Definable t-regularity theorem

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

kawa@center.wakayama-u.ac.jp

Abstract

We consider locally definable C^{∞} manifolds, locally definable C^{∞} maps and study *t*-regularity of locally definable C^{∞} maps

2000 Mathematics Subject Classification. 14P10, 14P20, 03C64.

Keywords and Phrases. O-minimal, locally definable sets, locally definable C^{∞} manifolds, locally definably homotopic.

1. Introduction.

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, e^x, \dots)$ be an exponential o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. General references on ominimal structures are [1], [2], see also [7]. For example, the Nash category is a special case of the definable C^{∞} category and it coincides with the definable C^{∞} category based on $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ ([8]). Equivariant definable category is studied in [3], [4], [5].

In this paper "definable" means "definable with parameters in \mathcal{M} ", everything is considered in \mathcal{M} , "countable" means finite or countably infinite and each locally definable map is continuous unless otherwise stated.

A subset X of \mathbb{R}^n is called *locally defi*nable if for every $x \in X$ there exists a definable open neighborhood U of x in \mathbb{R}^n such that $X \cap U$ is a definable subset of X. Clearly every definable set is locally definable, every compact locally definable set is definable and any open subset of \mathbb{R}^n is locally definable. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be locally definable sets. We say that a continuous map $f: U \to V$ is a *locally definable map* if for any $x \in U$ there exists a definable open neighborhood W_x of x in \mathbb{R}^n such that $f|U \cap W_x$ is definable.

Two locally definable maps $f, h : X \to Y$ between locally definable sets are *locally* definably homotopic if there exists a locally definable map $H : X \times [0, 1] \to Y$ such that H(x, 0) = f(x) for all $x \in X$ and H(x, 1) = h(x) for all $x \in X$.

Let M^n, N^p be locally definable C^{∞} manifolds of dimension n, p, respectively, $f: M^n \to N^p$ a locally definable C^{∞} map, N_1^{p-q} a (p-q)-dimensional locally definable C^{∞} submanifold of N^p . We say that f is tregular on N_1^{p-q} if for any $x \in f^{-1}(N_1^{p-q}),$ $(df)_x(T_xM^n) + T_{f(x)}N_1^{p-q} = T_{f(x)}N^p.$

Theorem 1.1. Let M^n , N^p be locally definable C^{∞} manifolds of dimension n, p, respectively, $f : M^n \to N^p$ a locally definable C^{∞} map, N_1^{p-q} a (p-q)-dimensional locally definable C^{∞} submanifold of N^p . Let A be a locally definable closed subset of M^n such that there exists a locally definable open neighborhood U of A such that f|U is t-regular on N_1^{p-q} . For every positive locally definable continuous function $\delta : M^n \to \mathbb{R}$, there exists a locally definable C^{∞} map $h : M^n \to$ N^p satisfies the following conditions.

- (1) h is locally definable homotopic to f.
- (2) g is a δ -approximation of f.
- (3) g is t-regular on N_1^{p-q} .
- (4) h|A = f|A.

Theorem 1.2. Every n-dimensional locally definable C^{∞} manifold X is locally definably C^{∞} imbeddable into \mathbb{R}^{2n+1} .

Theorem 1.2 is proved in [6] the case where r is a positive integer.

2 Proof of results

Remark that for any locally definable map f between locally definable sets X and Y, if X is compact, then f(X) is a definable set and $f : X \to f(X) (\subset Y)$ is a definable map.

Note that the maps $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ defined by $f_1(x) = \sin x, f_2(x) = \cos x$, respectively, are analytic but not locally definable in $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, and that the field $\mathbb{Q} \ (\subset \mathbb{R})$ of rational numbers is not a locally definable subset of \mathbb{R} . For example, if $\mathcal{M} = \mathbf{R}_{an,exp}$, then $f : (-1,1) \to \mathbb{R}, f(x) = \sin \frac{1}{1-x^2}$ is locally definable but not definable.

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open sets. A C^r map $f : U \to V$ is called a *locally* definable C^r map if f is locally definable. A locally definable C^r map $f : U \to V$ is called a *locally* definable C^r diffeomorphism if there exists a locally definable C^r map h : $V \to U$ such that $f \circ h = id$ and $h \circ f = id$.

Definition 2.1 ([6]). Let $1 \le r \le \omega$. (1) A locally definable subset X of \mathbb{R}^n is called a *d*-dimensional locally definable C^r submanifold of \mathbb{R}^n if for any $x \in X$ there exists a definable C^r diffeomorphism ϕ from some definable open neighborhood U of the origin in \mathbb{R}^n onto some definable open neighborhood V of x in \mathbb{R}^n such that $\phi(0) =$

 $x, \phi(\mathbb{R}^d \cap U) = X \cap V.$ Here $\mathbb{R}^d = \{x \in U\}$ \mathbb{R}^n last (n-d) components of x are zero. (2) A locally definable C^r manifold X of dimension d is a C^r manifold with a countable system of charts $\{\phi_i : U_i \to \mathbb{R}^d\}$ such that for each i and $j \phi_i(U_i \cap U_j)$ is a definable open subset of \mathbb{R}^d and the map $\phi_i \circ$ $\phi_i^{-1} | \phi_i(U_i \cap U_j) : \phi_i(U_i \cap U_j) \rightarrow \phi_j(U_i \cap U_j)$ U_i) is a definable C^r diffeomorphism. We call these atlas locally definable C^r . Locally definable C^r manifolds with compatible atlases are identified. Clearly every definable C^r manifold is a locally definable C^r manifold. A subset Y of a locally definable C^r manifold X is called a k-dimensional locally definable C^r submanifold of X if each point $x \in Y$ there exists a locally definable C^r chart $\phi_i : U_i \to \mathbb{R}^d$ of X such that $x \in U_i$ and $U_i \cap Y = \phi_i^{-1}(\mathbb{R}^k)$, where $\mathbb{R}^k \subset \mathbb{R}^d$ is the vectors whose last (d-k)components are zero.

(3) A locally definable C^r manifold is *affine* if it can be imbedded into some \mathbb{R}^n in a locally definable C^r way.

Since a locally definable set X is paracompact, for any countable definable open cover $\{U_{\alpha}\}$ of X, there exists a partition of unity $\{f_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$ such that each f_{α} is locally definable. Thus we have the following theorem.

Theorem 2.2. Let X be a locally definable C^{∞} manifold. Every locally definable open cover of X has a subordinate locally definable C^{∞} partition of unity.

Definition 2.3. Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ be locally definable sets, $f, h : X \to Y$ locally definable maps and $\delta : X \to \mathbb{R}$ a positive locally definable function. We say that gis a δ -approximation of f if $d_m(f(x), g(x)) < \delta(x)$ for any $x \in X$, where d_m means the standard metric of \mathbb{R}^m .

Proposition 2.4. Let X be a locally definable C^{∞} manifold. Then every C^{∞} map $f : X \to \mathbb{R}^n$ is approximated in the C^{∞} Whitney topology by a locally definable C^{∞} map $h : X \to \mathbb{R}^n$. Proof. By Theorem 2.2, we have a locally definable C^{∞} partition of unity $\{\phi_j\}_{j=1}^{\infty}$ subordinates to some locally finite open definable cover $\{X_j\}_{j=1}^{\infty}$ of X such that $X = \bigcup_{j=1}^{\infty} \operatorname{supp} \phi_j$ and $\overline{X_j}$ is compact. For any j, take an open neighborhood U_j of supp ϕ_j in X such that $\overline{U_j}$ is compact. Applying the polynomial approximation theorem, we have a locally definable C^{∞} map $h_j : U_j \to \mathbb{R}^n$ which approximates $f|U_j$. If our approximation is sufficiently close, then $\sum_{j=1}^{\infty} \phi_j h_j$ is a locally definable C^r approximation of f. \Box

Proof of Theorem 1.2. By Whitney's imbedding Theorem, there exists a C^r imbedding $f : X \to \mathbb{R}^{2n+1}$. Since imbeddings from X to \mathbb{R}^{2n+1} are open in $C^r(X, \mathbb{R}^{2n+1})$, we have the required locally definable C^r imbedding $h: X \to \mathbb{R}^{2n+1}$.

For a positive number k, $C^n(k)$ means the open ball of \mathbb{R}^n with center 0 and radius k and $\overline{C^n(k)}$ denotes the closure of $C^n(k)$.

Proof of Theorem 1.1. Since N_1^{p-q} is a locally definable C^{∞} submanifold, it is covered by a system of chart of N^q such that:

(1) $N_1^{p-q} \subset \bigcup_{i=1}^{\infty} Y_i$

(2) (Y_i, k_i) is a chart of N^p .

(3) $k_i: Y_i \cap N_1^{p-q}: Y_i \cap N_1^{p-q} \to \mathbb{R}^{p-q}.$

Let $Y_0 = N^p - N_1^{p-q}$. Then $\{Y_i | i \in \mathbb{N} \cup \{0\}\}$ is a locally definable open cover and $\{f^{-1}(Y_i) | i \in \mathbb{N} \cup \{0\}\}$ is a locally definable open cover of M^n . On the other hand, $M^n = U \cup (M^n - A)$ is a locally definable open cover. Thus there exists a locally definable C^{∞} atlas $\{(V_j, h_j) | j \in \mathbb{Z}\}$ such that:

(1) $\{V_j\}$ is a locally finite refinement of $\{f^{-1}(Y_i)\}$ and $\{U, M - A\}$.

(2) $h_j(V_j) = C^n(3).$

(3) Let $W_j = h_j^{-1}(C^n(1))$. Then $\{W_j\}$ is a locally definable open cover of M^n .

Renumbering V_j , if necessary, $j \leq 0$ if $V_j \subset U$.

We can take a locally definable C^{∞} function $\phi : \mathbb{R}^n \to \mathbb{R}$ such that:

(1) $\phi(\overline{C^n(1)}) = 1.$

(2)
$$0 < \phi(C^n(2) - \overline{C^n(1)}) < 1.$$

(3)
$$\phi(\mathbb{R}^n - C^n(2)) = 0.$$

We define
$$\phi_i : M^n \to \mathbb{R}$$
 to be

$$\phi_i(x) = \begin{cases} \phi \circ h_i(x), & x \in V_i \\ 0, & x \notin V_i \end{cases}$$
. Then ϕ_i is a

locally definable C^{∞} function and for each $f(V_j)$, there exists an i(j) such that $f(V_j) \subset Y_{i(j)}$.

By induction, we construct the required map g. Let $f_0 = f$. Then $f_0|U$ is t-regular on N_1^{p-q} . Assume that a locally definable C^{∞} map $f_{k-1} : M^n \to N^p$ is constructed such that:

(1) $f_{k-1} | \bigcup_{j < k} W_j$ is *t*-regular on N_1^{p-q} .

(2) $f_{k-1}(\overline{U_j}) \subset Y_{i(j)}$.

We now construct a locally definable C^{∞} map $f_k: M^n \to N^p$ such that:

(1) $f_k | \bigcup_{j \leq k} W_j$ is t-regular on N_1^{p-q} .

(2) $f_k(\overline{U_j}) \subset Y_{i(j)}$.

(3) f_k is a $\frac{\delta}{2^k}$ approximation of f_{k-1} .

Put $i = i(\tilde{k})$ and $\lambda_k := p_2 \circ k_i \circ f_{k-1} \circ (h_k)^{-1} : C^n(2) \to \mathbb{R}^q$, where $p_2 : \mathbb{R}^{p-q} \times \mathbb{R}^q$ denotes the projection onto the second factor. Then λ_k is a locally definable C^{∞} map. For any $\epsilon > 0$, there exist (q, n) matrix A and (q, 1) matrix B such that:

(1) The absolute value of any element of A and B is less that ϵ .

(2) Put L(x) := Ax + B. Then 0 is a regular value of $\lambda_k + L$.

Define $f_k(x) =$

$$\begin{cases} k_i^{-1}(k_i \circ f_{k-1}(x) + L(h_k(x))\phi_k(x)), & x \in V_k \\ f_{k-1}(x), & x \in M - U_k \\ \text{Then } f_k \text{ is a locally definable } C^{\infty} \text{ map.} \end{cases}$$

Since we take sufficiently small A, B, f_k is a $\frac{\delta}{2^k}$ approximation of f_{k-1} and $f_k(\overline{U_j}) \subset Y_{i(j)}$.

Thus $f_k | \bigcup_{j \leq k} W_j$ is t-regular on N_1^{p-q} . Let $g(x) = \lim_k f_k(x)$. Then g is a locally definable C^{∞} map with required properties.

References

- L. van den Dries, *Tame topology and o*minimal structure, Lecture notes series
 248, London Math. Soc. Cambridge Univ. Press (1998).
- [2] L. van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.

- [3] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Edu. Wakayama Univ. 54. (2004), 1-15.
- [4] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [5] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on (ℝ, +, ·, <), Bull. Korean Math. Soc. 36 (1999), 183–201.
- [6] T. Kawakami, Locally definable C^sG manifold structures of locally definable C^rG manifolds, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 56 (2006), 1–12.
- [7] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.
- [8] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).