii)]: Given a
non-archimedean real closed field (K,<), does it contain a dense subfield F ⊆ K
such that F is regular over Q? In the following, we will give a positive answer
to this in the case that the absolute transcendence degree of K is infinite.

For an ordered field (K,<), we denote its absolute transcendence degree, i.e.
its transcendence degree over Q, by td(K). We say that T ⊆ K is a transcendence
basis of K if it is a transcendence basis of K over Q. The following result is due
to [5, Lemma 2.3].

Fact 4.15. Let (K,<) be an uncountable ordered field. Then K admits a
dense transcendence basis.

The arguments in [5] can be generalised to countable ordered fields with count-
ably infinite transcendence basis.

Proposition 4.16. Let (K,<) be a countable ordered field with td(K) = ℵ0.
Then K admits a dense transcendence basis.

Proof. Let (In)n∈N be an enumeration of all intervals (a, b) ⊆ K. We con-
struct a transcendence basis {t1, t2, . . . } of K over Q such that tk ∈ Ik for
any k. Let t1 ∈ I1 be an arbitrary element transcendental over Q. Suppose
that t1, . . . , tn have already been chosen for some n. Assume, for a contradi-
citon, that all elements in In+1 were algebraic over Q(t1, . . . , tn). Then by [5,
Lemma 2.2], also K is algebraic over Q(t1, . . . , tn). This contradicts td(K) = ℵ0.
Hence, we can choose tn+1 ∈ In+1 which is transcendental over Q(t1, . . . , tn).
Now T ′ = {tn | n ∈ N} is a dense subset of K and algebraically independent over
Q and can thus be extended to a dense transcendence basis T ⊇ T ′ of K. a

Corollary 4.17. Let (K,<) be an ordered field with td(K) ≥ ℵ0. Then there
is a dense subfield F of K such that Q ⊆ F is regular.

Proof. By Fact 4.15 and Proposition 4.16, K has a dense transcendence basis
T . Then F = Q(T ) is dense in K and Q ⊆ F is regular. a

Note that the conclusion of Corollary 4.17 also holds for ordered fields of
transcendence degree 0. Indeed, if (K,<) is an ordered field with td(K) = 0, then
K is algebraic over Q and thus archimedean. We can then set F = Q. Thus, the
question becomes whether the same conclusion can be made for non-archimedean
ordered fields of non-zero finite transcendence degree (see Question 7.2).

As a final result of this section, we obtain the following characterisation of
ordered fields dense in their real closure in terms of dense transcendence bases.

Corollary 4.18. Let (K,<) be an ordered field. Suppose that td(K) ≥ ℵ0.
Then K is dense in Krc if and only if K has a transcendence basis T which is
dense in Krc.
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Proof. Note that any transcendence basis of K is a transcendence basis of
Krc. If K has a transcendence basis T which is dense in Krc, then K has a proper
subset dense in Krc and thus K itself is dense in Krc. Conversely, suppose that
K is dense in Krc. By Fact 4.15 and Proposition 4.16, K has a transcendence
basis T which is dense in K. Since K is dense in Krc, also T is dense in Krc. a

§5. Definable Convex Valuations. In this section, we firstly investigate
what convex valuations are Lor-definable in ordered fields and secondly we com-
pare our results to known Lr-definability results of henselian valuations with
special focus on almost real closed fields.

5.1. Lor-definability. We are going to analyse the construction method of
Lor-definable convex valuations from [12, Proposition 6.5].

Fact 5.1. Let (K,<) be an ordered field. Then at least one of the following
holds.

1. K is dense in its real closure.
2. K admits a non-trivial Lor-definable convex6 valuation.

Note that a real closed field (K,<) does not admit any non-trivial Lor-definable
convex valuation, as by o-minimality, any Lor-definable convex subset of K must
be an interval with endpoints in K∪{±∞}. We will summarise the construction
procedure of a non-trivial Lor-definable convex valuation ring of an ordered field
which is not dense in its real closure given in [12, p. 163 f.]. Recall that for an
ordered field (K,<), we denote its topological closure in Krc under the order
topology by cl(K).

Construction 5.2. Let (K,<) be an ordered field. Suppose that K is not
dense in R = Krc. Let s ∈ R \ cl(K). Set Ds := {z ∈ K | z < s} and
As := {x ∈ K≥0 | x+Ds ⊆ Ds}. Set Os := {x ∈ K | |x|As ⊆ As}. Then Os is
a non-trivial Lor-definable convex valuation ring of K.

Theorem 5.3. Let (K,<) be an ordered field and v a henselian valuation on
K. Suppose that at least one of the following holds.

1. vK is discretely ordered.
2. vK has a limit point in vKdiv \ vK.
3. Kv has a limit point in Kvrc \Kv.

Then v is Lor-definable in K. Moreover, in the cases (1) and (2), v is definable
by an Lor-formula with one parameter.

Proof. Let k = Kv and G = vK. Note that K is not real closed, as in
each case either k is not real closed or G is non-divisible. By Fact 2.1, (K,
<, v) ≡ (k((G)) , <, vmin). Let L = k((G)), w = vmin and R = Lrc. We will apply
Construction 5.2 with some simplifications to define the valuation ring k

((
G≥0

))
of w in L. Proposition 4.9 shows that we can apply the construction procedure
to any element in s ∈ R \ L.

First suppose that G is non-divisible. Let g0 ∈ Gdiv \G and s = tg0 . Consider
the Lor-definable set D′s =

{
x ∈ L≥0 | x < tg0

}
. Since g0 ∈ Gdiv, there is some

6[12, Proposition 6.5] only states that K admits a non-trivial Lor-definable valuation, but
the proof indeed gives a construction method for a non-trivial Lor-definable convex valuation.



ORDERED FIELDS DENSE IN THEIR REAL CLOSURE 17

h ∈ G and N ∈ N such that g0 = h
N . Thus, the set D′s is defined by the

Lor-formula with one parameter

x ≥ 0 ∧ xN < th.

Note that for any x ∈ L≥0, we have x ∈ D′s if and only if w(x) > g0. Thus,

D′s = k((G>g0))
≥0

. Let Os = {x ∈ L | |x|D′s ⊆ D′s}. Note that this set is Lor-
definable with one parameter. By definition, Os contains exactly those elements
in L such that for any y ∈ L≥0 with w(y) > g0 we have

w(x) + w(y) = w(xy) > g0.(1)

In particular, for any x ∈ L with w(x) ≥ 0, condition (1) holds. Thus, k
((
G≥0

))
⊆

Os. To show the other set inclusion, we will make a case distinction, also spe-
cifying the element g0 for the densely ordered case.

Suppose that G is discretely ordered. Let g1 ∈ G be the least element greater
than g0 and let g2 ∈ G be the least element greater than g0 − g1. Then g2 + g1

is the least element greater than g0. By choice of g1, this gives us g2 + g1 = g1

and thus g2 = 0. Let x ∈ Os. Since tg1 ∈ D′s, we have w(xtg1) = w(x) + g1 > g0.
Hence, w(x) > g0− g1. By choice of g2 as the least element greater than g0− g1,
we obtain w(x) ≥ g2 = 0. This implies Os ⊆ k

((
G≥0

))
, as required.

Suppose that G has a limit point in Gdiv \ G. In this case, we choose g0 ∈
Gdiv \ G such that g0 is a limit point of G. We may assume that g0 is a right-
sided limit point, as otherwise we can replace it by −g0. Let x ∈ L \ k

((
G≥0

))
,

i.e. w(x) < 0. Since g0 is a right-sided limit point of G in Gdiv, the interval
(g0, g0 − w(x)) ⊆ Gdiv contains some element g1 ∈ G. Thus, g1 > g0 but
w(x) +w(tg1) = w(x) + g1 < g0. This shows that x does not fulfil condition (1),
whence x /∈ Os. We thus obtain Os ⊆ k

((
G≥0

))
.

Now suppose that k is not real closed and has a limit point a in krc \ k. We
may assume that a is a left-sided limit point, as otherwise we can replace it by
−a. Then D′a = {x ∈ L | a− 1 < x < a} consists exactly of the elements of the
form b + r, where b ∈ k such that a − 1 < b < a and r ∈ k

((
G>0

))
. In other

words, D′a = I + k
((
G>0

))
, where I is the convex set (a − 1, a) in k. Note that

I is non-empty, as a is a left-sided limit point of k. Let A′a be the Lor-definable
set
{
x ∈ L≥0 | x+D′a ⊆ D′a

}
. Since k

((
G>0

))
is closed under addition, we have

k
((
G>0

))
+ D′a ⊆ D′a. Thus, k

((
G>0

))≥0 ⊆ A′a. For the other inclusion, let

x ∈ L≥0 \ k
((
G>0

))
, i.e. w(x) ≤ 0 and x ≥ 0. If w(x) > 0, then x + b /∈ D′a for

any b ∈ I. Thus, x /∈ A′a. Suppose that w(x) = 0. Then x is of the form c + r
with c ∈ k>0 and r ∈ k

((
G>0

))
. If c ≥ 1, then x+ b /∈ D′a for any b ∈ I, whence

x /∈ A′a. If c < 1, let b ∈ k ∩ (a − c, a), which exists, as a is a left-sided limit
point of k. Then x + b = (c + b) + r > a + r. Thus, x + b /∈ D′a and x /∈ A′a.

Hence, we have shown that A′a ⊆ k
((
G>0

))≥0
.

Now (−A′a ∪ A′a) = k
((
G>0

))
is the maximal ideal of the valuation ring

k
((
G≥0

))
. Thus, the valuation ring k

((
G≥0

))
= {x ∈ L | x(−A′a ∪ A′a) ⊆

(−A′a ∪A′a)} is Lor-definable.
Now for any of the three cases, there is an Lor-formula ϕ(x, y) (where in the

cases (1) and (2) y is just one free variable) such that (L,<,w) |= ∃y∀x (ϕ(x, y)↔
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w(x) ≥ 0). By elementary equivalence, there is some b ∈ K such that (K,<, v) |=
∀x (ϕ(x, b)↔ v(x) ≥ 0). In other words, ϕ(x, b) defines v in K, as required. a

Theorem 5.3 is not a full characterisation of all Lor-definable henselian valu-
ations on an ordered field. Indeed, we can choose K = R((G)) for G as in
Example 3.21. Then vmin = v0 (see p. 19) satisfies neither of the conditions of
Theorem 5.3, but v0 is even Lr-definable by Fact 5.10 for p = 2. Moreover, not
every ordered henselian valued field which is not dense in its real closure satisfies
one of the conditions of Theorem 5.3. For instance, (R((G)) , <, vmin), where G
is as in Proposition 3.18, is not dense in its real closure by Proposition 4.9 and
does not satisfy any of the conditions of Theorem 5.3.

Corollary 5.4. Let (K,<) be an ordered field and v a henselian valuation on
K. Suppose that Kv is not real closed but dense in Kvrc. Then v is Lor-definable
in K.

Proof. This follows immediately from Theorem 5.3 (3), as any point in Kvrc\
Kv is a limit point of Kv in Kvrc. a

Remark 5.5. 1. Since any archimedean ordered field is dense in its real
closure, a special case of Corollary 5.4 is the following: Let (K,<) be a non-
archimedean ordered field. Suppose that the natural valuation vnat is henselian
on K and that (Kvnat, <) is not real closed. Then vnat is Lor-definable in K.

2. Theorem 5.3 (2) implies a similar version of Corollary 5.4 if vK is non-

divisible and dense in vKdiv. However, we will see in Subsection 5.2 that under
this condition we already have that v is Lr-definability without parameters.

3. The proof of Theorem 5.3 also shows the following: Let (K,<) be an ordered
field and v a non-trivial henselian valuation on K. Suppose that vK is non-
divisible. Then there exists a non-trivial Lor-definable coarsening of v which is
definable by an Lor-formula with one parameter.

Comparison to Lr-definability. We will give a brief account of the known
Lr-definability result of henselian valuations in the case that the value group is
regular (cf. [9, Theorem 4]) and compare this to Theorem 5.3.

Fact 5.6. (See [9, Theorem 4].) Let K be a field and v a henselian valuation
on K. Suppose that vK is regular and non-divisible. Then v is parameter-free
Lr-definable in K.

By Proposition 3.2, we obtain the following.

Corollary 5.7. Let (K,<) be an ordered field and v a henselian valuation

on K such that vK is non-divisible but dense in vKdiv. Then v is parameter-free
Lr-definable in K.

Example 3.17 (1) shows that there are discretely ordered abelian groups which
are not regular. Example 3.17 (2) exhibits a densely ordered abelian group G
which is not regular but has limit points in Gdiv \G. This shows that there are
ordered fields such that the cases (1) and (2) of Theorem 5.3 are not already
covered by Fact 5.6.
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5.2. Almost real closed fields. The class of almost real closed fields has
first been studied systematically with respect to algebraic and model theoretic
properties in [2]. Moreover, [2, Theorem 4.4] completely characterises all Lr-
definable henselian valuations in almost real closed fields. In the following, we
will compare Lr- and Lor-definability of henselian valuations in almost real closed
fields.

Definition 5.8. Let (K,<) be an ordered field, G an ordered abelian group
and v a henselian valuation on K. We call K an almost real closed field
(with respect to v and G) if Kv is real closed and vK = G.

Depending on the context, we may simply say that (K,<) is an almost real
closed field without specifying the henselian valuation v or the ordered abelian
group G = vK. In [2], almost real closed fields are considered as pure fields, i.e.
as structures in the language Lr. Note that due to the Baer–Krull Representation
Theorem (cf. [4, p. 37 f.]), any such field admits (possibly several distinct)
orderings. We, however, consider almost real closed fields as ordered fields with
a fixed order. By [2, Proposition 2.9], any convex valuation on an almost real
closed field is already henselian. We thus make no distinction between convex
and henselian valuations on almost real closed fields.

Let (K,<) be an almost real closed field. We denote by V (K) the set of all
henselian valuations on K with real closed residue field, by v1 the maximum of
V (K), i.e. the finest valuation in V (K), and by v0 be the minimum of V (K),
i.e. the coarsest valuation in V (K). These exist by [2, Proposition 2.1]. By the
remarks in [2, p. 1147 f.], v0 is the only possible Lr-definable henselian valuation
in V (K). Also in the language Lor, there is at most one definable valuation in
V (K).

Proposition 5.9. Let (K,<) be an almost real closed field and v ∈ V (K).
Suppose that v is Lor-definable in K. Then v is the only Lor-definable valuation
in V (K).

Proof. By Fact 2.1, we have

(K,<, v) ≡ (R((vK)) , <, vmin).

Since v is Lor-definable in K, there exists an Lor-formula ϕ(x, y) such that

K |= ∃y∀x (ϕ(x, y)↔ v(x) ≥ 0).

By elementary equivalence, there exists b ∈ R((vK)) such that

R((vK)) |= ∀x (ϕ(x, b)↔ vmin(x) ≥ 0).

Hence, vmin is Lor-definable in R((vK)).
Let ψ(x, y) be an Lor-formula and c ∈ K such that ψ(x, c) defines a convex

valuation w in K. Assume, for a contradiction, that w is strictly finer than v,
i.e. Ow ( Ov. This implies

(K,<, v) |= ∀x (ψ(x, c)→ v(x) ≥ 0) ∧ ∃z (¬ψ(z, c) ∧ v(z) ≥ 0).

By elementary equivalence, there is some c′ ∈ R((vK)) such that ψ(x, c′) defines
a convex valuation w′ in R((vK)) with Ow′ ( Ovmin . This contradicts that fact
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that vmin is the finest convex valuation on R((vK)). Hence, v is the finest Lor-
definable convex valuation in K.

Let v′ ∈ V (K) be Lor-definable. Arguing as above, v′ is the finest Lor-definable
convex valuation on K. This gives us v′ = v, as required. a

Comparison of Lr- and Lor-definability of henselian valuations in
almost real closed fields. Let p be a prime number. A valuation v on K is
called p-Kummer henselian if Hensel’s Lemma holds for polynomials of the form
xp − a for a ∈ Ov. A field L is called p-euclidean if L = ±Lp. Let Vp(K) be
the set of all p-Kummer henselian valuations of K with p-euclidean residue field.
Denote by vp the minimum of Vp(K) (cf. [2, p. 1126]).

Fact 5.10. (See [2, Theorem 4.4].) Let (K,<) be an almost real closed field
and v a henselian valuation on K. Then v is Lr-definable in K if and only
if vK is Log-definable in v1K and v ≤ vp for some prime p. Moreover, v0 is
Lr-definable if and only if there is a prime p such that v0K has no non-trivial
p-divisible convex subgroups.

Recall that v0 is the only possible Lr-definable valuation in V (K). If the
ordering on an almost real closed field (K,<) is Lvf -definable for v = v0 ∈ V (K),
then we obtain a complete characterisation of Lor-definable convex valuations in
K.

Lemma 5.11. Let (K,<) be an ordered field and let v be a henselian valuation
on K such that Kv is 2-euclidean (i.e. root-closed for positive elements) and
vK is 2-divisible. Then the ordering < is parameter-free Lvf-definable in K.
In particular, if v is Lr-definable in K, then any Lor-definable subset of K is
already Lr-definable.

Proof. Let k = Kv and G = vK. Consider the Lvf -formula ϕ(x) given by

x = 0 ∨ ∃y v(x− y2) > v(x).

We will show that for any a ∈ k((G)), the formula ϕ(a) holds if and only if a ≥ 0.

Let a = agt
g + s ∈ k((G))

×
, where ag ∈ k×, s ∈ k((G>g)) and g = vmin(a).

Suppose that ϕ(a) holds. Then there exists y ∈ K× such that vmin(x− y2) > g.
Hence, ag = y2

g > 0, where yg is the coefficient of the monomial tg in y. Thus,

a > 0. Now suppose that a > 0. Let y =
√
agt

g/2. Then vmin(a−y2) = vmin(s) >
g = vmin(a).

By Fact 2.1, (K,<, v) ≡ (Kv((vK)) , <, vmin). Hence, we obtain K |= ∀x (x ≥
0↔ ϕ(x)). a

Proposition 5.12. Let (K,<) be an almost real closed field. Suppose that v0

is Lr-definable and that v0K is 2-divisible. Let w be a valuation on K. If w is
Lor-definable, then it is Lr-definable.

Proof. Since v0K is real closed, it is 2-euclidean. By Lemma 5.11, any Lor-
definable valuation on K is already Lr-definable. a

Remark 5.13. We obtain the following characterisation of Lor-definable con-
vex valuations in almost real closed fields with respect to a 2-divisible value
group: Let (K,<) be an almost real closed field. Suppose that the value group
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v0K is 2-divisible and, for some prime p, it has no non-trivial p-divisible con-
vex subgroup. Let v be a convex (and thus henselian) valuation on K. Hence,
by Proposition 5.12 and Fact 5.10, v is Lor-definable in K if and only if vK is
Log-definable in v1K and v ≤ vp for some prime p.

Proposition 5.12 shows in particular that for an almost real closed field, if v0

is Lr-definable, then so is any Lor-definable henselian valuation. The final result
of this sections shows that any henselian valuation in an almost real closed field
satisfying the hypothesis of Theorem 5.3 is already Lr-definable. Note that any
discretely ordered abelian group does not have a non-trivial n-divisible convex
subgroup for any n ≥ 2.

Proposition 5.14. Let (K,<) be an almost real closed field with respect to
a henselian valuation v such that either vK is discretely ordered or vK is not
closed in vKdiv. Then v = v0 and v0 is Lr-definable.

Proof. Recall that v0 is the unique henselian valuation on K such that Kv0

is real closed and v0K has no non-trivial divisible convex subgroup. Moreover, v0

is Lr-definable if and only if for some prime p, there is no p-divisible non-trivial
convex subgroup of v0K. If G = vK is discretely ordered, both conditions are
satisfied, and thus v = v0 is Lr-definable. If G is not closed in Gdiv, then by
Corollary 3.20, G has no non-trivial convex subgroup, whence v = v0. Moreover,
by Proposition 3.19 there is a prime p such that G has no non-trivial p-divisible
convex subgroup, whence v0 is Lr-definable. a

§6. Applications to definable valuations on strongly NIP ordered
fields. The study of Lr-definable henselian valuation in strongly NIP fields has
been motivated by a conjecture due to Shelah–Hasson that any strongly NIP
field is either real closed, algebraically closed or admits a non-trivial Lr-definable
henselian valuation (cf. [3]). Specialised to ordered fields, this conjecture can be
reformulated as follows: Any strongly NIP ordered field which is not real closed
admits a non-trivial Lor-definable henselian valuation. In [14], it is shown that
this conjecture is equivalent to the following: Any strongly NIP ordered field is
almost real closed.7 The question becomes whether any strongly NIP ordered
field is almost real closed with respect to an Lor-definable henselian valuation.
In this section, we will give a negative answer to this question.

All notions on strongly NIP theories can be found in [22]. For the purpose of
understanding how Fact 5.10 can be applied to stronlgy NIP ordered fields, the
following two results are helpful.

Fact 6.1. [8, Theorem 1] Let G be an ordered abelian group. Then the fol-
lowing are equivalent:

1. G is strongly NIP.
2. G is elementarily equivalent to a Hahn sum of archimedean ordered abelian

groups
∐
i∈I Gi, where for every prime p, we have |{i ∈ I | pGi 6= Gi}| < ∞,

and for any i ∈ I, we have |{p prime | [Gi : pGi] =∞}| <∞.

7As mentioned in the introduction, this conjecture is the main subject of a separate public-
ation [15].
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Lemma 6.2. [14, Lemma 6.11] Let G be a strongly NIP ordered abelian group.
Then the almost real closed field (R((G)) , <) is strongly NIP.

By Fact 6.1, the following are examples of strongly NIP non-divisible ordered
abelian groups.

Example 6.3. 1. Let

G1 =

{
a

pi11 . . . pimm

∣∣∣∣m ∈ N; a, i1, . . . , im ∈ Z and p1, . . . , pm ≥ 3 are prime

}
.

G1 is p-divisble for any prime p ≥ 3. Thus, |{p prime | [G1 : pG1] = ∞}| ≤ 1.
This implies that G1 is strongly NIP. Moreover, it dense in its divisible hull Q
but not divisible, as 1

2 /∈ G1.
2. Let 2 = p0 < p1 < . . . be a complete list of prime numbers. For every n ∈ N,

let

Bn =

{
a

pm1
i1
· . . . · pmk

ik

∣∣∣∣ k ∈ N; i1, . . . , ik ∈ N0 \ {n}; a,m1, . . . ,mk ∈ Z
}
.

In other words, Bn is the smallest subgroup of Q which is pi-divisible for any i ∈
N0 \ {n} (so in particular 2-divisible) but not pn-divisible. Then G2 =

∐
n∈NBn

is strongly NIP, as for any i ∈ N0, we have |{n ∈ N | piBn 6= Bn}| = 1, and
for any n ∈ N, we have |{p prime | [Bn : pBn] = ∞}| ≤ 1. Note that G2 is
2-divisible. Moreover, any convex subgroup of G2 is of the form

∐
n≥k Bn = Hk

for some k ∈ N. Note that Hk is non-divisible but pi-divisible for any i < k.

Let G1 and G2 be as in Example 6.3. By Lemma 6.2, we obtain strongly NIP
almost real closed fields (R((G1)) , <) and (R((G2)) , <). By Proposition 5.14, vnat

is Lr-definable in (R((G1)) , <).
Sinc G2 has no non-trivial convex divisible subgroup, by Fact 5.10, the natural

valuation vnat in R((G2)) is Lr-definable if and only if there is a prime p such that
G2 has no non-trivial convex p-divisible subgroup. However, for any i ∈ N, the
non-trivial convex subgroup Hi+1 of G2 is pi-divisible. This implies that vnat is
not Lr-definable. Moreover, since G2 is 2-divisible, vnat is also not Lor-definable
by Proposition 5.12. As vnat = v0 = v1 (see page 19), it is the only valuation with
respect to which R((G2)) is almost real closed. Thus, (R((G2)) , <) is a stronlgy
NIP almost real closed field which is not almost real closed with respect to an
Lor-definable henselian valuation.

§7. Open Questions. We conclude with open questions connected to results
throughout this work.

In Proposition 3.7 we have seen the following dichotomy for ordered abelian
groups: Any ordered abelian group G is (exclusively) either dense in Gdiv or
admits a proper non-trivial Log-definable convex subgroup. For ordered fields,
it is not known whether a similar dichotomy holds. Note that any archimedean
ordered field (K,<) does not admit a non-trivial valuation, as Z must be con-
tained in any convex subring of K. Hence, any ordered field with an archimedean
model does not admit a non-trivial Lor-definable convex valuation. However, we
have seen in Proposition 4.6 that there are non-archimedean ordered fields which
are dense in their real closure but do not have an archimedean model. In these
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ordered fields, it may be possible to find non-trivial Lor-definable convex valu-
ations. Note that these cannot be henselian by Corollary 4.11. In [12] it is not
investigated whether the two cases in Fact 5.1 are exclusive. We pose this as the
following question.

Question 7.1. Is there an ordered field which is dense in its real closure and
admits an non-trivial Lor-definable convex valuation?

In Fact 4.15 and Proposition 4.16 we have seen that any ordered field K of
infinite transcendence degree admits a dense transcendence basis T and thus
a dense subfield F = Q(T ) such that Q ⊆ F is regular. Note that a non-
archimedean ordered field K with td(K) < ℵ0 cannot admit a transcendence
basis dense in K. However, it is still possible that K has a dense subfield F such
that Q ⊆ F is regular. We pose this as a question for a non-archimedean real
closed field with transcendece degree 1.

Question 7.2. Let K = Q(t)
rc

ordered by t > N. Is there a dense subfield
F ⊆ K such that Q ⊆ F is regular?

We have seen in Proposition 5.14 that for any almost real closed field with
respect to a henselian valuation v, if v satisfies the hypothesis of Theorem 5.3,
then it is not only Lor- but already Lr-definable. Although we have shown that
Theorem 5.3 generalises known Lr-definability results of henselian valuations
(see p. 18), we have not provided an example of an ordered field (K,<) and a
henselian valuation v on K which is Lor- but not Lr-definable. Since Fact 5.10
provides a full characterisation of Lr-definable henselian valuations in almost
real closed fields, we will pose the following more specific question.

Question 7.3. Is there an almost real closed field (K,<) and a henselian
valuation v on K such that v is Lor- but not Lr-definable?
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