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Abstract. The following conjecture is due to Shelah–Hasson: Any in-
finite strongly NIP field is either real closed, algebraically closed, or
admits a non-trivial definable henselian valuation, in the language of
rings. We specialise this conjecture to ordered fields in the language of
ordered rings, which leads towards a systematic study of the class of
strongly NIP almost real closed fields. As a result, we obtain a complete
characterisation of this class.
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1. Introduction

Let Lr = {+,−, ·, 0, 1} be the language of rings, Lor = Lr ∪ {<} the
language of ordered rings and Log = {+, 0, <} the language of ordered
groups. Throughout this work, we will abbreviate the Lr-structure of a
field (K,+,−, ·, 0, 1) simply by K, the Lor-structure of an ordered field
(K,+,−, ·, 0, 1, <) by (K,<) and the Log-structure of an ordered group
(G,+, 0, <) by G. Conjecture 1.1 below was suggested by Shelah in [19] and
reformulated as follows in [4]. For the notions ‘strongly NIP’, ‘dp-minimal’
and other model theoretic terminology below, see Section 2.

We started this research at the Model Theory, Combinatorics and Valued fields Tri-
mester at the Institut Henri Poincaré in March 2018. All three authors wish to thank the
IHP for its hospitality.

The first author was supported by a doctoral scholarship of Studienstiftung des
deutschen Volkes as well as of Carl-Zeiss-Stiftung.
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Conjecture 1.1. Let K be an infinite strongly NIP field. Then K is either
real closed, or algebraically closed, or admits a non-trivial Lr-definable1

henselian valuation.

In [8, Conjecture 1.3] the authors obtain a conjectural classification of
strongly NIP fields in the language Lr which is equivalent to Conjecture 1.1.
In this paper, we study Conjecture 1.1 for ordered fields in the language Lor.
Note that in ordered fields, henselian valuations are always convex:

Fact 1.2. [13, Lemma 2.1] Let (K,<) be an ordered field and v a henselian
valuation on K. Then v is convex on (K,<).

We therefore specialise and enhance Conjecture 1.1 to ordered fields as
follows.

Conjecture 1.3. Let (K,<) be a strongly NIP ordered field. Then K is
either real closed or admits a non-trivial Lor-definable henselian valuation.

Note that there are ordered fields which admit a non-trivial Lor-definable
henselian valuation but are not NIP (see Remark 5.1 (2)). We can reformu-
late Conjecture 1.3 in terms of the model theoretically well-studied class of
almost real closed fields (see [1] and also Definition 3.1).

Conjecture 1.4. Any strongly NIP ordered field is almost real closed.

In Section 2 we gather some general basic preliminaries. In Section 3 we
briefly introduce the class of almost real closed fields and prove analogues
in the language of ordered rings to known model theoretic results on almost
real closed fields in the language of rings. Our investigation of strongly NIP
ordered fields starts in Section 4. We first focus on dp-minimal ordered fields
(which are, in particular, strongly NIP). By a careful analysis of the results
of [12], we deduce in Proposition 4.4 that an ordered field is dp-minimal if
and only if it is almost real closed with respect to some dp-minimal ordered
abelian group G. Thereafter, we address the following query (classification
of strongly NIP ordered fields):

An ordered field is strongly NIP if and only if it is almost real closed with
respect to some strongly NIP ordered abelian group G.

In Theorem 4.12 we show that an almost real closed field with respect
some ordered abelian group G is strongly NIP if and only if G is strongly
NIP. This settles the backward direction of the above query, and reduces
its forward direction to Conjecture 1.4. In Section 5, we show that Conjec-
ture 1.3 and Conjecture 1.4 are equivalent (see Theorem 5.4). We conclude
in Section 6 by stating some open questions motivated by this work.2

1Throughout this work definable always means definable with parameters.
2A preliminary version of this work is contained in our arXiv preprint [14], which

contains also a systematic study of Lor-definable henselian valuations in ordered fields as
well as of the class of ordered fields which are dense in their real closure. This systematic
study, of independent interest, will be the subject of a separate publication.
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2. General Preliminaries

All notions on strongly NIP theories can be found in [20] and all notions
on valued fields in [15, 5]. The set of natural numbers with 0 will be denoted
by N0, the set of natural numbers without 0 by N.

Let L be a language and T an L-theory. We fix a monster model M of
T . Let ϕ(x; y) be an L-formula. We say that ϕ has the independence
property (IP) if there are (ai)i∈ω and (bJ)J⊆ω in M such that M |=
ϕ(ai; bJ) if and only if i ∈ J . We say that the theory T has IP if there is
some formula ϕ which has IP. If T does not have IP, it is called NIP (not
the independence property). For an L-structure N , we also say that N is
NIP if its complete theory Th(N ) is NIP. A well-known example of an IP
theory is the complete theory of the Lr-structure (Z,+,−, ·, 0, 1) (cf. [20,
Example 2.4]). Since Z is parameter-free definable in the Lr-structure Q (cf.
[17, Theorem 3.1]), also the complete Lr-theory of Q has IP.

Let A ⊆ M be a set of parameters, ∆ a set of L-formulas and (J,<) a
linearly ordered set. A sequence S = (aj | j ∈ J) in M is ∆-indiscernible
over A if for every k ∈ N, any increasing tuples i1 < . . . < ik and j1 <
. . . < jk in J , any formula ϕ(x1, . . . , xk; y) ∈ ∆ and any tuple b ∈ A,
we have M |= ϕ(ai1 , . . . , aik ; b) ↔ ϕ(aj1 , . . . , ajk ; b). The sequence S is
called indiscernible over A if it is ∆-indiscernible over A for any set of
L-formulas ∆. A family of sequences (St | t ∈ X) is called mutually
indiscernible over A if for each u ∈ X, the sequence Su is indiscernible
over A ∪

⋃
t∈X\{u} St.

Let p be a partial n-type over a set A ⊆M . We define the dp-rank of p
over A as follows: Let κ be a cardinal. The dp-rank of p over A is less than
κ (in symbols, dp-rk(p,A) < κ) if for every family (St | t < κ) of mutually
indiscernible sequences over A and any b ∈ Mn realising p in M, there is
some t < κ such that St is indiscernible over A ∪ {b1, . . . , bn}. The theory
T is called strongly NIP if it is NIP and dp-rk({x = x}, ∅) < ℵ0, where
{x = x} is the partial type over ∅ only consisting of the formula x = x.
The theory T is called dp-minimal if it is NIP and dp-rk({x = x}, ∅) = 1.
Again, we call an L-structure N strongly NIP (respectively dp-minimal) if
Th(N ) is strongly NIP (respectively dp-minimal).

Any reduct of a strongly NIP structure is strongly NIP (cf. [18, Claim 3.14,
3)]) and any reduct of a dp-minimal structure is dp-minimal (cf. [16, Ob-
servation 3.7]). Since any weakly o-minimal theory is dp-minimal (cf. [2,
Corollary 4.3]), we obtain the following hierarchy (in particular, any divisible
ordered abelian group and any real closed field are strongly NIP):

o-minimal → weakly o-minimal → dp-minimal → strongly NIP
→ NIP

Let K be a field and v a valuation on K. We denote the valuation ring
of v in K by Ov, the valuation ideal, i.e. the maximal ideal of Ov, by
Mv, the ordered value group by vK and the residue field Ov/Mv by
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Kv. For a ∈ Ov we also denote a+Mv by a. For an ordered field (K,<) a
valuation is called convex (in (K,<)) if the valuation ring Ov is a convex
subset of K. In this case, the relation a < b :⇔ a 6= b ∧ a < b defines an
order relation on Kv making it an ordered field.

Let Lvf = Lr∪{Ov} be the language of valued fields, where Ov stands
for a unary predicate. Let (K,Ov) be a valued field. An atomic formula of
the form v(t1) ≥ v(t2), where t1 and t2 are Lr-terms, stands for the Lvf -
formula t1 = t2 = 0 ∨ (t2 6= 0 ∧ Ov(t1/t2)). Thus, by abuse of notation,
we also denote the Lvf -structure (K,Ov) by (K, v). Similarly, we also call
(K,<, v) an ordered valued field. We say that a valuation v is L-definable
for some language L ∈ {Lr,Lor} if its valuation ring is an L-definable subset
of K.

For any ordered abelian groups G1 and G2, we denote the lexicographic
sum of G1 and G2 by G1⊕G2. This is the abelian group G1×G2 with the
lexicographic ordering (a, b) < (c, d) if a < c, or a = c and b < d.

Let K be a field and v, w be valuations on K. We write v ≤ w if and
only if Ov ⊇ Ow. In this case we say that w is finer than v and v is
coarser than v. Note that ≤ defines an order relation on the set of convex
valuations of an ordered field. We call two elements a, b ∈ K archimedean
equivalent (in symbols a ∼ b) if there is some n ∈ N such that |a| < n|b|
and |b| < n|a|. Let G = {[a] | a ∈ K×} the set of archimedean equivalence
classes of K×. Equipped with addition [a] + [b] = [ab] and the ordering
[a] < [b] :⇔ a 6∼ b ∧ |b| < |a|, the set G becomes an ordered abelian group.
Then v : K× → G defines a convex valuation on K. This is called the
natural valuation on K and denoted by vnat.

Let (k,<) be an ordered field and G an ordered abelian group. We denote
the ordered Hahn field with coefficients in k and exponents in G by k((G)).
We denote an element s ∈ k((G)) by s =

∑
g∈G sgt

g, where sg = s(g) and
tg is the characteristic function on G mapping g to 1 and everything else to
0. The ordering on k((G)) is given by s > 0 :⇔ s(min supps) > 0, where
supps = {g ∈ G | s(g) 6= 0} is the support of s. Let vmin be the valuation
on k((G)) given by vmin(s) = min supps for s 6= 0. Note that vmin is convex
and henselian. Note further that if k is archimedean, then vmin coincides
with vnat.

We will repeatedly use the Ax–Kochen–Ershov principle for ordered fields
(cf. [6, Corollary 4.2(iii)]).

Fact 2.1 (Ax–Kochen–Ershov principle). Let (K,<, v) and (L,<,w) be two
henselian ordered valued fields. Then (Kv,<) ≡ (Lw,<) and vK ≡ wL if
and only if (K,<, v) ≡ (L,<,w).
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3. Almost Real Closed Fields

Algebraic and model theoretic properties of the class of almost real closed
fields in the language Lr have been studied in [1], in particular [1, The-
orem 4.4] gives a complete characterisation of Lr-definable henselian valu-
ations. In the following, we will prove some useful properties of almost real
closed fields in the language Lor.

Definition 3.1. Let (K,<) be an ordered field, G an ordered abelian group
and v a henselian valuation on K. We call K an almost real closed field
(with respect to v and G) if Kv is real closed and vK = G.

Depending on the context, we may simply say that (K,<) is an almost
real closed field without specifying the henselian valuation v or the ordered
abelian group G = vK.

Remark 3.2. In [1], almost real closed fields are defined as pure fields which
admit a henselian valuation with real closed residue field. However, any such
field admits an ordering, which is due to the Baer–Krull Representation
Theorem (cf. [5, p. 37 f.]). We consider almost real closed fields as ordered
fields with a fixed order.

Due to Fact 1.2 and the following fact, we do not need to make a distinc-
tion between convex and henselian valuations in almost real closed fields.

Fact 3.3. [1, Proposition 2.9] Let (K,<) be an almost real closed field. Then
any convex valuation on (K,<) is henselian.

[1, Proposition 2.8] implies that the class of almost real closed fields in the
language Lr is closed under elementary equivalence. We can easily deduce
that this also holds in the language Lor.

Proposition 3.4. Let (K,<) be an almost real closed field and let (L,<) ≡
(K,<). Then (L,<) is an almost real closed field.

Proof. Since L ≡ K, we obtain by [1, Proposition 2.8] that L admits a
henselian valuation v such that Lv is real closed. Hence, (L,<) is almost
real closed. �

Corollary 3.5. Let (K,<) be an ordered field. Then (K,<) is almost real
closed if and only if (K,<) ≡ (R((G)) , <) for some ordered abelian group G.

Proof. The forward direction follows from the Ax–Kochen–Ershov Principle.
The backward direction is a consequence of Proposition 3.4. �

Corollary 3.6. Let (K,<) be an almost real closed field and G an ordered
abelian group. Then (K((G)) , <) is almost real closed.

Proof. Let v be a henselian valuation on K such that Kv is real closed. By
the Ax–Kochen–Ershov principle, we have (K((G)) , <, vmin) ≡
(R((vK))((G)) , <, vmin). Now (R((vK))((G)) , <) ∼= (R((G⊕ vK)) , <), which
is an almost real closed field. By Corollary 3.5, (K((G)) , <) is almost real
closed. �
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4. Strongly NIP Ordered Fields

In this section we will study the class of strongly NIP ordered fields in
the light of Conjecture 1.3 and Conjecture 1.4. A special class of strongly
NIP ordered fields are dp-minimal ordered fields. These are fully classified
in [12]. In Proposition 4.4 below we show that our query (see p. 2) holds
for dp-minimal ordered fields. An ordered group G is called non-singular
if G/pG is finite for all prime numbers p.

Fact 4.1. [12, Proposition 5.1] An ℵ1-saturated ordered abelian group G is
dp-minimal if and only if it is non-singular.

Fact 4.2. [12, Theorem 6.2] An ordered field (K,<) is dp-minimal if and
only if there exists a non-singular ordered abelian group G such that (K,<
) ≡ (R((G)) , <).

Lemma 4.3. Let (K,<) be a dp-minimal almost real closed field with respect
to some henselian valuation v. Then vK is dp-minimal.

Proof. Since Kv is an ordered field, it is not separably closed. Thus, by
[10, Theorem A], v is definable in the Shelah expansion (K,<)Sh (cf. [10,
Section 2]) of (K,<). By [16, Observation 3.8], also (K,<)Sh is dp-minimal,
whence the reduct (K, v) is dp-minimal. Since Kv is real closed,
Kv×/(Kv×)n is finite for all n ∈ N. Hence, by [12, Proposition 6.1] also vK
is dp-minimal. �

Proposition 4.4. Let (K,<) be an ordered field. Then (K,<) is dp-minimal
if and only if it is almost real closed with respect to a dp-minimal ordered
abelian group.

Proof. Suppose that (K,<) is almost real closed with respect to a dp-
minimal ordered abelian group G. By Fact 4.1, an ℵ1-saturated elementary
extension G1 of G is non-singular. By the Ax–Kochen–Ershov Principle, we
have (K,<) ≡ (R((G1)) , <), which is dp-minimal by Fact 4.2. Hence, (K,<)
is dp-minimal.

Conversely, suppose that (K,<) is dp-minimal. By Fact 4.2, (K,<) ≡
(R((G)) , <) for some non-singular ordered abelian group G. Since (R((G)) , <
) is almost real closed, by Proposition 3.4 also (K,<) is almost real closed
with respect to some henselian valuation v. By Lemma 4.3, also vK is
dp-minimal, as required. �

As a result, we obtain a characterisation of dp-minimal archimedean
ordered fields.

Corollary 4.5. Let (K,<) be a dp-minimal archimedean field. Then K is
real closed.

Proof. The only archimedean almost real closed fields are the archimedean
real closed fields. Thus, by Proposition 4.4, any archimedean dp-minimal
ordered field is real closed.

�
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We now turn to strongly NIP almost real closed fields. Our aim is to
obtain a characterisation of strongly NIP almost real closed fields (see The-
orem 4.12). We have seen in Proposition 4.4 that every almost real closed
field with respect to a dp-minimal ordered abelian group is dp-minimal. We
obtain a similar result for almost real closed fields with respect to a strongly
NIP ordered abelian group. The following two facts will be exploited.

Fact 4.6. [8, p. 2] Let K be a perfect field. Suppose that there exists a
henselian valuation v on K such that the following hold:

(1) v is defectless.
(2) The residue field Kv is either an algebraically closed field of charac-

teristic p or elementarily equivalent to a local field of characteristic 0.
(3) The ordered value group vK is strongly NIP.
(4) If char(Kv) = p 6= char(K), then [−v(p), v(p)] ⊆ pvK.

Then K is strongly NIP.

Fact 4.7. [7, Theorem 1] Let G be an ordered abelian group. Then the
following are equivalent:

(1) G is strongly NIP.
(2) G is elementarily equivalent to a lexicographic sum of ordered abelian

groups
⊕

i∈I Gi, where for every prime p, we have |{i ∈ I | pGi 6= Gi}| <∞,
and for any i ∈ I, we have |{p prime | [Gi : pGi] =∞}| <∞.

Lemma 4.8. Let G be a strongly NIP ordered abelian group. Then the
ordered Hahn field (R((G)) , <) is strongly NIP.

Proof. If K = R((G)) is real closed, then we are done. Otherwise, let v be
the natural valuation on K. We will first verify that v satisfies conditions
(1)–(4) of Fact 4.6. Condition (4) is trivially satisfied; (2) and (3) hold by
assumption. The valuation v is defectless if every finite extension (L, v) over
(K, v) is defectless. Since this always holds in the characteristic 0 case, (1)
is satisfied.

Now K is ac-valued with angular component map ac : K → R given by
ac(s) = s(v(s)) for s 6= 0 and ac(0) = 0 (cf. [3, Section 5.4 f.]). Following
the argument of [8, p. 2], we obtain that (K, v, ac) is a strongly NIP ac-
valued field. Since R is closed under square roots for positive element, for
any a ∈ K we have a ≥ 0 if and only if the following holds in K:

∃y y2 = ac(a).

Hence, the order relation < is definable in (K, v, ac). We obtain that (K,<)
is strongly NIP. �

Proposition 4.9. Let (K,<) be an almost real closed field with respect to a
strongly NIP ordered abelian group and let G be strongly NIP ordered abelian
group. Then (K((G)) , <) is a strongly NIP ordered field.

Proof. Let H be a strongly NIP ordered abelian group such that (K,<)
is almost real closed with respect to H. As in the proof of Corollary 3.6
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we have that (K((G)) , <) ≡ (R((G⊕H)) , <). Since G and H are strongly
NIP, also G ⊕ H is strongly NIP by Fact 4.7. Hence, by Lemma 4.8, also
(K((G)) , <) is strongly NIP. �

Corollary 4.10. Let (K,<) be an almost real closed with respect to a
henselian valuation v such that vK is strongly NIP. Then (K,<) is strongly
NIP.

Proof. This follows immediately from Proposition 4.9 by setting G = {0}
and H = vK. �

For the proof of Theorem 4.12, we need one further result on general
strongly NIP ordered fields, which will also be used for the proof of The-
orem 5.4.

Proposition 4.11. Let (K,<) be a strongly NIP ordered field and let v be
a henselian valuation on K. Then also (Kv,<) and vK are strongly NIP.

Proof. Arguing as in the proof of Lemma 4.3, we obtain that v is definable
in (K,<)Sh. Now (K,<)Sh is also strongly NIP (cf. [16, Observation 3.8]),
whence (K,<, v) is strongly NIP. By [19, Observation 1.4 (2)]3, any structure
which is first-order interpretable in (K,<, v) is strongly NIP. Hence, also
(Kv,<) and vK are strongly NIP. �

We obtain from Corollary 4.10 and Proposition 4.11 the following char-
acterisation of strongly NIP almost real closed fields.

Theorem 4.12. Let (K,<) be an almost real closed field with respect to
some ordered abelian group G. Then (K,<) is strongly NIP if and only if
G is strongly NIP.

Remark 4.13. Fact 4.7 and Theorem 4.12 give us following complete char-
acterisation of strongly NIP almost real closed fields: An almost real closed
field (K,<) is strongly NIP if and only if it is elementarily equivalent to
some ordered Hahn field (R((G)) , <) where G is a lexicographic sum as in
Fact 4.7 (2).

5. Equivalence of Conjectures

Recall our two main conjectures.

Conjecture 1.3. Let (K,<) be a strongly NIP ordered field. Then K is
either real closed or admits a non-trivial Lor-definable henselian valuation.

Conjecture 1.4. Any strongly NIP ordered field is almost real closed.

In this section, we will show that Conjecture 1.3 and Conjecture 1.4 are
equivalent (see Theorem 5.4).

3We thank Yatir Halevi for pointing out this reference to us.
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Remark 5.1. (1) An ordered field is real closed if and only if it is o-
minimal. Hence, for any real closed field K, if O ⊆ K is a definable convex
ring, its endpoints must lie in K ∪ {±∞}. This implies that any definable
convex valuation ring must already contain K, i.e. is trivial. Thus, the two
cases in the consequence of Conjecture 1.3 are exclusive.
(2) Recall from Section 2 that the field Q is not NIP. By [9, Theorem 4], the

henselian valuation vmin is Lr-definable in Q((Z)). Hence, by Proposition 4.11
(Q((Z)) , <) is an example of an ordered field which is not real closed, admits
a non-trivial Lor-definable henselian valuation but is not strongly NIP.

Lemma 5.2 and Lemma 5.3 below are used in the proof of Theorem 5.4.
For the first result, we adapt [8, Lemma 1.9] to the context of ordered fields.

Lemma 5.2. Assume that any strongly NIP ordered field is either real closed
or admits a non-trivial henselian valuation4. Let (K,<) be a strongly NIP
ordered field. Then (K,<) is almost real closed with respect to the canonical
valuation, i.e. the finest henselian valuation on K.

Proof. Let (K,<) be a strongly NIP ordered field. If K is real closed, we can
take the natural valuation. Otherwise, by assumption, the set of non-trivial
henselian valuations on K is non-empty. Let v be the canonical valuation
on K. By Proposition 4.11, (Kv,<) is strongly NIP. Note that Kv cannot
admit a non-trivial henselian valuation, as otherwise this would induce a
non-trivial henselian valuation on K finer than v. Hence, by assumption,
Kv must be real closed. �

The next result is obtained from a slight adjustment of the proof of [8,
Fact 1.8].

Lemma 5.3. Let (K,<) be a strongly NIP ordered field which not real closed
but is almost real closed with respect to a henselian valuation v. Then there
exists a non-trivial Lr-definable henselian coarsening of v.

Proof. By Proposition 4.11, vK = G is strongly NIP. Since K is not real
closed, G is non-divisible. By [7, Proposition 5.5], any henselian valuation
with non-divisible value group on a strongly NIP field has a non-trivial Lr-
definable henselian coarsening. Hence, there is a non-trivial Lr-definable
henselian coarsening u of v. �

Theorem 5.4. Conjecture 1.3 and Conjecture 1.4 are equivalent.

Proof. Assume Conjecture 1.4, and let (K,<) be a strongly NIP ordered field
which is not real closed. Then (K,<) admits a non-trivial henselian valu-
ation v. By Lemma 5.3, it also admits an non-trivial Lr-definable henselian
valuation. Now assume Conjecture 1.3. Let (K,<) be strongly NIP ordered
field. By Lemma 5.2, K is almost real closed with respect to the canonical
valuation v. �

4Note that this valuation does not necessarily have to be Lor-definable
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As a final observation, we will give two further equivalent formulations of
Conjecture 1.4 which follow from results throughout this work.

Observation 5.5. The following are equivalent:

(1) Any strongly NIP ordered field (K,<) is almost real closed.
(2) For any strongly NIP ordered field (K,<), the natural valuation vnat

on K is henselian.
(3) For any strongly NIP ordered valued field (K,<, v), whenever v is con-

vex, it is already henselian.

Proof. (1) implies (3) by Fact 3.3. Suppose that (3) holds and let (K,<)
be strongly NIP. By [10, Proposition 4.2], any convex valuation is definable
in the Shelah expansion (K,<)Sh, whence (K,<, vnat) is a strongly NIP
ordered valued field. By assumption, vnat is henselian on K, which implies
(2). Finally, suppose that (2) holds. Let (K,<) be a strongly NIP ordered
field and (K1, <) an ℵ1-saturated elementary extension of (K,<). Then
K1vnat = R. By assumption, vnat is henselian on K1, whence (K1, <) is
almost real closed. By Proposition 3.4, also (K,<) is almost real closed. �

6. Open Questions

We conclude with open questions connected to results throughout this
work. Conjecture 1.4 for archimedean fields states that any strongly NIP
archimedean ordered field is real closed, as the only archimedean almost
real closed fields are the real closed ones. Corollary 4.5 shows that any dp-
minimal archimedean ordered fields is real closed. We can ask whether the
same holds for all strongly NIP ordered fields.

Question 6.1. Let (K,<) be a strongly NIP archimedean ordered field. Is
K necessarily real closed?

It is shown in [14] that any almost real closed field which is not real closed
cannot be dense in its real closure. Thus, any dp-minimal ordered field which
is dense in its real closure is real closed. Moreover, if Conjecture 1.4 is true,
then, in particular, a strongly NIP ordered field which is not real closed
cannot be dense in its real closure.

Question 6.2. Let (K,<) be a strongly NIP ordered field which is dense in
its real closure. Is (K,<) real closed?

Note that Question 6.2 is more general than Question 6.1, as a positive
answer to Question 6.2 would automatically tell us that any archimedean
ordered field is real closed (since every archimedean field is dense in its real
closure).
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