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Abstract. Let G be a compact definable Cr group and 1 ≤ r < ∞. Let X be an
affine definable CrG manifold and X1, . . . , Xk definable CrG submanifolds of X such
that X1, . . . , Xk are in general position in X. Suppose that f : X → R is a G invariant
proper surjective submersive definable Cr function such that for every 1 ≤ i1 < · · · <
is ≤ k, f |Xi1 ∩ · · · ∩ Xis

: Xi1 ∩ · · · ∩ Xis
→ R is a proper surjective submersion. We

prove that there exists a definable CrG diffeomorphism h = (h′, f) : (X;X1, . . . , Xk) →
(X∗;X∗

1 , . . . , X∗
k)× R, where Z∗denotes Z ∩ f−1(0) for a subset Z of X

Moreover we prove an equivariant definable C∞ version under some conditions and
its application.

1. Introduction1

M. Coste and M. Shiota [1] proved that a proper Nash surjective submersion f from
an affine Nash manifold X to R is Nash trivial, namely there exist a point a ∈ R and a
Nash map h : X → f−1(a) such that (h, f) : X → f−1(a)× R is a Nash diffeomorphism.

Let M = (R,+.·, <, . . . ) denote an o-minimal expansion of the standard structure
R = (R,+.·, <) of the field R of real numbers. The term “definable” means “definable
with parameters in M”. General references on o-minimal structures are [2], [5], see also
[15]. The Nash category is a special case of the definable C∞ category and it coincides
with the definable C∞ category based on R [16]. Further properties and constructions of
them are studied in [3], [4], [6], [13] and there are uncountably many o-minimal expansions
of R [14]. Equivariant definable Cr categories are studied in [7], [8], [9], [10]. Everything
is considered in M and each manifold does not have boundary unless otherwise stated.

A map ψ : M → N between topological spaces is proper if for any compact set C ⊂
N,ψ−1(C) is compact.

Let X be a Cr manifold, X1, . . . , Xn Cr submanifolds of X and r ≥ 1. We say that
{Xi}n

i=1 are in general position in X if for each i ∈ I and J ⊂ I − {i}, Xi intersects
transverse to ∩j∈JXj.

The following is an equivariant relative definable Cr version of [1].

Theorem 1.1. Let G be a compact definable Cr group and 1 ≤ r < ∞. Let X be an
affine definable CrG manifold and X1, . . . , Xk definable CrG submanifolds of X such that
X1, . . . , Xk are in general position in X. Suppose that f : X → R is a G invariant proper
surjective submersive definable Cr function such that for every 1 ≤ i1 < · · · < is ≤ k,
f |Xi1 ∩· · ·∩Xis : Xi1 ∩· · ·∩Xis → R is a proper surjective submersion. Then there exists
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a definable CrG diffeomorphism h = (h′, f) : (X;X1, . . . , Xk) → (X∗;X∗
1 , . . . , X

∗
k) × R,

where Z∗denotes Z ∩ f−1(0) for a subset Z of X.

Let X = {(x, y)|y = 0} ∪ {(x, y)|xy = 1} ⊂ R2 and f : X → R, f(x, y) = x. Then f is
a surjective submersive polynomial map and it is not definably trivial. Thus even in the
non-equivariant category, the proper condition in Theorem 1.1 is necessary.

Let 1 ≤ r <∞ and let F : R → (−1, 1) be a definable Cr function such that F (x) = x
in a definable open neighborhood of 0, F |(−∞,−2] = −1

2
and F |[2,∞) = 1

2
. Suppose that

X = S1 × R ⊂ R3, f : S1 × R → R, f(x, y, t) = t,X1 = {(0, 1)} × R and X2 = {(x, y, t) ∈
S1 × R|x = F (t), y =

√
1− x2}. Then X1, X2 are in general position in X, f, f |X1, f |X2

are proper surjective submersions and f |X1 ∩X2 : X1 ∩X2 → R is not surjective. Since
there exists no definable C1 diffeomorphism h : (h′, f) : (X;X1, X2) → (X∗;X∗

1 , X
∗
2 )×R,

even in the non-equivariant category, the condition that every f |Xi1 ∩ · · · ∩ Xis : Xi1 ∩
· · · ∩Xis → R is a proper surjective submersion is necessary.

Let f : U → R be a definable C∞ function on a definable open subset U ⊂ Rn.
We say that f has controlled derivatives if there exist a definable continuous function
u : U → R, real numbers C1, C2, . . . and natural numbers E1, E2, . . . such that |Dαf(x)| ≤
C|α|u(x)

E|α| for all x ∈ U and α ∈ (N∪{0})n, whereDα = ∂|α|

∂x
α1
1 ...∂xαn

n
and |α| = α1+· · ·+αn.

We say that M has piecewise controlled derivatives if for every definable C∞ function
f : U → R defined in a definable open subset U of Rn, there exist definable open sets
U1, . . . , Ul ⊂ U such that dim(U − ∪l

i=1Ui) < n and each f |Ui has controlled derivatives.
The following is an equivariant definable C∞ version of Theorem 1.1.

Theorem 1.2. Suppose that M is exponential, admits the C∞ cell decomposition and
has piecewise controlled derivatives. Let G be a compact definable C∞ group, X an affine
definable C∞G manifold and X1, . . . , Xk definable C∞G submanifolds of X such that
X1, . . . , Xk are in general position in X. Suppose that f : X → R is a G invariant proper
surjective submersive definable C∞ function such that for every 1 ≤ i1 < · · · < is ≤ k,
f |Xi1 ∩· · ·∩Xis : Xi1 ∩· · ·∩Xis → R is a proper surjective submersion. Then there exists
a definable C∞G diffeomorphism h = (h′, f) : (X;X1, . . . , Xk) → (X∗;X∗

1 , . . . , X
∗
k) × R,

where Z∗denotes Z ∩ f−1(0) for a subset Z of X.

Let G be a compact definable C∞ group, X a noncompact definable C∞G manifold and
X1, . . . , Xk noncompact definable C∞G submanifolds of X in general position in X. If M
is exponential, admits the C∞ cell decomposition and has piecewise controlled derivatives
and X is affine, then by Proposition 3.2, we may assume that X is a bounded definable
C∞G submanifold of some representation Ω of G. We say that (X;X1, . . . , Xk) satisfies
the frontier condition if each Xi − Xi is contained in X − X, where Xi (resp. X) de-
notes the closure of Xi (resp. X) in Ω. We say that (X;X1, . . . , Xk) is simultaneously
definably C∞G compactifiable if there exist a compact definable C∞G manifold Y
with boundary ∂Y , compact definable C∞G submanifolds Y1, . . . , Yk of Y with boundary
∂Y1, . . . , ∂Yn, respectively, and a definable C∞G diffeomorphism f : X → Int Y such
that for any i, f(Xi) = Int Yi, each ∂Yi is contained in ∂Y , and Y1, . . . , Yk and ∂Y are in
general position in Y . Here Int Y (resp. Int Yi) denotes the interior of Y (resp. Yi).

As an application of Theorem 1.2, we have the following theorem.
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Theorem 1.3. Suppose that M is exponential, admits the C∞ cell decomposition and has
piecewise controlled derivatives. Let G be a compact definable C∞ group, X a noncompact
affine definable C∞G manifold and X1, . . . , Xk noncompact definable C∞G submanifolds
of X in general position in X such that (X;X1, . . . , Xk) satisfies the frontier condition.
Then (X;X1, . . . , Xk) is simultaneously definably C∞G compactifiable.

Theorem 1.3 is an equivariant relative definable version of [1] and an equivariant defin-
able Cr version is proved in [11] when r is a natural number.

2. Proof of Theorem 1.1

Let r be a non-negative integer, ∞ or ω. A definable Cr manifold G is a definable Cr

group if the group operations G×G→ G and G→ G are definable Cr maps.
Let G be a definable Cr group. A representation map of G is a group homomorphism

from G to some On(R) which is a definable Cr map. A representation means the rep-
resentation space of a representation map of G. In this paper, we assume that every
representation of G is orthogonal. A definable CrG submanifold of a representation Ω
of G is a G invariant definable Cr submanifold of Ω. A definable CrG manifold is a pair
(X,φ) consisting of a definable Cr manifold X and a group action φ : G×X → X which
is a definable Cr map. We simply write X instead of (X,φ). A definable CrG manifold
is affine if it is definably CrG diffeomorphic to (definably G homeomorphic to if r = 0)
a definable CrG submanifold of some representation of G. Definable CrG manifolds and
affine definable CrG manifolds are introduced in [9].

Let G be a definable Cr group, and X definable CrG manifold and Y a definable
Cr manifold. A G invariant definable Cr map f : X → Y is definably CrG trivial
if there exist a point y ∈ Y and a definable CrG map h : X → f−1(y) such that
H = (h, f) : X → f−1(y)× Y is a definable CrG diffeomorphism.

The following is piecewise definable CrG triviality of G invariant surjective submersive
definable Cr maps [9].

Theorem 2.1 (1.1 [9]). Let r be a natural number. Let G be a compact definable Cr

group, X an affine definable CrG manifold and Y a definable Cr manifold. Suppose
that f : X → Y is a G invariant surjective submersive definable Cr map. Then there
exists a finite decomposition {Ti} of Y into definable Cr submanifolds of Y such that each
f |f−1(Ti) : f−1(Ti) → Ti is definably CrG trivial. If M admits the C∞ (resp. Cω) cell
decomposition, the we can take r = ∞ (resp. ω).

The following is existence of a definable CrG tubular neighborhood of a definable CrG
submanifold of a representation of G.

Theorem 2.2 ([10], [8]). Let r be a non-negative integer, ∞ or ω. Then every definable
CrG submanifold X of a representation Ω of G has a definable CrG tubular neighborhood
(U, θX) of X in Ω, namely U is a G invariant definable open neighborhood of X in Ω and
θX : U → X is a definable CrG map with θX |X = idX .

Proposition 2.3 (P4 [11]). Let r be a natural number. Let Y, Z be affine definable CrG
manifolds, Y1, . . . , Yk (resp. Z1, . . . , Zk) definable CrG submanifolds of Y (resp. Z) in
general position in Y (resp. Z). Suppose that F : (∪k

i=1Yi;Y1, . . . , Yk) → (∪k
i=1Zi;Z1, . . . ,

Zk) is a definable continuous G map. If each F |Yi is a definable CrG map (Yi;Yi ∩
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Y1, . . . , Yi ∩ Yi−1, Yi ∩ Yi+1, . . . , Yi ∩ Yk) → (Zi;Zi ∩ Z1, . . . , Zi ∩ Zi−1, Zi ∩ Zi+1, . . . , Zi ∩
Zk), then there exist a G invariant definable open neighborhood W of ∪n

i=1Yi in Y and a
definable CrG map H : (W ;Y1, . . . , Yk) → (Z;Z1, . . . , Zk) such that H| ∪k

i=1 Yi = F .

Let 1 ≤ r < ∞ and Def r(Rn) denote the set of definable Cr functions on Rn. For
each f ∈ Def r(Rn) and for each positive definable continuous function ε : Rn → R, the
ε-neighborhood N(f ; ε) of f in Def r(Rn) is defined by {h ∈ Def r(Rn)||Dα(h − f)| <
ε, ∀α ∈ (N∪{0})n, |α| ≤ r}, where α = (α1, . . . , αn) ∈ (N∪{0})n, |α| = α1 + · · ·+αn. We
call the topology defined by these ε-neighborhoods the definable Cr topology. By taking
the relative topology of the definable Cr topology of Rn, we can define the definable Cr

topology of a definable Cr submanifold X of Rn.
Let X ⊂ Rn, Y ⊂ Rm be definable Cr submanifolds. Note that if X is compact, then

the definable Cr topology of the set of definable Cr maps from X to Y coincides the Cr

Whitney topology of it [15].

Theorem 2.4 ([15]). Let X and Y be definable Cs submanifolds of Rn and 0 < s < ∞.
Let f : X → Y be a definable Cs map. If f is an immersion (resp. a diffeomorphism, a
diffeomorphism onto its image), then an approximation of f in the definable Cs topology
is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if
f is a diffeomorphism, then h−1 → f−1 as h→ f .

Proof of Theorem 1.1. Since X is affine, we may assume that X is a definable CrG
submanifold of a representation Ω of G.

We first prove the case where k = 0. Applying Theorem 2.1, we have a partition
−∞ = a0 < a1 < a2 < · · · < aj < aj+1 = ∞ of R and definable CrG diffeomorphisms
wi : f−1((ai, ai+1)) → f−1(yi)× (ai, ai+1) with f |f−1((ai, ai+1)) = pi ◦wi, 0 ≤ i ≤ j, where
pi denotes the projection f−1(yi)× (ai, ai+1) → (ai, ai+1) and yi ∈ (ai, ai+1).

Now we prove that for each ai with 1 ≤ i ≤ j, there exist an open interval Ii containing
ai and a definable CrG map πi : f−1(Ii) → f−1(ai) such that Fi = (πi, f) : f−1(Ii) →
f−1(ai) × Ii is a definable CrG diffeomorphism. By Theorem 2.2, we have a definable
CrG tubular neighborhood (Ui, θf−1(ai)) of f−1(ai) in X. Since f is proper, there exists
an open interval Ii containing ai such that f−1(Ii) ⊂ Ui. Note that if f is not proper,
then such an open interval does not always exist. Hence shrinking Ii, if necessary, Fi =
(πi, f) : f−1(Ii) → f−1(ai)× Ii is the required definable CrG diffeomorphism.

By the above argument, we have a finite family of {Ji}l
i=1 of open intervals and definable

CrG diffeomorphisms φi : f−1(Ji) → f−1(yi)×Ji, 1 ≤ i ≤ l, such that yi ∈ Ji, ∪l
i=1Ji = R

and the composition of φi with the projection f−1(yi)× Ji onto Ji is f |f−1(Ji).
Now we glue these trivializations to get a global one. We can suppose that i ≥ 2,

Ui−1∩Ji = (a, b) and ψi−1 : f−1(Ui−1) → f−1(y1)×Ui−1 is a definable CrG diffeomorphism
with f |f−1(Ui−1) = proji−1◦ψi−1, where Ui−1 = ∪i−1

s=1Js and proji−1 denotes the projection
f−1(y1) × Ui−1 → Ui−1. Take z ∈ (a, b) = Ui−1 ∩ Ji. Then since f−1(y1) ∼= f−1(z) ∼=
f−1(yi), f

−1(y1) is definably CrG diffeomorphic to f−1(yi). Hence we may assume that φ′i
is a definable CrG diffeomorphism from f−1(Ji) to f−1(y1)×Ji. Then we have a definable
CrG diffeomorphism

ψi−1 ◦ (φ′i)
−1 : f−1(y1)× (a, b) → f−1(y1)× (a, b), (x, t) 7→ (q(x, t), t).
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Take a Cr Nash function u : R → R such that u = a+b
2

on (−∞, 3
4
a + 1

4
b] and u = id on

[1
4
a+ 3

4
b,∞). Let

τ : f−1(y1)× (a, b) → f−1((a, b)), τ(x, t) = ψ−1
i−1(q(x, u(t)), t).

Then τ is a definable CrG diffeomorphism such that τ = (φ′i)
−1 if 1

4
a + 3

4
b ≤ t ≤ b and

τ = ψ−1
i−1 ◦ (P × id) if a ≤ t ≤ 3

4
a + 1

4
b, where P : f−1(y1) → f−1(y1), P (x) = q(x, a+b

2
).

Thus we can define

ψ̃i : f−1(Ui) → f−1(y1)× Ui,

ψ̃i(x) =

 (P × id)−1 ◦ ψi−1(x), f(x) ≤ 3
4
a+ 1

4
b

τ−1(x), 3
4
a+ 1

4
b ≤ f(x) ≤ b

φi(x), f(x) > b
.

Then ψ̃i is a definable CrG diffeomorphism. Thus ψ̃l : X → f−1(y1) × R is a definable
CrG diffeomorphism. Therefore we have the required a definable CrG diffeomorphism
(H, f) : X → X∗ × R.

We now prove the general case by induction on k.
Let k ≥ 1. By the inductive hypothesis, for any i, there exists a definable CrG

diffeomorphism hi = (h′i, f) : (Xi;Xi ∩ X1, . . . Xi ∩ Xi−1, Xi ∩ Xi+1, . . . , Xi ∩ Xk) →
(X∗

1 ;X∗
i ∩ X∗

1 , . . . X
∗
i ∩ X∗

i−1, X
∗
i ∩ X∗

i+1, . . . , X
∗
i ∩ X∗

k) × R. In particular h′1|X2 ∩ X1 :
(X2∩X1;X2∩X1∩X3, . . . , X2∩X1∩Xk) → (X∗

2 ∩X∗
1 ;X∗

2 ∩X∗
1 ∩X∗

3 , . . . , X
∗
2 ∩X∗

1 ∩X∗
k)

is a definable CrG map. By Theorem 2.2, we have a G invariant definable open neigh-
borhood W2 of X1 ∩ X2 in X2 and a definable CrG map Φ2 : (W2;X2 ∩ X1;X2 ∩ X1 ∩
X3, . . . , X2 ∩ X1 ∩ Xk) → (X∗

2 ;X∗
2 ∩ X∗

1 ;X∗
2 ∩ X∗

1 ∩ X∗
3 , . . . , X

∗
2 ∩ X∗

1 ∩ X∗
k) such that

Φ2|X2 ∩X1 = h′1|X2 ∩X1. Take a G invariant definable open neighborhood W ′
2 ⊂ W2 of

X1∩X2 in X2 whose closure in X2 is properly contained in W1 and a G invariant definable
Cr function a : X2 → R such that its support lies in W2 and a|W ′

2 = 1. By Theorem 2.2,
we have a G invariant definable open neighborhood O of X∗

2 in Ω and a definable CrG
map θX∗

2
: O → X∗

2 with θ|X∗
2 = idX∗

2
.

Define

Ψ′
2(x) =

{
θX∗

2
((1− a(x))h′2(x) + a(x)Φ2(x)), x ∈ W1

h′2(x), x ∈ X2 −W1
.

Then Ψ′
2 : (X2;X2 ∩ X1, . . . X2 ∩ Xk) → (X∗

2 ;X∗
2 ∩ X∗

1 , . . . X
∗
2 ∩ X∗

k) is a definable CrG
map which is an approximation of h′2. Thus h′1 is extensible to a definable continuous G
map Ψ̃2 : X1 ∪X2 → X∗ such that Ψ̃2|X1 and Ψ̃2|X2 are definable CrG maps.

Repeating this process, we have a definable continuous G map Φ : (∪k
i=1Xi;X1, . . . , Xk)

→ (X∗;X∗
1 , . . . , X

∗
k) such that each Φ|Xi is a definable CrG map which is an approxima-

tion of h′i.
By Proposition 2.3, we have a G invariant definable open neighborhood U of ∪k

i=1Xi

and a definable CrG map L : U → X∗ extending Φ.
Take a G invariant definable open neighborhood U ′ of ∪k

i=1Xi in X whose closure in X
is properly contained in U and a G invariant definable Cr function b : X → R such that
its support lies in U and b|U ′ = 1. By Theorem 2.2, we have a G invariant definable open
neighborhood V of X∗ in Ω and a definable CrG map θX∗ : V → X∗ with θX∗|X∗ = idX∗ .
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Define h′(x) = {
θX∗((1− b(x))H(x) + b(x)L(x)), x ∈ U
H(x), x ∈ X − U

.

Then h′ : (X;X1, . . . , Xk) → (X∗;X∗
1 , . . . , X

∗
k) is a definable CrG map. Thus h = (h′, f) :

(X;X1, . . . , Xk) → (X∗;X∗
1 , . . . , X

∗
k) × R is a definable CrG map which is an approxi-

mation of (H, f). Therefore by Theorem 2.4, h is the required definable CrG diffeomor-
phism. �

3. Proof of Theorem 1.2 and 1.3

From now on we assume that M is exponential, admits the C∞ cell decomposition and
has piecewise controlled derivatives.

Theorem 3.1 (1.2 [12]). Every definable closed subset of Rn is the zero set of a definable
C∞ function on Rn.

Proposition 3.2. Let G be a compact definable C∞ group and X a definable C∞G man-
ifold in a representation Ω of G. Then X is definably C∞G imbeddable into Ω×R2 such
that X is bounded and X −X consists of at most one point, where X denotes the closure
of X.

Proof . We may assume that X is noncompact. Then X −X is a G invariant closed
definable subset of Ω. Let π : Ω → Ω/G ⊂ Rs denote the orbit map. Then i◦π : Ω → Rs is
a proper polynomial map (see Section 4 [10]), where i : Ω/G→ Rs denotes the inclusion.
Hence i◦π|X−X : X−X → Rs is proper because X−X is closed in Ω. Thus i◦π(X−X)
(=π(X − X)) is a definable closed subset of Rs. Applying Theorem 3.1, there exists a
definable C∞ function f : Rs → R with π(X−X) = f−1(0). Hence F := f ◦π : Ω → R is a
G invariant definable C∞ function with X −X = F−1(0). Therefore replacing the graph
of 1/F by X, we may assume that X is closed in Ω × R. Applying the stereographic
projection s : Ω × R → S(Ω × R2), s(X) satisfies our requirements, where S(Ω × R2)
denotes the unit sphere of Ω× R2. �

The proof of Proposition 3.2 proves the following two theorems and proposition.

Theorem 3.3. Let G be a compact definable C∞ group and Ω a representation of G.
Every G invariant definable closed subset of Ω is the zero set of a G invariant definable
C∞ function on Ω.

Theorem 3.4. Let G be a compact definable C∞ group and X an affine definable C∞G
manifold. Suppose that A,B are G invariant definable disjoint closed subsets of X. Then
there exists a G invariant definable C∞ function f : X → R such that f |A = 1 and
f |B = 0.

Proposition 3.5. Let G be a compact definable C∞ group, X a noncompact affine de-
finable C∞G manifold and X1, . . . , Xn noncompact definable CrG submanifolds of X in
general position in X such that (X;X1, . . . , Xn) satisfies the frontier condition. Then we
may assume that X is a bounded definable C∞G submanifold of some representation Ω of
G such that X1 −X1 = · · · = Xn −Xn = X −X = {0}, where X (resp. Xi) denotes the
closure of X (resp. Xi) in Ω.
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Using Theorem 3.4, a similar proof of P4 [11] proves the following proposition.

Proposition 3.6. Let Y, Z be affine definable C∞G manifolds, Y1, . . . , Yk (resp. Z1, . . . ,
Zk) definable C∞G submanifolds of Y (resp. Z) in general position in Y (resp. Z).
Suppose that F : (∪k

i=1Yi;Y1, . . . , Yk) → (∪k
i=1Zi;Z1, . . . , Zk) is a definable continuous G

map. If each F |Yi is a definable C∞G map (Yi;Yi∩Y1, . . . , Yi∩Yi−1, Yi∩Yi+1, . . . , Yi∩Yk) →
(Zi;Zi ∩Z1, . . . , Zi ∩Zi−1, Zi ∩Zi+1, . . . , Zi ∩Zk), then there exist a G invariant definable
open neighborhood W of ∪n

i=1Yi in Y and a definable C∞G map H : (W ;Y1, . . . , Yk) →
(Z;Z1, . . . , Zk) such that H| ∪k

i=1 Yi = F .

Proof of Theorem 1.2. Using Theorem 3.4 and Proposition 3.6, a similar proof of
Theorem 1.1 proves Theorem 1.2. �

Proof of Theorem 1.3. By Proposition 3.5, we may assume that X is a bounded
definable C∞G submanifold of a representation Ω of G such that X1 − X1 = · · · =
Xn −Xn = X −X = {0}.

Let f : X → R, f(x) = ||x||−1, where ||x|| denotes the standard norm of x in Ω.
Since f is submersive and G invariant and by Theorem 2.1, there exist a sufficiently
large positive number α and a definable C∞G map h1 : f−1((α,∞)) → f−1(α) such that
h := (h1, f) : f−1((α,∞)) → f−1(α)× (α,∞) is a definable C∞G diffeomorphism.

Let fi := f |Xi. Since (X;X1, . . . , Xk) satisfies the frontier condition and X1, . . . , Xk

are in general position in X, each Yi := f−1
i ((α,∞)) is a definable C∞G submanifold of

Y := f−1((α,∞)), Y1, . . . , Yk are in general position in Y and for every 1 ≤ i1 < · · · <
is ≤ k, f |Yi1 ∩ · · · ∩ Yis : Yi1 ∩ · · · ∩ Yis → (α,∞) is a proper surjective submersion.
Since (α,∞) is definably C∞ diffeomorphic to R, there exists a G invariant surjective
submersive definable C∞ function F : (Y ;Y1, . . . , Yk) → R satisfying the conditions in
Theorem 1.2.

Applying Theorem 1.2 to F , there exists a definable C∞G diffeomorphism (f−1((α,∞));
f−1

1 ((α,∞)), . . . , f−1
k ((α,∞))) → (f−1(α); f−1

1 (α), . . . , f−1
k (α))×R. Thus we have a defin-

able C∞G diffeomorphism H : (f−1((α,∞)); f−1
1 ((α,∞)), . . . , f−1

k ((α,∞))) → (f−1(α);
f−1

1 (α), . . . , f−1
k (α)) × (α,∞). Since α is sufficiently large, f−1([0, α + 1]) is a com-

pact definable C∞G manifold with boundary f−1(α + 1) and each f−1
i ([0, α + 1]) is

a compact definable C∞G submanifold of f−1([0, α + 1]) with boundary f−1
i (α + 1).

Therefore using H and Theorem 3.4, (X;X1, . . . , Xk) is definably C∞G diffeomorphic to
(f−1([0, α+ 1); f−1

1 ([0, α+ 1), . . . , f−1
k ([0, α+ 1))). �
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