RELATIVE DEFINABLE C^rG TRIVIALITY OF G INVARIANT PROPER DEFINABLE C^r FUNCTIONS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C^r group and $1 \leq r < \infty$. Let X be an affine definable $C^r G$ manifold and X_1, \ldots, X_k definable $C^r G$ submanifolds of X such that X_1, \ldots, X_k are in general position in X. Suppose that $f: X \to \mathbb{R}$ is a G invariant proper surjective submersive definable C^r function such that for every $1 \leq i_1 < \cdots < i_s \leq k, f | X_{i_1} \cap \cdots \cap X_{i_s} : X_{i_1} \cap \cdots \cap X_{i_s} \to \mathbb{R}$ is a proper surjective submersion. We prove that there exists a definable $C^r G$ diffeomorphism $h = (h', f) : (X; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*) \times \mathbb{R}$, where Z^* denotes $Z \cap f^{-1}(0)$ for a subset Z of X

Moreover we prove an equivariant definable C^∞ version under some conditions and its application.

1. INTRODUCTION¹

M. Coste and M. Shiota [1] proved that a proper Nash surjective submersion f from an affine Nash manifold X to \mathbb{R} is Nash trivial, namely there exist a point $a \in \mathbb{R}$ and a Nash map $h: X \to f^{-1}(a)$ such that $(h, f): X \to f^{-1}(a) \times \mathbb{R}$ is a Nash diffeomorphism.

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, ...)$ denote an o-minimal expansion of the standard structure $\mathcal{R} = (R, +, \cdot, <)$ of the field \mathbb{R} of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [2], [5], see also [15]. The Nash category is a special case of the definable C^{∞} category and it coincides with the definable C^{∞} category based on \mathcal{R} [16]. Further properties and constructions of them are studied in [3], [4], [6], [13] and there are uncountably many o-minimal expansions of \mathcal{R} [14]. Equivariant definable C^r categories are studied in [7], [8], [9], [10]. Everything is considered in \mathcal{M} and each manifold does not have boundary unless otherwise stated.

A map $\psi: M \to N$ between topological spaces is *proper* if for any compact set $C \subset N, \psi^{-1}(C)$ is compact.

Let X be a C^r manifold, X_1, \ldots, X_n C^r submanifolds of X and $r \ge 1$. We say that $\{X_i\}_{i=1}^n$ are in general position in X if for each $i \in I$ and $J \subset I - \{i\}$, X_i intersects transverse to $\bigcap_{i \in J} X_j$.

The following is an equivariant relative definable C^r version of [1].

Theorem 1.1. Let G be a compact definable C^r group and $1 \leq r < \infty$. Let X be an affine definable C^rG manifold and X_1, \ldots, X_k definable C^rG submanifolds of X such that X_1, \ldots, X_k are in general position in X. Suppose that $f: X \to \mathbb{R}$ is a G invariant proper surjective submersive definable C^r function such that for every $1 \leq i_1 < \cdots < i_s \leq k$, $f|X_{i_1} \cap \cdots \cap X_{i_s} : X_{i_1} \cap \cdots \cap X_{i_s} \to \mathbb{R}$ is a proper surjective submersion. Then there exists

¹2000 Mathematics Subject Classification 14P10, 14P20, 58A05, 03C64.

Keywords and Phrases. O-minimal, definable $C^r G$ manifolds, G invariant proper definable C^r functions, definable $C^r G$ trivial, Nash G trivial, definable $C^{\infty} G$ compactifications.

a definable C^rG diffeomorphism $h = (h', f) : (X; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*) \times \mathbb{R}$, where Z^* denotes $Z \cap f^{-1}(0)$ for a subset Z of X.

Let $X = \{(x, y) | y = 0\} \cup \{(x, y) | xy = 1\} \subset \mathbb{R}^2$ and $f : X \to \mathbb{R}$, f(x, y) = x. Then f is a surjective submersive polynomial map and it is not definably trivial. Thus even in the non-equivariant category, the proper condition in Theorem 1.1 is necessary.

Let $1 \leq r < \infty$ and let $F : \mathbb{R} \to (-1, 1)$ be a definable C^r function such that F(x) = xin a definable open neighborhood of 0, $F|(-\infty, -2] = -\frac{1}{2}$ and $F|[2, \infty) = \frac{1}{2}$. Suppose that $X = S^1 \times \mathbb{R} \subset \mathbb{R}^3, f : S^1 \times \mathbb{R} \to \mathbb{R}, f(x, y, t) = t, X_1 = \{(0, 1)\} \times \mathbb{R}$ and $X_2 = \{(x, y, t) \in S^1 \times \mathbb{R} | x = F(t), y = \sqrt{1 - x^2}\}$. Then X_1, X_2 are in general position in $X, f, f|X_1, f|X_2$ are proper surjective submersions and $f|X_1 \cap X_2 : X_1 \cap X_2 \to \mathbb{R}$ is not surjective. Since there exists no definable C^1 diffeomorphism $h : (h', f) : (X; X_1, X_2) \to (X^*; X_1^*, X_2^*) \times \mathbb{R}$, even in the non-equivariant category, the condition that every $f|X_{i_1} \cap \cdots \cap X_{i_s} : X_{i_1} \cap \cdots \cap X_{i_s} : X_{i_1} \cap \cdots \cap X_{i_s} \to \mathbb{R}$ is a proper surjective submersion is necessary.

Let $f: U \to \mathbb{R}$ be a definable C^{∞} function on a definable open subset $U \subset \mathbb{R}^n$. We say that f has controlled derivatives if there exist a definable continuous function $u: U \to \mathbb{R}$, real numbers C_1, C_2, \ldots and natural numbers E_1, E_2, \ldots such that $|D^{\alpha}f(x)| \leq C_{|\alpha|}u(x)^{E_{|\alpha|}}$ for all $x \in U$ and $\alpha \in (\mathbb{N} \cup \{0\})^n$, where $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We say that \mathcal{M} has piecewise controlled derivatives if for every definable C^{∞} function $f: U \to \mathbb{R}$ defined in a definable open subset U of \mathbb{R}^n , there exist definable open sets $U_1, \ldots, U_l \subset U$ such that $\dim(U - \cup_{i=1}^l U_i) < n$ and each $f|U_i$ has controlled derivatives. The following is an equivariant definable C^{∞} version of Theorem 1.1.

Theorem 1.2. Suppose that \mathcal{M} is exponential, admits the C^{∞} cell decomposition and has piecewise controlled derivatives. Let G be a compact definable C^{∞} group, X an affine definable $C^{\infty}G$ manifold and X_1, \ldots, X_k definable $C^{\infty}G$ submanifolds of X such that X_1, \ldots, X_k are in general position in X. Suppose that $f: X \to \mathbb{R}$ is a G invariant proper surjective submersive definable C^{∞} function such that for every $1 \leq i_1 < \cdots < i_s \leq k$, $f|X_{i_1} \cap \cdots \cap X_{i_s}: X_{i_1} \cap \cdots \cap X_{i_s} \to \mathbb{R}$ is a proper surjective submersion. Then there exists a definable $C^{\infty}G$ diffeomorphism $h = (h', f): (X; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*) \times \mathbb{R}$, where Z^* denotes $Z \cap f^{-1}(0)$ for a subset Z of X.

Let G be a compact definable C^{∞} group, X a noncompact definable $C^{\infty}G$ manifold and X_1, \ldots, X_k noncompact definable $C^{\infty}G$ submanifolds of X in general position in X. If \mathcal{M} is exponential, admits the C^{∞} cell decomposition and has piecewise controlled derivatives and X is affine, then by Proposition 3.2, we may assume that X is a bounded definable $C^{\infty}G$ submanifold of some representation Ω of G. We say that $(X; X_1, \ldots, X_k)$ satisfies the frontier condition if each $\overline{X_i} - X_i$ is contained in $\overline{X} - X$, where $\overline{X_i}$ (resp. \overline{X}) denotes the closure of X_i (resp. X) in Ω . We say that $(X; X_1, \ldots, X_k)$ is simultaneously definably $C^{\infty}G$ compactifiable if there exist a compact definable $C^{\infty}G$ manifold Y with boundary ∂Y , compact definable $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k of Y with boundary $\partial Y_1, \ldots, \partial Y_n$, respectively, and a definable $C^{\infty}G$ diffeomorphism $f : X \to Int Y$ such that for any $i, f(X_i) = Int Y_i$, each ∂Y_i is contained in ∂Y , and Y_1, \ldots, Y_k and ∂Y are in general position in Y. Here Int Y (resp. $Int Y_i$) denotes the interior of Y (resp. Y_i).

As an application of Theorem 1.2, we have the following theorem.

Theorem 1.3. Suppose that \mathcal{M} is exponential, admits the C^{∞} cell decomposition and has piecewise controlled derivatives. Let G be a compact definable C^{∞} group, X a noncompact affine definable $C^{\infty}G$ manifold and X_1, \ldots, X_k noncompact definable $C^{\infty}G$ submanifolds of X in general position in X such that $(X; X_1, \ldots, X_k)$ satisfies the frontier condition. Then $(X; X_1, \ldots, X_k)$ is simultaneously definably $C^{\infty}G$ compactifiable.

Theorem 1.3 is an equivariant relative definable version of [1] and an equivariant definable C^r version is proved in [11] when r is a natural number.

2. Proof of Theorem 1.1

Let r be a non-negative integer, ∞ or ω . A definable C^r manifold G is a definable C^r group if the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

Let G be a definable C^r group. A representation map of G is a group homomorphism from G to some $O_n(\mathbb{R})$ which is a definable C^r map. A representation means the representation space of a representation map of G. In this paper, we assume that every representation of G is orthogonal. A definable C^rG submanifold of a representation Ω of G is a G invariant definable C^r submanifold of Ω . A definable C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a group action $\phi : G \times X \to X$ which is a definable C^r map. We simply write X instead of (X, ϕ) . A definable C^rG manifold is affine if it is definably C^rG diffeomorphic to (definably G homeomorphic to if r = 0) a definable C^rG submanifold of some representation of G. Definable C^rG manifolds and affine definable C^rG manifolds are introduced in [9].

Let G be a definable C^r group, and X definable C^rG manifold and Y a definable C^r manifold. A G invariant definable C^r map $f : X \to Y$ is definably C^rG trivial if there exist a point $y \in Y$ and a definable C^rG map $h : X \to f^{-1}(y)$ such that $H = (h, f) : X \to f^{-1}(y) \times Y$ is a definable C^rG diffeomorphism.

The following is piecewise definable C^rG triviality of G invariant surjective submersive definable C^r maps [9].

Theorem 2.1 (1.1 [9]). Let r be a natural number. Let G be a compact definable C^r group, X an affine definable C^rG manifold and Y a definable C^r manifold. Suppose that $f: X \to Y$ is a G invariant surjective submersive definable C^r map. Then there exists a finite decomposition $\{T_i\}$ of Y into definable C^r submanifolds of Y such that each $f|f^{-1}(T_i): f^{-1}(T_i) \to T_i$ is definably C^rG trivial. If \mathcal{M} admits the C^{∞} (resp. C^{ω}) cell decomposition, the we can take $r = \infty$ (resp. ω).

The following is existence of a definable C^rG tubular neighborhood of a definable C^rG submanifold of a representation of G.

Theorem 2.2 ([10], [8]). Let r be a non-negative integer, ∞ or ω . Then every definable C^rG submanifold X of a representation Ω of G has a definable C^rG tubular neighborhood (U, θ_X) of X in Ω , namely U is a G invariant definable open neighborhood of X in Ω and $\theta_X : U \to X$ is a definable C^rG map with $\theta_X | X = id_X$.

Proposition 2.3 (P4 [11]). Let r be a natural number. Let Y, Z be affine definable C^rG manifolds, Y_1, \ldots, Y_k (resp. Z_1, \ldots, Z_k) definable C^rG submanifolds of Y (resp. Z) in general position in Y (resp. Z). Suppose that $F : (\bigcup_{i=1}^k Y_i; Y_1, \ldots, Y_k) \to (\bigcup_{i=1}^k Z_i; Z_1, \ldots, Z_k)$ is a definable continuous G map. If each $F|Y_i$ is a definable C^rG map $(Y_i; Y_i \cap$ $\begin{array}{l} Y_1, \ldots, Y_i \cap Y_{i-1}, Y_i \cap Y_{i+1}, \ldots, Y_i \cap Y_k) \to (Z_i; Z_i \cap Z_1, \ldots, Z_i \cap Z_{i-1}, Z_i \cap Z_{i+1}, \ldots, Z_i \cap Z_k), \text{ then there exist a } G \text{ invariant definable open neighborhood } W \text{ of } \cup_{i=1}^n Y_i \text{ in } Y \text{ and a } definable \ C^r G \text{ map } H : (W; Y_1, \ldots, Y_k) \to (Z; Z_1, \ldots, Z_k) \text{ such that } H | \cup_{i=1}^k Y_i = F. \end{array}$

Let $1 \leq r < \infty$ and $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n . For each $f \in Def^r(\mathbb{R}^n)$ and for each positive definable continuous function $\epsilon : \mathbb{R}^n \to \mathbb{R}$, the ϵ -neighborhood $N(f;\epsilon)$ of f in $Def^r(\mathbb{R}^n)$ is defined by $\{h \in Def^r(\mathbb{R}^n) || D^{\alpha}(h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \leq r\}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n, |\alpha| = \alpha_1 + \cdots + \alpha_n$. We call the topology defined by these ϵ -neighborhoods the *definable* C^r topology. By taking the relative topology of the definable C^r topology of \mathbb{R}^n , we can define the *definable* C^r topology of a definable C^r submanifold X of \mathbb{R}^n .

Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ be definable C^r submanifolds. Note that if X is compact, then the definable C^r topology of the set of definable C^r maps from X to Y coincides the C^r Whitney topology of it [15].

Theorem 2.4 ([15]). Let X and Y be definable C^s submanifolds of \mathbb{R}^n and $0 < s < \infty$. Let $f: X \to Y$ be a definable C^s map. If f is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image), then an approximation of f in the definable C^s topology is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if f is a diffeomorphism, then $h^{-1} \to f^{-1}$ as $h \to f$.

Proof of Theorem 1.1. Since X is affine, we may assume that X is a definable C^rG submanifold of a representation Ω of G.

We first prove the case where k = 0. Applying Theorem 2.1, we have a partition $-\infty = a_0 < a_1 < a_2 < \cdots < a_j < a_{j+1} = \infty$ of \mathbb{R} and definable $C^r G$ diffeomorphisms $w_i : f^{-1}((a_i, a_{i+1})) \to f^{-1}(y_i) \times (a_i, a_{i+1})$ with $f|f^{-1}((a_i, a_{i+1})) = p_i \circ w_i, 0 \le i \le j$, where p_i denotes the projection $f^{-1}(y_i) \times (a_i, a_{i+1}) \to (a_i, a_{i+1})$ and $y_i \in (a_i, a_{i+1})$.

Now we prove that for each a_i with $1 \leq i \leq j$, there exist an open interval I_i containing a_i and a definable $C^r G$ map $\pi_i : f^{-1}(I_i) \to f^{-1}(a_i)$ such that $F_i = (\pi_i, f) : f^{-1}(I_i) \to f^{-1}(a_i) \times I_i$ is a definable $C^r G$ diffeomorphism. By Theorem 2.2, we have a definable $C^r G$ tubular neighborhood $(U_i, \theta_{f^{-1}(a_i)})$ of $f^{-1}(a_i)$ in X. Since f is proper, there exists an open interval I_i containing a_i such that $f^{-1}(I_i) \subset U_i$. Note that if f is not proper, then such an open interval does not always exist. Hence shrinking I_i , if necessary, $F_i = (\pi_i, f) : f^{-1}(I_i) \to f^{-1}(a_i) \times I_i$ is the required definable $C^r G$ diffeomorphism.

By the above argument, we have a finite family of $\{J_i\}_{i=1}^l$ of open intervals and definable $C^r G$ diffeomorphisms $\phi_i : f^{-1}(J_i) \to f^{-1}(y_i) \times J_i, 1 \leq i \leq l$, such that $y_i \in J_i, \bigcup_{i=1}^l J_i = \mathbb{R}$ and the composition of ϕ_i with the projection $f^{-1}(y_i) \times J_i$ onto J_i is $f|f^{-1}(J_i)$.

Now we glue these trivializations to get a global one. We can suppose that $i \geq 2$, $U_{i-1} \cap J_i = (a, b)$ and $\psi_{i-1} : f^{-1}(U_{i-1}) \to f^{-1}(y_1) \times U_{i-1}$ is a definable $C^r G$ diffeomorphism with $f|f^{-1}(U_{i-1}) = proj_{i-1} \circ \psi_{i-1}$, where $U_{i-1} = \bigcup_{s=1}^{i-1} J_s$ and $proj_{i-1}$ denotes the projection $f^{-1}(y_1) \times U_{i-1} \to U_{i-1}$. Take $z \in (a, b) = U_{i-1} \cap J_i$. Then since $f^{-1}(y_1) \cong f^{-1}(z) \cong$ $f^{-1}(y_i), f^{-1}(y_1)$ is definably $C^r G$ diffeomorphic to $f^{-1}(y_i)$. Hence we may assume that ϕ'_i is a definable $C^r G$ diffeomorphism from $f^{-1}(J_i)$ to $f^{-1}(y_1) \times J_i$. Then we have a definable $C^r G$ diffeomorphism

$$\psi_{i-1} \circ (\phi'_i)^{-1} : f^{-1}(y_1) \times (a, b) \to f^{-1}(y_1) \times (a, b), (x, t) \mapsto (q(x, t), t)$$

Take a C^r Nash function $u: \mathbb{R} \to \mathbb{R}$ such that $u = \frac{a+b}{2}$ on $(-\infty, \frac{3}{4}a + \frac{1}{4}b]$ and u = id on $[\frac{1}{4}a + \frac{3}{4}b, \infty)$. Let

$$\tau: f^{-1}(y_1) \times (a, b) \to f^{-1}((a, b)), \tau(x, t) = \psi_{i-1}^{-1}(q(x, u(t)), t).$$

Then τ is a definable $C^r G$ diffeomorphism such that $\tau = (\phi'_i)^{-1}$ if $\frac{1}{4}a + \frac{3}{4}b \leq t \leq b$ and $\tau = \psi_{i-1}^{-1} \circ (P \times id)$ if $a \leq t \leq \frac{3}{4}a + \frac{1}{4}b$, where $P : f^{-1}(y_1) \to f^{-1}(y_1), P(x) = q(x, \frac{a+b}{2})$. Thus we can define

$$\tilde{\psi}_i : f^{-1}(U_i) \to f^{-1}(y_1) \times U_i,$$
$$\tilde{\psi}_i(x) = \begin{cases} (P \times id)^{-1} \circ \psi_{i-1}(x), & f(x) \le \frac{3}{4}a + \frac{1}{4}b \\ \tau^{-1}(x), & \frac{3}{4}a + \frac{1}{4}b \le f(x) \le b \\ \phi_i(x), & f(x) > b \end{cases}$$

Then $\tilde{\psi}_i$ is a definable $C^r G$ diffeomorphism. Thus $\tilde{\psi}_l : X \to f^{-1}(y_1) \times \mathbb{R}$ is a definable $C^r G$ diffeomorphism. Therefore we have the required a definable $C^r G$ diffeomorphism $(H, f) : X \to X^* \times \mathbb{R}$.

We now prove the general case by induction on k.

Let $k \geq 1$. By the inductive hypothesis, for any i, there exists a definable C^rG diffeomorphism $h_i = (h'_i, f) : (X_i; X_i \cap X_1, \dots, X_i \cap X_{i-1}, X_i \cap X_{i+1}, \dots, X_i \cap X_k) \to (X_1^*; X_i^* \cap X_1^*, \dots, X_i^* \cap X_{i+1}^*, \dots, X_i^* \cap X_k^*) \times \mathbb{R}$. In particular $h'_1 | X_2 \cap X_1 : (X_2 \cap X_1; X_2 \cap X_1 \cap X_3, \dots, X_2 \cap X_1 \cap X_k) \to (X_2^* \cap X_1^*; X_2^* \cap X_1^* \cap X_3^*, \dots, X_2^* \cap X_1^* \cap X_k^*)$ is a definable C^rG map. By Theorem 2.2, we have a G invariant definable open neighborhood W_2 of $X_1 \cap X_2$ in X_2 and a definable C^rG map $\Phi_2 : (W_2; X_2 \cap X_1; X_2 \cap X_1 \cap X_k) \to (X_2^*; X_2^* \cap X_1^*; X_2^* \cap X_1^* \cap X_3^*, \dots, X_2^* \cap X_1^* \cap X_k^*)$ such that $\Phi_2 | X_2 \cap X_1 \cap X_k) \to (X_2^*; X_2^* \cap X_1^*; X_2^* \cap X_1^* \cap X_3^*, \dots, X_2^* \cap X_1^* \cap X_k^*)$ such that $\Phi_2 | X_2 \cap X_1 = h'_1 | X_2 \cap X_1$. Take a G invariant definable open neighborhood $W'_2 \subset W_2$ of $X_1 \cap X_2$ in X_2 whose closure in X_2 is properly contained in W_1 and a G invariant definable C^rG map $\theta_{X_2^*} : O \to X_2^*$ with $\theta | X_2^* = id_{X_2^*}$.

Define

$$\Psi_2'(x) = \begin{cases} \theta_{X_2^*}((1-a(x))h_2'(x) + a(x)\Phi_2(x)), & x \in W_1 \\ h_2'(x), & x \in X_2 - W_1 \end{cases}.$$

Then $\Psi'_2 : (X_2; X_2 \cap X_1, \ldots, X_2 \cap X_k) \to (X_2^*; X_2^* \cap X_1^*, \ldots, X_2^* \cap X_k^*)$ is a definable $C^r G$ map which is an approximation of h'_2 . Thus h'_1 is extensible to a definable continuous G map $\tilde{\Psi}_2 : X_1 \cup X_2 \to X^*$ such that $\tilde{\Psi}_2 | X_1$ and $\tilde{\Psi}_2 | X_2$ are definable $C^r G$ maps.

Repeating this process, we have a definable continuous G map $\Phi : (\bigcup_{i=1}^{k} X_i; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*)$ such that each $\Phi | X_i$ is a definable $C^r G$ map which is an approximation of h'_i .

By Proposition 2.3, we have a G invariant definable open neighborhood U of $\bigcup_{i=1}^{k} X_i$ and a definable $C^r G$ map $L: U \to X^*$ extending Φ .

Take a *G* invariant definable open neighborhood U' of $\bigcup_{i=1}^{k} X_i$ in *X* whose closure in *X* is properly contained in *U* and a *G* invariant definable C^r function $b: X \to \mathbb{R}$ such that its support lies in *U* and b|U' = 1. By Theorem 2.2, we have a *G* invariant definable open neighborhood *V* of X^* in Ω and a definable $C^r G$ map $\theta_{X^*}: V \to X^*$ with $\theta_{X^*}|X^* = id_{X^*}$.

Define h'(x) =

$$\begin{cases} \theta_{X^*}((1-b(x))H(x)+b(x)L(x)), & x \in U\\ H(x), & x \in X-U \end{cases}.$$

Then $h': (X; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*)$ is a definable $C^r G$ map. Thus $h = (h', f) : (X; X_1, \ldots, X_k) \to (X^*; X_1^*, \ldots, X_k^*) \times \mathbb{R}$ is a definable $C^r G$ map which is an approximation of (H, f). Therefore by Theorem 2.4, h is the required definable $C^r G$ diffeomorphism.

3. Proof of Theorem 1.2 and 1.3

From now on we assume that \mathcal{M} is exponential, admits the C^{∞} cell decomposition and has piecewise controlled derivatives.

Theorem 3.1 (1.2 [12]). Every definable closed subset of \mathbb{R}^n is the zero set of a definable C^{∞} function on \mathbb{R}^n .

Proposition 3.2. Let G be a compact definable C^{∞} group and X a definable $C^{\infty}G$ manifold in a representation Ω of G. Then X is definably $C^{\infty}G$ imbeddable into $\Omega \times \mathbb{R}^2$ such that X is bounded and $\overline{X} - X$ consists of at most one point, where \overline{X} denotes the closure of X.

Proof. We may assume that X is noncompact. Then $\overline{X} - X$ is a G invariant closed definable subset of Ω . Let $\pi : \Omega \to \Omega/G \subset \mathbb{R}^s$ denote the orbit map. Then $i \circ \pi : \Omega \to \mathbb{R}^s$ is a proper polynomial map (see Section 4 [10]), where $i : \Omega/G \to \mathbb{R}^s$ denotes the inclusion. Hence $i \circ \pi | \overline{X} - X : \overline{X} - X \to \mathbb{R}^s$ is proper because $\overline{X} - X$ is closed in Ω . Thus $i \circ \pi(\overline{X} - X)$ $(=\pi(\overline{X} - X))$ is a definable closed subset of \mathbb{R}^s . Applying Theorem 3.1, there exists a definable C^∞ function $f : \mathbb{R}^s \to \mathbb{R}$ with $\pi(\overline{X} - X) = f^{-1}(0)$. Hence $F := f \circ \pi : \Omega \to \mathbb{R}$ is a G invariant definable C^∞ function with $\overline{X} - X = F^{-1}(0)$. Therefore replacing the graph of 1/F by X, we may assume that X is closed in $\Omega \times \mathbb{R}$. Applying the stereographic projection $s : \Omega \times \mathbb{R} \to S(\Omega \times \mathbb{R}^2), s(X)$ satisfies our requirements, where $S(\Omega \times \mathbb{R}^2)$ denotes the unit sphere of $\Omega \times \mathbb{R}^2$.

The proof of Proposition 3.2 proves the following two theorems and proposition.

Theorem 3.3. Let G be a compact definable C^{∞} group and Ω a representation of G. Every G invariant definable closed subset of Ω is the zero set of a G invariant definable C^{∞} function on Ω .

Theorem 3.4. Let G be a compact definable C^{∞} group and X an affine definable $C^{\infty}G$ manifold. Suppose that A, B are G invariant definable disjoint closed subsets of X. Then there exists a G invariant definable C^{∞} function $f : X \to \mathbb{R}$ such that f|A = 1 and f|B = 0.

Proposition 3.5. Let G be a compact definable C^{∞} group, X a noncompact affine definable $C^{\infty}G$ manifold and X_1, \ldots, X_n noncompact definable C^rG submanifolds of X in general position in X such that $(X; X_1, \ldots, X_n)$ satisfies the frontier condition. Then we may assume that X is a bounded definable $C^{\infty}G$ submanifold of some representation Ω of G such that $\overline{X_1} - X_1 = \cdots = \overline{X_n} - X_n = \overline{X} - X = \{0\}$, where \overline{X} (resp. $\overline{X_i}$) denotes the closure of X (resp. X_i) in Ω . Using Theorem 3.4, a similar proof of P4 [11] proves the following proposition.

Proposition 3.6. Let Y, Z be affine definable $C^{\infty}G$ manifolds, Y_1, \ldots, Y_k (resp. Z_1, \ldots, Z_k) definable $C^{\infty}G$ submanifolds of Y (resp. Z) in general position in Y (resp. Z). Suppose that $F : (\bigcup_{i=1}^k Y_i; Y_1, \ldots, Y_k) \to (\bigcup_{i=1}^k Z_i; Z_1, \ldots, Z_k)$ is a definable continuous G map. If each $F|Y_i$ is a definable $C^{\infty}G$ map $(Y_i; Y_i \cap Y_1, \ldots, Y_i \cap Y_{i-1}, Y_i \cap Y_{i+1}, \ldots, Y_i \cap Y_k) \to (Z_i; Z_i \cap Z_1, \ldots, Z_i \cap Z_{i-1}, Z_i \cap Z_{i+1}, \ldots, Z_i \cap Z_k)$, then there exist a G invariant definable open neighborhood W of $\bigcup_{i=1}^n Y_i$ in Y and a definable $C^{\infty}G$ map $H : (W; Y_1, \ldots, Y_k) \to (Z; Z_1, \ldots, Z_k)$ such that $H|\bigcup_{i=1}^k Y_i = F$.

Proof of Theorem 1.2. Using Theorem 3.4 and Proposition 3.6, a similar proof of Theorem 1.1 proves Theorem 1.2. \Box

Proof of Theorem 1.3. By Proposition 3.5, we may assume that X is a bounded definable $C^{\infty}G$ submanifold of a representation Ω of G such that $\overline{X_1} - X_1 = \cdots = \overline{X_n} - X_n = \overline{X} - X = \{0\}.$

Let $f: X \to \mathbb{R}, f(x) = ||x||^{-1}$, where ||x|| denotes the standard norm of x in Ω . Since f is submersive and G invariant and by Theorem 2.1, there exist a sufficiently large positive number α and a definable $C^{\infty}G$ map $h_1: f^{-1}((\alpha, \infty)) \to f^{-1}(\alpha)$ such that $h := (h_1, f): f^{-1}((\alpha, \infty)) \to f^{-1}(\alpha) \times (\alpha, \infty)$ is a definable $C^{\infty}G$ diffeomorphism.

Let $f_i := f|X_i$. Since $(X; X_1, \ldots, X_k)$ satisfies the frontier condition and X_1, \ldots, X_k are in general position in X, each $Y_i := f_i^{-1}((\alpha, \infty))$ is a definable $C^{\infty}G$ submanifold of $Y := f^{-1}((\alpha, \infty)), Y_1, \ldots, Y_k$ are in general position in Y and for every $1 \le i_1 < \cdots < i_s \le k, f|Y_{i_1} \cap \cdots \cap Y_{i_s} : Y_{i_1} \cap \cdots \cap Y_{i_s} \to (\alpha, \infty)$ is a proper surjective submersion. Since (α, ∞) is definably C^{∞} diffeomorphic to \mathbb{R} , there exists a G invariant surjective submersive definable C^{∞} function $F : (Y; Y_1, \ldots, Y_k) \to \mathbb{R}$ satisfying the conditions in Theorem 1.2.

Applying Theorem 1.2 to F, there exists a definable $C^{\infty}G$ diffeomorphism $(f^{-1}((\alpha, \infty)); f_1^{-1}((\alpha, \infty)), \ldots, f_k^{-1}((\alpha, \infty))) \to (f^{-1}(\alpha); f_1^{-1}(\alpha), \ldots, f_k^{-1}(\alpha)) \times \mathbb{R}$. Thus we have a definable $C^{\infty}G$ diffeomorphism $H : (f^{-1}((\alpha, \infty)); f_1^{-1}((\alpha, \infty)), \ldots, f_k^{-1}((\alpha, \infty))) \to (f^{-1}(\alpha); f_1^{-1}(\alpha), \ldots, f_k^{-1}(\alpha)) \times (\alpha, \infty)$. Since α is sufficiently large, $f^{-1}([0, \alpha + 1])$ is a compact definable $C^{\infty}G$ manifold with boundary $f^{-1}(\alpha + 1)$ and each $f_i^{-1}([0, \alpha + 1])$ is a compact definable $C^{\infty}G$ submanifold of $f^{-1}([0, \alpha + 1])$ with boundary $f_i^{-1}(\alpha + 1)$. Therefore using H and Theorem 3.4, $(X; X_1, \ldots, X_k)$ is definably $C^{\infty}G$ diffeomorphic to $(f^{-1}([0, \alpha + 1]; f_1^{-1}([0, \alpha + 1], \ldots, f_k^{-1}([0, \alpha + 1])))$.

References

- M. Coste and M. Shiota, Nash triviality in families of Nash manifolds, Invent. Math. 108 (1992), 349-368.
- [2] L. van den Dries, *Tame topology and o-minimal structure*, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries, A. Macintyre, and D. Marker, *Logarithmic-exponential power series*, J. London. Math. Soc., II. Ser. 56, No.3 (1997), 417-434.
- [4] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183–205.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.

- [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377–4421.
- [7] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Edu. Wakayama Univ. 54. (2004), 1-15.
- [8] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Edu. Wakayama Univ. 55. (2005), 23-36.
- [9] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [10] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [11] T. Kawakami, Relative properties of definable C^rG manifolds, to appear.
- [12] G.O. Jones, Zero sets of smooth functions in the Pfaffian closure of an o-minimal structure, Proc. Amer. Math. Soc. 136 (2008), 4019–4025.
- [13] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257–259.
- J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), no. 4, 751–777.
- [15] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics vol. 150, Birkhäuser, Boston, 1997.
- [16] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp