RELATIVE DEFINABLE C"G TRIVIALITY OF G INVARIANT
PROPER DEFINABLE C" FUNCTIONS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C” group and 1 < r < oco. Let X be an
affine definable C"G manifold and X1,..., X definable C"G submanifolds of X such
that X1,..., X are in general position in X. Suppose that f : X — R is a G invariant
proper surjective submersive definable C” function such that for every 1 < i3 < -+ <
is <k, flIX;;n---NX;, : Xy, N---NX,, — Ris a proper surjective submersion. We
prove that there exists a definable C"G diffeomorphism h = (#/, f) : (X;X1,...,Xk) —
(X*; X7,..., X)) x R, where Z*denotes Z N f~1(0) for a subset Z of X

Moreover we prove an equivariant definable C*° version under some conditions and
its application.

1. INTRODUCTION!

M. Coste and M. Shiota [1] proved that a proper Nash surjective submersion f from
an affine Nash manifold X to R is Nash trivial, namely there exist a point ¢ € R and a
Nash map h: X — f~1(a) such that (h, f) : X — f~!(a) x R is a Nash diffeomorphism.

Let M = (R,+.-,<,...) denote an o-minimal expansion of the standard structure
R = (R,+.-,<) of the field R of real numbers. The term “definable” means “definable
with parameters in M”. General references on o-minimal structures are [2], [5], see also
[15]. The Nash category is a special case of the definable C* category and it coincides
with the definable C* category based on R [16]. Further properties and constructions of
them are studied in [3], [4], [6], [13] and there are uncountably many o-minimal expansions
of R [14]. Equivariant definable C" categories are studied in [7], [8], [9], [10]. Everything
is considered in M and each manifold does not have boundary unless otherwise stated.

A map ¢ : M — N between topological spaces is proper if for any compact set C' C
N,¢~1(C) is compact.

Let X be a C" manifold, X;,..., X, C" submanifolds of X and » > 1. We say that
{Xi}, are in general position in X if for each i € I and J C I — {i}, X, intersects
transverse to Njc;X;.

The following is an equivariant relative definable C” version of [1].

Theorem 1.1. Let G be a compact definable C™ group and 1 < r < oco. Let X be an
affine definable C"G manifold and X, ..., Xy definable C"G submanifolds of X such that
X1, ..., Xy are in general position in X. Suppose that f : X — R is a G invariant proper
surjective submersive definable C" function such that for every 1 < i3 < -+ < 15 < k,
fIXo,n-nX,, - Xy, N---N X, — R s a proper surjective submersion. Then there exists
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a definable C"G diffeomorphism h = (W, f) : (X;X4y,..., X)) — (X5 X],..., X}) xR,
where Z*denotes Z N f~1(0) for a subset Z of X.

Let X = {(z,y)|ly =0} U{(z,y)|lzy =1} CR?* and f: X — R, f(z,y) = z. Then f is
a surjective submersive polynomial map and it is not definably trivial. Thus even in the
non-equivariant category, the proper condition in Theorem 1.1 is necessary.

Let 1 <r <ocandlet F:R — (—1,1) be a definable C" function such that F(z) =z
in a definable open neighborhood of 0, F|(—oc0, —2] = —1 and F|[2, 00) = 1. Suppose that
X=S'XRCR f:S'XR =R, f(z,y,t) =t,X; ={(0,1)} x R and Xy = {(z,y,t) €
S x R|lz = F(t),y = V1 — 22}. Then X, X, are in general position in X, f, f| X1, f|X>
are proper surjective submersions and f|X; N X5 : X7 N Xy — R is not surjective. Since
there exists no definable C! diffeomorphism h : (A, f) : (X; X1, Xo) — (X*; X7, X3) x R,
even in the non-equivariant category, the condition that every f|X;, N---NX,, : X;, N
---NX,;, — R is a proper surjective submersion is necessary.

Let f : U — R be a definable C"*° function on a definable open subset U C R".
We say that f has controlled derivatives if there exist a definable continuous function
u: U — R, real numbers C, Cs, . .. and natural numbers E, Es, ... such that |[D*f(z)| <

Claju(z)Pel for allz € U and a € (NU{0})", where D* = % and o] = aq+- - +ay,.
We say that M has piecewise controlled derivatives if for every definable C'**° function
f : U — R defined in a definable open subset U of R", there exist definable open sets
Ui, ...,U; C U such that dim(U — U._,U;) < n and each f|U; has controlled derivatives.

The following is an equivariant definable C'*° version of Theorem 1.1.

Theorem 1.2. Suppose that M is exponential, admits the C*° cell decomposition and
has piecewise controlled derivatives. Let G be a compact definable C* group, X an affine
definable C°G manifold and Xy,..., X, definable C*°G submanifolds of X such that
Xy,..., Xy are in general position in X. Suppose that f : X — R is a G invariant proper
surjective submersive definable C™ function such that for every 1 < i3 < --- < is < k,
fIXo N nX,, - Xy, Ne--N X, — R s a proper surjective submersion. Then there exists
a definable C*G diffeomorphism h = (W, f) : (X; X1,..., Xx) — (X5 X7, ..., X}) xR,
where Z*denotes Z N f~1(0) for a subset Z of X.

Let G be a compact definable C* group, X a noncompact definable C*°G manifold and
Xy, ..., X noncompact definable C*°G submanifolds of X in general position in X. If M
is exponential, admits the C'*° cell decomposition and has piecewise controlled derivatives
and X is affine, then by Proposition 3.2, we may assume that X is a bounded definable
C*°@G submanifold of some representation €2 of G. We say that (X; X, ..., Xj) satisfies
the frontier condition if each X; — X; is contained in X — X, where X; (resp. X) de-
notes the closure of X; (resp. X) in Q. We say that (X; Xy,..., X}y) is simultaneously
definably C*°G compactifiable if there exist a compact definable C°°G manifold Y
with boundary 9Y, compact definable C*°G submanifolds Y7, ..., Y}, of Y with boundary
dY1, ..., 0Y,, respectively, and a definable C"°G diffeomorphism f : X — Int Y such
that for any 4, f(X;) = Int Y;, each 9Y; is contained in 9Y', and Y3, ..., Y} and 9Y are in
general position in Y. Here Int Y (resp. Int Y;) denotes the interior of Y (resp. Y;).

As an application of Theorem 1.2, we have the following theorem.
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Theorem 1.3. Suppose that M is exponential, admits the C*° cell decomposition and has
piecewise controlled derivatives. Let G be a compact definable C™ group, X a noncompact
affine definable C*°G manifold and X1, ..., Xy noncompact definable C*°G submanifolds
of X in general position in X such that (X;X,..., Xy) satisfies the frontier condition.
Then (X; X1, ..., Xy) is simultaneously definably C*G compactifiable.

Theorem 1.3 is an equivariant relative definable version of [1] and an equivariant defin-
able C" version is proved in [11] when r is a natural number.

2. PrROOF OF THEOREM 1.1

Let r be a non-negative integer, oo or w. A definable C" manifold G is a definable C"
group if the group operations G x G — G and G — G are definable C" maps.

Let G be a definable C" group. A representation map of GG is a group homomorphism
from G to some O, (R) which is a definable C™ map. A representation means the rep-
resentation space of a representation map of G. In this paper, we assume that every
representation of G is orthogonal. A definable C"G submanifold of a representation 2
of G is a GG invariant definable C" submanifold of 2. A de finable C"G mani fold is a pair
(X, ¢) consisting of a definable C" manifold X and a group action ¢ : G x X — X which
is a definable C™ map. We simply write X instead of (X, ¢). A definable C"G manifold
is af fine if it is definably C"G diffeomorphic to (definably G homeomorphic to if r = 0)
a definable C"G submanifold of some representation of GG. Definable C"G manifolds and
affine definable C"G manifolds are introduced in [9].

Let G be a definable C" group, and X definable C"G manifold and Y a definable
C" manifold. A G invariant definable C" map f : X — Y is definably C"G trivial
if there exist a point y € Y and a definable C"G map h : X — f~!(y) such that
H=(h,f): X — f}(y) x Y is a definable C"G diffeomorphism.

The following is piecewise definable C"G triviality of G invariant surjective submersive
definable C" maps [9].

Theorem 2.1 (1.1 [9]). Let r be a natural number. Let G be a compact definable C”
group, X an affine definable C"G manifold and Y a definable C" manifold. Suppose
that f : X — Y s a G wnvariant surjective submersive definable C™ map. Then there
exists a finite decomposition {T;} of Y into definable C™ submanifolds of Y such that each
flf YT « f7UT) — T, is definably CTG trivial. If M admits the C™ (resp. C¥) cell
decomposition, the we can take r = oo (resp. w).

The following is existence of a definable C"G tubular neighborhood of a definable C"GG
submanifold of a representation of G.

Theorem 2.2 ([10], [8]). Let r be a non-negative integer, oo or w. Then every definable
C"G submanifold X of a representation 2 of G has a definable C"G tubular neighborhood
(U,0x) of X in 2, namely U is a G invariant definable open neighborhood of X in 0 and
Ox : U — X is a definable C"G map with 0x|X = idx.

Proposition 2.3 (P4 [11]). Let r be a natural number. Let Y, Z be affine definable C"G
manifolds, Y1,..., Yy (resp. Zy,...,Z;) definable C"G submanifolds of Y (resp. Z) in
general position in'Y (resp. Z ). Suppose that F : (US| Y;; Y1, ..., V) — (UK Zis Z4, .. .
Zy) is a definable continuous G map. If each F|Y; is a definable C"G map (Y;;Y; N
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Yi,. . YinNY o, YinYi,....YinYy) — (Z Zi NV Z1, .., Zi NV Zi 1, Zi NV Ziga,y ooy Zi N
Zy), then there exist a G invariant definable open neighborhood W of U\ Y; in'Y and a
definable C"G map H : (W;Yy,...,Y3) — (Z; 2y, ..., Zy) such that H|UF_ Y; = F.

Let 1 < r < oo and Def"(R"™) denote the set of definable C” functions on R"™. For
each f € Def"(R"™) and for each positive definable continuous function € : R — R, the
e-neighborhood N(f;¢€) of f in Def"(R™) is defined by {h € Def"(R™)||D*(h — f)| <
e,Va € (NU{0})", |a| < r}, where a = (ay,...,an) € (NU{O})", |oo| = a1+ -+ v, We
call the topology defined by these e-neighborhoods the de finable C" topology. By taking
the relative topology of the definable C" topology of R", we can define the definable C"
topology of a definable C" submanifold X of R".

Let X C R"Y C R™ be definable C" submanifolds. Note that if X is compact, then
the definable C" topology of the set of definable C" maps from X to Y coincides the C”
Whitney topology of it [15].

Theorem 2.4 ([15]). Let X and Y be definable C* submanifolds of R™ and 0 < s < oc.
Let f: X — Y be a definable C* map. If f is an immersion (resp. a diffeomorphism, a
diffeomorphism onto its image), then an approximation of f in the definable C* topology
is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if
f is a diffeomorphism, then h™' — f~! as h — f.

Proof of Theorem 1.1. Since X is affine, we may assume that X is a definable C"G
submanifold of a representation €2 of G.

We first prove the case where k£ = 0. Applying Theorem 2.1, we have a partition
—00 =ap < a1 < ay < --- < aj <ajy = oo of R and definable C"G diffeomorphisms
wi [ (@i aig)) = f7HYi) X (@i, aier) with f|f7((as, aia)) = piow;, 0 <4 < j, where
p; denotes the projection f~1(y;) X (a;, air1) — (ai,ai1) and y; € (a;, aipq).

Now we prove that for each a; with 1 <7 < j, there exist an open interval I; containing
a; and a definable C"G map ; : f~'([;) — f~'(a;) such that F; = (m;, f) : f7Y(L;) —
f~Ya;) x I; is a definable C"G diffeomorphism. By Theorem 2.2, we have a definable
C"G tubular neighborhood (U;, 04-1(,,)) of f~'(a;) in X. Since f is proper, there exists
an open interval I; containing a; such that f~'(I;) C U;. Note that if f is not proper,
then such an open interval does not always exist. Hence shrinking [;, if necessary, F; =
(7, f) + f7HIL) — f'(a;) x I is the required definable C"G diffeomorphism.

By the above argument, we have a finite family of {J;}!_, of open intervals and definable
C"@ diffeomorphisms ¢; : f~1(J;) — f~Hy:) x Ji, 1 < i <[, such that y; € J;, U_, J; =R
and the composition of ¢; with the projection f~1(y;) x J; onto J; is f|f~1(J;).

Now we glue these trivializations to get a global one. We can suppose that ¢ > 2,
Ui1NJ; = (a,b) and ¢,y : f~HU;—1) — f~H(y1) xU;_1 is a definable C"G diffeomorphism
with f|f~'(Ui_1) = proji_10v;_1, where U;_; = U'_} J, and proj;_, denotes the projection
f_l(yl) X Uz'—l — Ui—l- Take z € (a,b) =U,_1 N Jz Then since f_l(yl) = f_l(Z) =
" Yy:), f~H(y1) is definably C"G diffeomorphic to f~!(y;). Hence we may assume that ¢/
is a definable C"G diffeomorphism from f~*(J;) to f~!(y;) X J;. Then we have a definable
C"G diffeomorphism

i1 0 ((b;)il : fﬁl(yl) X (a>b) - fﬁl(yl) X (CL, b)> (l‘,t) = (Q<xat)>t)'
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Take a C" Nash function u : R — R such that u = %* on (—o0, 3a + 1] and u = id on
[3a + 3b,00). Let
T [T ) x (a.b) — f7H((a,)), T(,t) = o (a(x, ul?)), b).

Then 7 is a definable C"G' diffeomorphism such that 7 = (¢})~! if ta +
T=1; o(Pxid)ifa<t<3a+1b, where P: f7 (1) — [~ (1), P(x)
Thus we can define

Gi fTHU) = ) x Ui,

) (P xid) ™ otp_y(z), flz)<3a+3b
hile) = 7 (@), Sa4+1b< f(z) <b
¢i(), f(x)>b

Then 4); is a definable C"G diffeomorphism. Thus ¢, : X — f “Hy;) x R is a definable
C"G diffeomorphism. Therefore we have the required a definable C"G diffeomorphism
(H,f): X - X" xR.

We now prove the general case by induction on k.

Let £ > 1. By the inductive hypothesis, for any 7, there exists a definable C"G
diffeomorphism hz = (h,/“f) : (XzaXz N Xl, .. Xz N Xi—luXi N Xi+1, Ce 7Xi N Xk) —
(X5 XN XY, . XynXE L, XN XS, ., XN Xy x R In particular 2| X, N X -
(XoNX;; XoNXiNXs, .., XoNXiNXe) — (XoNXS XN X NXS, ., XoNXTNXy)
is a definable C"G map. By Theorem 2.2, we have a G invariant definable open neigh-
borhood W5 of X7 N X5 in X, and a definable C"G map @5 : (Wh; Xo N X1; Xo N X7 N
X3y, XoNX1NXy) — (X5 XN X5 XoNn XN X3, .0, X5 N XN X)) such that
Oo| Xo N Xy = h|Xo N X;. Take a G invariant definable open neighborhood W3 C Wy of
X1N X5 in Xy whose closure in X5 is properly contained in W; and a G invariant definable
C" function a : X — R such that its support lies in W5 and a|Wj = 1. By Theorem 2.2,
we have a G invariant definable open neighborhood O of Xj in Q2 and a definable C"G
map Ox; : O — X5 with 0| X5 = idx;.

Define

, Ox; ((1 — a(x))hy(x) + a(z)Po(x)), €W,
‘1’2("””):{ (), e Xy —W,

Then V), : (Xo; XoN Xq,... XoNXy) — (X5; X5 N XY, ... X5 N X)) is a definable C"G
map which is an approximation of h}. Thus h] is extensible to a definable continuous G
map ¥, : X; U Xy — X* such that @Q\Xl and \ilngg are definable C"G maps.

Repeating this process, we have a definable continuous G map ® : (UX_, X;; X1, ..., X})
— (X" X7, ..., X}) such that each ®|X; is a definable C"G map which is an approxima-
tion of h}.

By Proposition 2.3, we have a G invariant definable open neighborhood U of Uf_, X,
and a definable C"G map L : U — X* extending &.

Take a G invariant definable open neighborhood U’ of U¥_, X; in X whose closure in X
is properly contained in U and a G invariant definable C" function b : X — R such that
its support lies in U and b|U" = 1. By Theorem 2.2, we have a GG invariant definable open
neighborhood V of X* in Q and a definable C"G map 0x- : V — X* with x| X" = idx-.
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Define h/(z) =

Ox-((1—b(x))H(z) + b(z)L(x)), €U

H(x), reX-U"
Then b : (X;Xy,..., X)) — (X5 X7, ..., X}) is a definable C"G map. Thus h = (I, f) :
(X;X1,..., X)) — (X5 XT, ..., X}) x R is a definable C"G map which is an approxi-
mation of (H, f). Therefore by Theorem 2.4, h is the required definable C"G diffeomor-
phism. ([l

3. PROOF OF THEOREM 1.2 AND 1.3

From now on we assume that M is exponential, admits the C* cell decomposition and
has piecewise controlled derivatives.

Theorem 3.1 (1.2 [12]). Every definable closed subset of R™ is the zero set of a definable
C* function on R™.

Proposition 3.2. Let G be a compact definable C*° group and X a definable C*°G man-
ifold in a representation Q) of G. Then X is definably C*G imbeddable into 2 x R? such

that X is bounded and X — X consists of at most one point, where X denotes the closure
of X.

Proof. We may assume that X is noncompact. Then X — X is a G invariant closed
definable subset of 2. Let 7 : Q — Q/G C R® denote the orbit map. Then jom : Q@ — R®is
a proper polynomial map (see Section 4 [10]), where i : /G — R® denotes the inclusion.
Hence iom|X — X : X — X — R? is proper because X — X is closed in 2. Thus iom(X —X)
(=n(X — X)) is a definable closed subset of R*. Applying Theorem 3.1, there exists a
definable C* function f : R* — R with 7(X —X) = f~1(0). Hence F := for: Q) — Risa
G invariant definable C* function with X — X = F~1(0). Therefore replacing the graph
of 1/F by X, we may assume that X is closed in Q x R. Applying the stereographic
projection s : © x R — S(Q x R?), s(X) satisfies our requirements, where S(Q2 x R?)
denotes the unit sphere of Q x R2. O

The proof of Proposition 3.2 proves the following two theorems and proposition.

Theorem 3.3. Let G be a compact definable C*° group and ) a representation of G.
Every G invariant definable closed subset of € is the zero set of a G invariant definable
C* function on §2.

Theorem 3.4. Let G be a compact definable C* group and X an affine definable C*G
manifold. Suppose that A, B are G invariant definable disjoint closed subsets of X. Then
there exists a G invariant definable C* function f : X — R such that f|A = 1 and
f|B=0.

Proposition 3.5. Let G be a compact definable C*° group, X a noncompact affine de-
finable C*°G manifold and X, ..., X, noncompact definable C"G submanifolds of X in
general position in X such that (X; Xy,...,X,) satisfies the frontier condition. Then we
may assume that X is a bounded definable C*G submanifold of some representation 2 of
G such that X1 — X1 == X,, — X, = X — X = {0}, where X (resp. X;) denotes the
closure of X (resp. X;) in €.
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Using Theorem 3.4, a similar proof of P4 [11] proves the following proposition.

Proposition 3.6. Let Y, Z be affine definable C*°G manifolds, Y1, ..., Yy (resp. Zy,. ..,
Zy) definable C*G submanifolds of Y (resp. Z) in general position in Y (resp. Z).
Suppose that F : (UE_\Yi; Yy, ..., Y) — (UK Zi; 24, ..., Z},) is a definable continuous G
map. If each F|Y; is a definable C°G map (Y;; Y;NYy, ..., Y;NY, 1, YiNYq, ..., YiNY,) —
(Zis; ZiNZy, .. ZiNZi 1, Zi N Zigay ... Z; N Zy,), then there exist a G invariant definable
open neighborhood W of U!_,Y; in Y and a definable C*G map H : (W;Y1,...,Y,) —
(Z;Zy,...,Z) such that H|UF_| Y; = F.

Proof of Theorem 1.2. Using Theorem 3.4 and Proposition 3.6, a similar proof of
Theorem 1.1 proves Theorem 1.2. O]

Proof of Theorem 1.3. By Proposition 3.5, we may assume that X is a bounded
definable C*°G submanifold of a representation 2 of G such that X; — X; = -+ =
X, — X, =X - X ={0}.

Let f: X — R, f(z) = ||z||7!, where ||z|| denotes the standard norm of z in Q.
Since f is submersive and G invariant and by Theorem 2.1, there exist a sufficiently
large positive number « and a definable C*°G map hy : f~1((a,0)) — f~!(a) such that
h:= (hy, f): [~ (o, 0)) — f~1(a) x (o, 00) is a definable C*°G diffeomorphism.

Let f; := f|X;. Since (X;Xy,..., X)) satisfies the frontier condition and X, ..., X
are in general position in X, each Y; := f;((a, 00)) is a definable C*G submanifold of
Y = f7}((a,0)), Yi,...,Y} are in general position in Y and for every 1 <4y < --- <
is <k, flY,un---NY, :Y,N---NY;,, — (a,00) is a proper surjective submersion.
Since (a,00) is definably C'* diffeomorphic to R, there exists a G invariant surjective
submersive definable C*° function F' : (Y;Y],...,Y;) — R satisfying the conditions in
Theorem 1.2.

Applying Theorem 1.2 to F, there exists a definable C*°G diffeomorphism (f~*((«, 00));
fi (o, 00)), ., fot (@, 00))) — (F~Ha); fi (), ..., £ '(a)) xR. Thus we have a defin-
able C*°G diffeomorphism H : (f~1((a, 00)); fi (o, 00)), . . ., fr (@, 0))) — (f~H(a);
fit (@), .., fi' (@) x (a,00). Since « is sufficiently large, f~1([0,a + 1]) is a com-
pact definable C*°G manifold with boundary f~'(a + 1) and each f;'([0,a + 1]) is
a compact definable C*°G submanifold of f~1([0,a + 1]) with boundary f; (o + 1).
Therefore using H and Theorem 3.4, (X; X3,..., X}) is definably C*°G diffeomorphic to
(00,0 4+ 1) £7(00, 0+ 1), o, (004 1)), 0
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