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Abstract. We study de�nable groups in dense/codense expansions of geo-
metric theories. We show that under some tame assumptions, de�nably amenable
groups de�nable in the old language remain amenable in the expansion. Un-
der the same assumptions, we show that the connected component G00

P in the

expansion agrees with the connected component G00 in the original language.
We also analyze imaginaries in the expansion when the underlying theory has
disintegrated algebraic closure.

1. Introduction

In this paper we study de�nable groups in expansions of geometric structuresM
with dense-codense subsets. Examples include lovely pairs, H-structures and groups
with the Mann propery. This family of examples shares many common features,
key among them a classi�cation of de�nable subsets of M into large or small sets,
or more generally, sets of large dimension n in Mn.

This subject has been actively studied in recent years, for example, Eleftheriou,
Günaydin and Hieronymi in [14] study de�nable groups in pairs when the underlying
theory is o-minimal and try to recover the group in terms of the interplay of their
large and small pieces (see the introduction of section 3 for more details). There
is also the work of Martin-Pizarro and Blossier on groups de�nable in lovely pairs
of algebraically closed �elds and well as the study by Baro and Martin-Pizarro of
small groups in dense-codense pairs of real closed �elds. A desription of de�nable
groups in H-structures of stable geometric theories was developed by the authors of
this paper in [3]. In the supersimple SU-rank 1 case, Zou [20] has shown that groups
de�nable in H-structures are de�nably isomorphic to type-de�nable groups in the
base language. While we were �nishing this paper, Eleftheriou [15] has shown that
any large group de�nable in a dense-codense expansion of an o-minimal theory is
de�nable in the original theory.

This paper deals mostly with the questions of preservation of de�nable amenabil-
ity under dense-codense expansions, and their e�ect on the connected component
G00 of the group. We obtain positive results, namely, a left invariant measute
extends naturally to the new de�nable sets and the connected components are in-
variant under these expansions.
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In Section 3, we focus on a group G de�nable in real closed �elds. We consider
expansions by dense-codense predicates and show that there are no new de�nable
subgroups of G of the same �large dimension�.

In Section 4, we consider the general setting of geometric theories. We show
how to extend left-invariant de�nable measures, and whenever generic types exists,
how to extend them to the new language in order for them to remain generic. We
show that de�nable subgroups of 1-dimensional groups are either de�nable in the
old language or small. Similarly, in larger dimensions we show that large de�nable
subgroups are also de�nable in the old language. We also study the connected
component of the group G00 in both languages and shjow that it is invariant under
the expansion.

In Section 5, we deal with small groups in lovely pairs of geometric structures and
G-structures, as developed in [4]. In the case of lovely pairs of geometric structures,
we start with a de�nable group in the old language whose structure is enriched by
traces of de�nable groups from the large model. As before, we show how to extend
measures to the new language and how to express generics in the expansion in terms
of the generics in the old language.

In Section 6, we move into the setting of a real closed �eld expanded with a
multiplicative subgroup G with the Mann property, and we analyze the de�nable
subgroups of G in the new language and show that they are de�nable in the pure
group language. We prove similar results when G is a subgroup of the circle group
S1 with the Mann property. As before, the connected components G00 agree in the
two languages.

In Section 7, we study imaginaries in dense-codense expansions, focusing on
the case when T is geometrically trivial, and show how to adapt the criterion for
elimination of imaginaries from [17] to reduce the �new� imaginaries to the �old�
ones.

2. Preliminaries

Recall that a complete theory T is geometric if (1) it eliminates the quanti�er
∃∞ and (2) the algebraic closure satis�es the exchange property in models of T .
By independence we shall mean algebraic independence and use the symbol |̂ to
denote this independence relation. Whenever M |= T and ~a ∈ M , we write acl(~a)
for the algebraic closure of ~a inside M and tp(~a) for the type of ~a inside M .

We start by de�ning dense/codense expansions:

De�nition 2.1. Let T be a complete geometric theory in a language L and let
M |= T . Let P be a new unary predicate and let LP := L∪{P} be the correspond-
ing extended language. Let (M,P (M)) denote an expansion of M to LP , where
P (M) := {x ∈M | P (x)}.

(1) (M,P (M)) is called a dense/co-dense expansion if, for any non-algebraic
L-type p(x) ∈ S1(A) where A ⊂ M has a �nite dimension, p(x) has real-
izations both in P (M) and in M \ aclT (A ∪ P (M)).

(2) A dense/co-dense expansion (M,P (M)) is called a lovely pair if P (M) is
an elementary substructure of M .

(3) A dense/co-dense expansion (M,P (M)) is called an H-structure if P (M)
is an L-algebraically independent subset of M .
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(4) AssumeM is a real �eld or a real closed �eld and P (M) is the multiplicative
group generated by H(M) where (M,H(M)) is an H-structure. We call
such a pair (M,P (M)) a G-structure. It is also a dense/codense expansion.

(5) Assume T = ACF or T = RCF and P (M) is a multiplicative subgroup.
We say P (M) has the Mann property if...

We will also consider pairs (M,P ), where P is a binary predicate (for example the
group of roots of unity in the unit circle [2]), but the tools used for these expansions
will be similar to the ones used for unary predicates. Whenever we consider them,
we will say how the arguments change in these other settings.

De�nition 2.2. Given a complete theory TP which is dense/dense and (M,P ) |=
TP and A ⊂M , we write P (A) for P (M)∩A. We say such a set A is P-independent
if A |̂

P (A)
P (M), that is, if A is algebraically independent from P (M) over P (A).

Whenever ~a ∈ M , we write aclP (~a) for the algebraic closure of ~a inside (M,P )
and tpP (~a) for the type of ~a inside (M,P ).

De�nition 2.3. Let T be geometric letM |= T and let (M,P ) be a dense/condese
expansion. We say the pair satis�es the Type Equality Assumption (TEA) if

whenever ~a,~b,~c ∈M are such that ~a is P -independent,

~b |̂
~a

P (M),

~c |̂
~a

P (M),

and
tp(~b~a) = tp(~c~a).

Then
tpP (~b~a) = tpP (~c~a).

Remark 2.4. The theories of lovely pairs, H-structures and G-structures satisfy
TEA.

Proof. Using transitivity and the fact that ~a is P -independent we get~b~a |̂
P (~a)

P (M)

and ~c~a |̂
P (~a)

P (M). Thus both tuples ~b~a, ~c~a are P -independent. Then the state-

ment is clear for the cases of lovely pairs and H-structures. For the case of G-

structures, it su�ces to note that G(~b) = G(~c) ⊂ G(~a). Therefore, the G-parts of
~b~a and ~c~a coincide with G(~a) (and, in particular, have the same group type). �

This assumption TEA allows us to describe new de�nable sets in terms of old
de�nable sets up to small sets. A version of the following result for sets of dimension
one was central to many arguments on dense/codense pairs [3, 5, 6], in particular for
understanding which model-theoretic properties transfer form Th(M) to Th(M,P ).

Proposition 2.5. Let (M,P ) be a dense/codense-structure satisfying TEA, let
Z ⊂ Mn be L-de�nable and let Y ⊂ Z be LP -de�nable. Then there is X ⊂ Z L-
de�nable such that ldim(Y4X) < dim(Z). Moreover, if both Y and Z are de�nable
over a P -independent tuple ~a, then X can also be chosen de�nable over ~a.

Proof. Let k = dim(Z). If ldim(Y ) < k or ldim(Z \ Y ) < k, the result is clear, so
we may assume that both Y and Z \ Y have ldim equal to k. We may also assume
that (M,P ) is su�ciently saturated. Assume that Y and Z are de�nable over ~a and
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that ~a is P -independent. Let ~b ∈ Y be such that ldim(~b/~a) = k and let ~c ∈ Z \Y be

such that ldim(~c/~a) = k. Since ~b ∈ Z we have that dim(~b/~a) = k = ldim(~b/~a), so
~b |̂

~a
P . Similarly, we get ~c |̂

~a
P . Then by TEA, tp(~b~a) 6= tp(~c~a), so there is X~b~c,

a set L-de�nable over ~a, such that ~b ∈ X~b~c and ~c 6∈ X~b~c. By compactness, we may

�rst assume that X~b~c only depends on tp(~b/~a) and applying compactness again we

may assume that X~b~c does not depend on tp(~b/~a) and we will call it simply X.

Thus for ~b′ ∈ Y and ~c′ ∈ Z \ Y such that ldim(~b′/~a) = k and ldim(~c′/~a) = k, we

have ~b′ ∈ X and ~c′ ∈ Z \X. This shows that ldim(Y4X) < k. �

3. Definable groups in expansions of real closed fields

We begin this section with the study of de�nable groups in pairs of the form
(R,P ), where R is a real closed �eld and P is a new predicate where P stands
for a small subset of R or of a power of R. Some properties of groups de�nable
in expansions similar to the ones we are considering were studied by Eleftheriou,
Günaydin and Hieronymi in [14]. In particular, they conjectured:

Let (F, ∗) be a LP -de�nable group. Then there is a short exact sequence
0→ B → U → K → 0 and a map τ : U → H where

• U is ∨-de�nable.

• B is ∨-de�nable in L with dim(B) = ldim(F ).

• K is de�nable and small.

• τ : U → F is a surjective group homomorphism and

• all maps involved are ∨-de�nable.
While the conjecture remains open in our setting, we present some positive results

when F is the subgroup of an L-de�nable group and the pair satis�es some tameness
candition. We start with one dimensional groups, where the arguments are more
transparent.

De�nition 3.1. We say (R,P ) satis�es the Partition Assumption if for all
X ⊂ Rn which is L-de�nable and 1-dimensional and all Y ⊂ X which is LG-
de�nable, there is a �nite partition of X into cells {Ci : i ≤ m} such that each Ci
is either a point or a 1-dimensional cell and Ci ∩ Y is small or cosmall in Ci ∩X
for i = 1, . . . ,m.

Lemma 3.2. Assume that TEA holds for (R,P ), then the partition assumption
also holds.

Proof. It follows from Proposition 2.5. �

Thus there are many expansions that also satisfy the partition assumption, for
example dense pairs, H-stuctures, and expansions with groups satisfying the Mann
propertry of �nite index inside R>0 (the work of Günaydin and van den Dries [11])
and inside S (the work of Belegradek and Zil'ber [2]). It also holds for G-structures
(see [?]).

We begin with divisible groups:
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Lemma 3.3. Assume F ≤ (R,+) is LP -de�nable and the Partition Assumption
holds. Then either F is small or F = (R,+).

Proof. Assume F ≤ (R,+) is LP -de�nable. If F is small there is nothing to prove.
Assume otherwise. Then by the Partition Assumption there is a partition −∞ =
a0 < a1 < · · · < am = ∞ of R and an interval (ai, ai+1) such that F is cosmall
in (ai, ai+1). Now let f ∈ F ∩ (ai, ai+1), then (F ∩ (ai, ai+1)) − f is cosmall in
(ai, ai+1)− f and contains 0. Thus, after possibly going to a di�erent partition, we
may assume that (ai, ai+1) contains 0.
Claim F ∩ (ai, ai+1) = (ai, ai+1)
Assume otherwise and let c ∈ (ai, ai+1) \ F . Then the coset c+ F is cosmall in

(c+ai, c+ai+1). Since (ai, ai+1) is an open set containing 0, (ai, ai+1)∩ (c+ai, c+
ai+1) is an open interval and both F and c+F are cosmall in the interval, so they
must intersect, a contradiction.

Thus F ∩ (ai, ai+1) = (ai, ai+1), in particular the elements ai/2, ai+1/2 belong
to F and thus both elements ai, ai+1 belong to F .

Now consider (ai, ai+1) + (ai, ai+1) = (2ai, 2ai+1) which is a subset of F . Since
F ∩ (ai+1, ai+2) ⊃ (ai+1, 2ai+1) ∩ (ai+1, ai+2), the set F must be cosmall in the
interval (ai+1, ai+2). Similarly, it is easy to show that F must be cosmall in the
interval and (ai−1, ai). It follows as in the claim that F ∩(ai+1, ai+2) = (ai+1, ai+2)
and F ∩ (ai−1, ai) = (ai−1, ai). Proceeding inductively we get that F = R. �

A similar argument alos works for more general 1-dimensional groups:

Lemma 3.4. Assume that (T, ·) is a 1-dimensional L-de�nable group and let F ≤
(T, ·) be LP -de�nable. Also assume that the Partition Assumption holds. Then
either F is small or F is L-de�nable.

Proof. Let F ≤ (T, ·) be LG-de�nable of dimension 1. If F is small there is nothing
to prove. Assume otherwise. Since we need to see (T, ·) as topological group, we
give (T, ·) the t-topology. Then we can write T = U1 ∪ · · · ∪ Ur where the sets Ui
are de�nable and there is a de�nable bijection between Ui and some open subset
Vi in R.

Then by the generalized partition assumption, there is a partition of Uj into cells

{Cji : i ≤ mj} such that each Cji is either a point or a 1-dimensional cell and Cji ∩F
is small or cosmall in Ci for i = 1, . . . ,m. Then for some pair of indexes i, j, the
cell Cji is 1-dimensional and Cji ∩ F is cosmall.

Let f ∈ Cji ∩F and apply to T the left translation by f−1, which is a continuous

bijection in T . Then the set DF = f−1 · (Cji ∩ F ) is 1-dimensional, contains the

identity and is cosmall in the t-open set D = f−1 · Cji .
Claim F ∩D = D. Assume otherwise and let d ∈ D \ F . Then the coset dF is

cosmall in d ·D. Since D is a 1-dimensional t-open set containing e, d ·D is also a
t-open set and they intersect in a t-open set where both F and d · F are cosmall, a
contradiction.

Thus F contains an open set around the identity in the t-topology. Since trans-
lation is a homeomorphism, we get that F is t-open.

Assume now that that Ckl is another 1-dimensional t-open set such that F ∩Ckl 6=
∅. Then the intersection is t-open non-empty and thus not small. It follows as in
the claim that the intersection must agree with Ckl . We get that F is the union of
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the 1-dimensional t-open sets Ckl that it intersects and maybe some extra points
and so it must be L-de�nable. �

The arguments can be generalized to higher dimensional subgroups under stronger
assumptions about the expansion.

Proposition 3.5. Let M |= RCF and let (M,P ) be a dense/codense expansion
satisfying TEA. Assume that (T, ·) is an L-de�nable group in Mn and let F ≤ (T, ·)
be LP -de�nable. Then either ldim(F ) < dim(T ) or F is L-de�nable.

Proof. Let k = dim(T ) and let F ≤ (T, ·) be LP -de�nable. If ldim(F ) < k there is
nothing to prove. Assume otherwise. We need to see (T, ·) as topological group, so
we equip (T, ·) with the t-topology [?]. Then we can write T = U1 ∪ · · · ∪ Ur ∪ S
where the sets Ui are de�nable, pairwise disjoint and there is a de�nable bijection
between Ui and some open subset Vi in R

k and dim(S) < dim(T ).
Then by Lemma 2.5 and cell decomposition, there is a partition of Uj into

cells {Cji : i ≤ mj} such that each Cji is either k-dimensional t-open cell and

ldim(Cji4(Cji ∩ F )) < dim(Cji ) or ldim(F ∩ Cji ) < k for i = 1, . . . ,m. Then for

some pair of indexes i, j, the cell C = Cji is k-dimensional, ldim(C ∩ F ) = k and
ldim(C4(C ∩ F )) < k.

Let f ∈ C ∩F and apply to T the left translation by f−1, which is a continuous
bijection in T . Then the set DF = f−1 · (C∩F ) has large dimension k and contains
the identity. On the other hand the setD = f−1 ·C is t-open and ldim(D4DF ) < k.
Claim DF = D.
Assume otherwise and let d ∈ D \DF . Since F is a group, F is disjoint from dF .

On the other hand ldim(d ·DF4d ·D) < k. Since D is a k-dimensional t-open set
containing e, d ·D is also a t-open set and they intersect in an non-empty t-open set
(d belongs to the intersection), so dim(D∩d ·D) = k. Thus ldim(DF ∩d ·DF ) = k,
a contradiction.

Thus F contains an open set around the identity in the t-topology. Since trans-
lation is a homeomorphism, we get that F is t-open.

Assume now that that Ckl is another k-dimensional t-open set such that F∩Ckl 6=
∅. Then the intersection is t-open non-empty and thus has dimension k. It follows as
in the claim that the intersection must agree with Ckl . We get that F is the union
of the k-dimensional t-open sets Ckl that it intersects and maybe some smaller

dimensional pieces. Let X be the union of the sets Cji of dimension k such that

F ∩ Cji 6= ∅. Then X ⊂ F and ldim(X4F ) < k. If c ∈ F then choose g ∈ F such
that dim(g/c) = k, then g, c · g−1 ∈ X and c = (cg−1) · (g) ∈ X · X. This shows
F = X ·X and thus F is L-de�nable. �

Observation 3.6. Note that in the middle of the argument above we get that F is
t-open. If the dense/codense expansion has o-minimal open core then we get right
away that F is L-de�nable. This is the case for lovely (dense) pairs (see [8]).

Corollary 3.7. Let M |= RCF and let (M,P ) be a dense/codense expansion
satisfyin TEA. Assume that (T, ·) is an L-de�nable group in Mn. Write T 0 for the
connected component of T in the sense of L and T 0

P for the connected component
of T in the sense of LP . Then T 0 = T 0

P .

Proof. Clearly T 0
P ⊂ T 0. On the other hand, if F ≤ (T, ·) be LP -de�nable, we

have two options. Either ldim(F ) < dim(T ) and thus there are unboundedly many
6



cosets of F in T or ldim(F ) = dim(T ) and then F is L-de�nable and thus if it has
�nite index in the sense of LP then it has �nite index in the sense of L. �

4. Geometric structures, amenability and generics

The next result works in a more general setting: we assume Th(M) is geomet-
ric. We will again consider L-de�nable groups G and the subgroups de�nable in
dense/codense expansions. We will see how to extend measures and we will prove
that under mild assumptions G00 does not change in the expansion. We start by
proving a variation of the last proposition from the previous section.

Proposition 4.1. Let T be geometric and let (M,P ) be a dense/codense expansion
satisfying TEA. Assume that (G, ·) is an L-de�nable group inMn and let F ≤ (G, ·)
be LP -type-de�nable. Then either ldim(F ) < dim(G) or F is L-type-de�nable.

Proof. Let k = dim(T ) and let F ≤ (G, ·) be LP -de�nable and assume that k =
ldim(F ).

It is enough to consider the case where F = ∩i∈ωFi is a countable intersection
of de�nable sets, since any type-de�nable group is an intersection of such groups.
We may also assume all sets under consideration (G, F0, F1,. . . ) are de�nable over
a P -independent set B.

By Proposition 2.5, there are L-de�nable sets Ai, also de�nable over B, such
that ldim(Fi4Ai) < k and Ai ⊂ G. Let A = ∩i∈ωAi, then A is L-type de�nable
over B. We will write [A] for the set of types in LP with parameters in B that
extend A and [F ] for the ones that extend F . We use a similar notation for [Ai]
and [Fi].
Claim If p ∈ [F ]4[A] then ldim(p) < k.
Let p ∈ [F ]4[A] and �rst assume that p ∈ [F ] \ [A]. Then for some i we have

p ∈ [Fi] \ [Ai] so ldim(p) < k. The argument is similar for p ∈ [A] \ [F ].
Let X = {p ∈ S(B) : A ∈ p,dim(p) = k}. Since A is L type-de�nable, X is also

L type-de�nable, we only need add to the type A the negation of all sets of smaller
dimension with parameters in B (here we use the fact that T eliminates ∃∞). As
before write [X] for the set of types in LP with parameters in B that extend X.
Claim If p ∈ [F ]4[X] then ldim(p) < k.
Assume otherwise and let p ∈ [F ] \ [X] be such that ldim(p) = k. Let p0 = p �L

and notice that A ∈ p0. Then dim(p0) = k so p0 is generic in the sense of dimension
and p0 ∈ X, so p ∈ [X], a contradiction. Assume now that there is p ∈ [X] \ [F ].
Then A ∈ p. Let p0 = p �L, then dim(p0) = k and by the extension property
ldim(p0) = k. Then p ∈ [A] and since ldim([F ]4[A]) < k we have that p ∈ [F ], a
contradiction.
Claim X is closed under generic multiplication.
Let a1, a2 ∈ X and assume that dim(a2/Ba1) = k. We may also assume that

a1, a2 |̂ B P . Then a1, a2 ∈ F , a1 · a2 ∈ F and since a1, a2 are independent, we

have dim(a1 · a2/B) = k, so a1 · a2 ∈ X.
Claim X is closed under inverses.
This is clear, since F is closed under inverses and X contains of the generics (in

the sense of large dimension) of F .
Claim X ·X is a group.
Let a1 · a2 ∈ X · X and let c1 · c2 ∈ X · X. Let c′1 ∈ X be such that

dim(c′1/{a1, a2, c1, c2}) = k. Then dim(c′1/{a1, a2}) = k and so dim(c′1/a1 · a2) = k
7



and (a1 · a2 · c′1) ∈ X. If we let c′2 = (c′1)−1 · c1 · c2 we also have that c′2 ∈ X. Then
c1c2 = c′1c

′
2 and a1 · a2 · c1 · c2 = (a1 · a2 · c′1) · c′2 ∈ X ·X as we wanted.

Since every element in F is the product of two generics, it is easy to see that
F = X ·X and thus F is L-type-de�nable.

�

In what follows we will concentrate on de�nable amenability.

Proposition 4.2. Let (M,P ) be a dense/codense-structure satisfying TEA. Let G
be a de�nably amenable group de�nable in M |= T , such that dim(G) = k, and
let µ is a left-invariant measure such that for all L-de�nable subsets A ⊂ G such
that dim(A) < k we have µ(A) = 0. Then the measure µ extends to a de�nable
left-invariant measure on LP -de�nable subsets of G.

Proof. Let Y ⊂ G be LP -de�nable. By Proposition 2.5, there exists an L-de�nable
X ⊂ G such that ldim(X4Y ) < k. Extend µ by de�ning µ(Y ) = µ(X).
Claim. The function µ is well-de�ned.
Suppose X ′ ⊂ G is another L-de�nable subset such that ldim(X ′4Y ) < k. Let

S = Y4X and S′ = Y4X ′. Then Y = X4S and Y = X ′4S′

∅ = Y4Y = (X4S)4(X ′4S′) = (X4X ′)4(S4S′).
Then

dim(X4X ′) = ldim(X4X ′) = ldim(S4S′) < k.

By assumption, µ(X4X ′) = 0, so µ(X) = µ(X ′).
�

Example 4.3. Strongly minimal theories. Assume T is a strongly minimal theory,
M |= T su�ciently saturated and G ⊂Mn a de�nable group. AssumeMD(G) = k.
Then G is de�nably amenable and for a A ⊂ G de�nable, we have that µ(A) = is the
number of generic types in ϕ(~x) divided by k. Then whenever MR(A) = dim(A) <
k the set A has no generics and µ(A) = 0.

Example 4.4. Pseudo�nite �elds (see [16]). Assume T is the theory of pseudo-
�nite �elds, F = ΠUFi is such an ultraproduct (in particular it is ℵ1-saturated)
and G ⊂ Fn a de�nable group. Assume dim(G) = k. Then G has a measure

associated to the counting measure: assuming G = ϕ(Mn,~b) and ~b = (~bi)U and

ψ(~x,~b) de�nes a subset, we can de�ne µ(ψ(~x,~b)) as the ultralimit with respect to

U of |ψ(Fni ,
~bi)|/|ϕ(Fni ,

~bi)|. This counting measure makes G a de�nably amenable
group. For A ⊂ G de�nable, whenever we have dim(A) < k we get that µ(A) = 0.
A similar argument holds for 1-dimensional asymptotic classes.

Example 4.5. Let T be an o-minimal expansion of the theory of densely ordered
abelian groups. Now let (M,+, <, . . .) be a su�ciently saturated model of T . Con-
sider G = (M,+). Let µ∞ be the measure concentrated in the type p∞(x) = {x >
a|a ∈ M}; let µ−∞ be concentrated in the type p−∞(x) = {x < a|a ∈ M}. For
every 0 ≤ r ≤ 1 let µr(−) = rµ∞(−) + (1 − r)µ−∞(−). Then whenever A ⊂ M
has dimension 0, it is �nite, and for every 0 ≤ r ≤ 1, µr(A) = 0. A similar result
holds for de�nable subsets of the group G = (Mn,+): if µ is an invariant Keisler
measure on de�nable subsets of G, then for any de�nable subset A of G such that
dim(A) < n, µ(A) = 0.
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Similarly, if we consider a normalized Haar measure on S1 in a model of RCF
then de�nable subsets of dimension 0 are �nite and have measure zero.

All the natural examples considered in this paper satisfy the �tameness� as-
sumption form this section, namely, whenever a group is de�nably amenable, its
de�nable subsets of smaller dimension have measure zero. This leads us to the
following question.

Question 4.6. Assume T is a geometric theory, M |= T su�ciently saturated and
G ⊂Mn a de�nable group. Assume dim(G) = k and G is de�nably amenable. Does
it hold that whenever A ⊂ G is de�nable and dim(A) < k , we have that µ(A) = 0.

In [3] the authors showed that for G |= T a strongly minimal, (G,P ) an H-
structure and Z ≤ Gn a LP -de�nable subgroup, we have that Z is L-de�nable.
The argument used stabilizers of generic elements in ω-stable theories using that
the restriction of a LH -generic element to the old language is also generic. We will
see how to use generics in amenable NIP groups (as presented in [9]) to recover a
similar result.

De�nition 4.7. LetM be a su�ciently saturated NIP structure, let G ⊂Mn be a
de�nably amenable group and let µ be a left invariant measure. We say that ϕ(x)
is a f -generic formula if µ(ϕ(x)) > 0 (see [9, Theorem 1.2]). We say that q(x) ∈ SG
is f -generic if ϕ(x) is f -generic for all ϕ(x) ∈ q(x).

Corollary 4.8. Let (M,P ) be a dense/codense-structure satisfying TEA. Also as-
sume (M,P ) is su�ciently saturated and its theory is NIP. Let G be a L-de�nably
amenable group de�nable in M such that dim(G) = k, and let µ is a left-invariant
measure such that for all L-de�nable subsets A ⊂ G such that dim(A) < k we have
µ(A) = 0. Let µH be the extension from the previous proposition and let q ∈ SP (G)
be f -generic. Then:

(1) p = q �L∈ S(G) is f -generic.
(2) Stab(p) = Stab(q) and thus G00 = G00

P .

Proof. In the following, all de�nable subsets under consideration are de�nable sub-
sets of G.

(1) Let ϕ(x) ∈ p. Then ϕ(x) ∈ q and since q is f -generic we have µ(ϕ(x)) =
µH(ϕ(x)) > 0.

(2) Assume that g ∈ G is such that gq = q. Then for every ϕ(x) ∈ p we have
that gϕ(x) ∈ q, so gϕ(x) ∈ p and thus Stab(p) ⊃ Stab(q).

Now let g ∈ Stab(p) and let ψ(x) ∈ q. Since q is f -generic, the assumption on the
measure µ implies that q can not contain sets of large dimension smaller than k, so
we must have that ldim(q) = k. By Proposition 2.5 there is an L-de�nable set ψ′(x)
such that ldim(ψ(x)4ψ′(x)) < k. Thus ψ′(x) ∈ q and ψ′(x) ∈ p. Since g ∈ Stab(p),
gψ′(x) ∈ p and so gψ′(x) ∈ q. Since ldim(ψ(x)4ψ′(x)) < k, ldim(gψ(x)4gψ′(x)) <
k and thus if gψ(x) 6∈ q we must have that gψ(x)4gψ′(x) ∈ q which contradicts
that the large dimension of q is k. Thus gψ(x) ∈ q and g ∈ Stab(q).

Finally, since both types are f -generic, the last part follows from the fact that
Stab(p) = G00 and Stab(q) = G00

P . �

Corollary 4.9. Let T be geometric and let (M,P ) be a dense/codense expansion
satisfying TEA. Assume that (S, ·) is an L-de�nable group in Mn. Write S00 for
the type-de�nable connected component of S in the sense of L and S00

P for the
type-de�nable connected component of S in the sense of LP . Then S00 = S00

P .
9



Proof. Let F ≤ (S, ·) be LP -type-de�nable of bounded index. Then by the co-
density property and saturation we must have ldim(F ) = dim(S). Now apply the
previous proposition to show that F is L-type-de�nable. �

Remark 4.10. Let T be an o-minimal theory, let M |= T and let (M,P ) be
a dense/codense expansion satisfying TEA. Assume that (G, ·) is an L-de�nable
group in Mn which is de�nably compact, so Pillay's conjecture holds [12]. Then
G00 = G00

P , the quotient G/G00 = G/G00
P is a Lie group and dimLie(G/G

00
P ) =

dim(G) = ldim(G). On the other hand, the logic topology on G/G00 coming from
the old language may di�er from the logic topology on G/G00

P , the predicate P may
induce a new dense/codense closed subset in G/G00

P . For example consider (M,P )
a lovely pair and G = S1 the unit circle group. Then G is de�nably compact and
the collection {(x, y) ∈ S1 : x ∈ P} is a de�nable dense codense subset of the unit
circle.

Remark 4.11. Let T be an NIP theory, letM |= T and let (M,P ) be a dense/codense
expansion satisfying TEA. Assume that (G, ·) is an L-de�nable group in Mn which
is de�nably amenable and let µ be a left invariant measure on the de�nable subsets
of G. Then G/G00 is the Ellis group associated to the dynamical system (G,SG).
Furthermore, assume that for all L-de�nable subsets A ⊂ G such that dim(A) < k
we have µ(A) = 0. Then µ extends to a left-invariant measure on LP -de�nable sub-
sets of G and Newelski's conjecture also holds for G/G00

P = G/G00 in the extended
language.

Question 4.12. With the same initial assumptions of the previous remark, assume
now that there are L-de�nable subsets A ⊂ G such that dim(A) < k but µ(A) > 0.
What can we say about the system (G,SG) in the extended language?

5. Small groups

Now we will study the de�nable subgroups of G inside pairs of the form (M,P ),
where either (M,P ) is a lovely pair of geometric theories or M = R is a real closed
�eld and G is either a dense subgroup of R>0 with the Mann property (of in�nite
rank as in as in section ?? or of �nite rank as studied by Günaydin and van den
Dries) or G is a dense subgroup of S(R) with the Mann property (of in�nite rank
as in as in section ?? or of �nite rank as studied by Belegradek and Zil'ber [2]).

5.1. Groups in lovely pairs with induced structure. Fix (M,P ) a lovely
pairs of geometric structures and G ⊂Mn ∅-de�nable. Then GP = G(P (M)), the
interpretation of G inside the predicate, is a de�nable group. The goal is to study
GP as a de�nable group in (M,P ).

We start with amenability and prove a result analogous to Proposition 4.2

Proposition 5.1. Let (M,P ) be a su�ciently saturated lovely pair of geometric
theories. Let G ⊂ Mn be a L-∅-de�nably amenable group such that dim(G) = k,
and let µ be a left-invariant measure such that for all L-de�nable subsets A ⊂ G with
dim(A) < k we have µ(A) = 0. Then the measure induces a de�nable left-invariant
measure on LP -de�nable subsets of GP .

Proof. Let Y ⊂ GP be LP -de�nable. By Proposition, there exists an L-de�nable
X ⊂ G such that Y = X ∩ GP . We de�ne a measure µP in Y as µP (Y ) = µ(X).
We will now prove that the function µP is well-de�ned. Suppose X ′ ⊂ G is another
L-de�nable subset such that Y = X ′ ∩GP .
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Claim dim(X ′4X) < k.
Assume otherwise, and suppose that dim(X ′ \X) = k. Choose ~a ∈ X ′ \X and

we may assume that ~a = (a1, . . . , ak, ak+1 . . . an), where a1, . . . , ak are independent
and ak+1 . . . an ∈ acl(a1, . . . , ak). By the density property we may assume that
a1, . . . , ak ∈ P (M) and since P (M) � M we get ~a ∈ P (M). But then ~a ∈ (X ′ ∩
P (M)) \ (X ∩ P (M)) = Y \ Y , a contradiction.

Since dim(X ′4X) < k by the assumption on the measure we have that µ(X) =
µ(X ′) and µP is well-de�ned. Since the original measure was left-invariant, so is
the extension. �

Once we preserve amenability we can proceed as in the last section to compare
generic elements in the original language with generics in the extended language.
The result is analogous to Corollary 4.8

Proposition 5.2. Let (M,P ) be a pair of geometric theories and assume Th(M)
is NIP. Let G be a L-∅-de�nably amenable group such that dim(G) = k, and let µ
is a left-invariant measure such that for all L-de�nable subsets A ⊂ G such that
dim(A) < k we have that µ(A) = 0. Let µP be the left invariant measure on GP

de�ned in the previous proposition and let q ∈ SP (M) extending GP be an f -generic
type (in the extended language). Then:

(1) p = q �L∈ S(M) is f -generic in the old language.
(2) Stab(p) ∩GP = Stab(q), where we see the stabilizer Stab(p) as a subgroup

of G(M) and Stab(q) as a subgroup of GP .

Proof. First note that since Th(M) is NIP, so is Th(M,P ).
(1) Let ϕ(~x,~c) ∈ p, where ϕ(~x, ~y) be a L-formula. Then ϕ(~x,~c) ∈ q and since q

is f -generic we have µ(ϕ(~x,~c) ∧G) = µP (ϕ(~x,~c) ∧GP ) > 0.
(2) Assume that g ∈ GP is such that gq = q. Then for every ϕ(~x) ∈ p with

ϕ(~x) ⇒ G(~x) we have that gϕ(~x) ∈ q, so gϕ(~x) ∈ p and thus Stab(p) ∩ GP ⊃
Stab(q).

Now let g ∈ Stab(p)∩GP and let ψ(~x) ∈ q. We may assume that ψ(~x)∧GP (~x) =
ψ(~x). Then there is ϕ(~x) L-de�nable set such that ψ(~x) = GP ∧ ϕ(~x). Again, we
may assume that ϕ(~x) ∧ G(~x) = ϕ(~x). Thus ϕ(~x) ∈ q and ϕ(~x) ∈ p. Since
g ∈ Stab(p), gϕ(~x) ∈ p and so gϕ(~x) ∈ q. This implies that gψ(x) = gGP ∧gϕ(x) =
GP ∧ gϕ(x) ∈ q. This shows that g ∈ Stab(q). �

Corollary 5.3. Let T be an NIP theory, let M |= T and let (M,P ) be a lovely
pair. Assume that (G, ·) is an L-de�nable group over ∅ in Mn which is de�nably
amenable and let µ be a left invariant measure on the de�nable subsets of G. Note
that G(P (M)) is also a saturated model of the group and that µ restrictcs to a left in-
variant measure on the de�nable subsets of G(P (M)). Then G(P (M))/G00(P (M))
is the Ellis group associated to the dynamical system (G,SG). Furthermore, assume
that for all L-de�nable subsets A ⊂ G such that dim(A) < k we have µ(A) = 0.
Then µ extends to a left-invariant measure µP on LP -de�nable subsets of G(P (M))
and Newelski's conjecture also holds for the dynamical system (GP , SGP ), where
SGP is the space of LP -types extending GP . Furthermore, the Ellis group does not
change in the expansion, i.e. G(P (M))/G00(P (M)) = GP /(GP )00 with the induced
structure from (M,P ).

Observation 5.4. Let G, p, q be as in the previous corollary. Since both types
are f -generic, we have that Stab(p) = G(M)00 (interpreting the stabilizer in the
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model M) and Stab(q) = (GP )00 (interpreting the stabilizer in the group GP in
model (M,P (M))). So, since T is NIP, G(P (M))00 = G(M)00 ∩ GP = (GP )00.
In particular, G(P (M))00 = (GP )00. Thus, the connected component of G(P (M))
viewed as a de�nable group in P (M) is the same as its connected component in the
sense of LP .

Proposition 5.5. Let T be an o-minimal theory, let M |= T and let (M,P ) be a
lovely pair. Assume that (G, ·) is an L�∅-de�nable group in Mn which is de�nably
compact. Then the quotient G(P (M))/G(P (M))00 = GP /(GP )00 is a Lie group
and dimLie(G

P /(GP )00) = dim(G), where dim(G) is in the sense of o-minimal
theories. Furthermore the logic topology on G(P (M))/G(P (M))00 agrees with the
logic topology on GP /(GP )00 and agrees with the Lie topology on the quotient.

Proof. The �rst part follows from Proposition 5.2, Observation 5.4, and the fact
that Pillay's conjecture holds for de�nably compact groups in an o-minimal theory
[12].

For the second part, by the positive solution of Pillay's conjecture in [12], the logic
topology on G(P (M))/G(P (M))00 agrees with the Lie topology on the quotient.
Since the logic topology on GP /(GP )00 is compact and Hausdor� and re�nes the
logic topology on G(P (M))/G(P (M))00 which is also compact and Hausdor�, the
two logic topologies coincide. Thus the two logic topologies on the quotient coincide
with the Lie topology. �

We concentrate now in o-minimal theories expanding the theory of dense ordered
groups. The following results is very similar to Lemma 3.3, but in the dual setting
of small groups.

Lemma 5.6. Let T be an o-minimal theory in a language L = {+, <, . . . }, let
M |= T and let (M,P ) be a lovely pair. Then whenever F ≤ (P (M),+) is an
LP -de�nable subgroup we have that F is also L-de�nable.

Proof. Since F is de�nable in the pair, F = P ∩ C for some C ⊂ M which is
L-de�nable. We may write C = C1 ∪C2 ∪ · · · ∪Cn, where each Ci is either a point
or an open interval M . Then F = (C1 ∩ P ) ∪ (C2 ∩ P ) ∪ · · · ∪ (Cn ∩ P ). Note that
whenever Ci is an open interval M , Ci ∩ P is a convex set in P (M) possibly with
non-standard endpoints.

If F is �nite there is nothing to prove, so we may assume that F is in�nite and
�x some index i such that Ci is in�nite. Let ai ∈ Ci ∩ P ; since F is a group,
F − ai = F and let Di = Ci − ai ⊂ F . The set Di is again an open interval
in M but now it contains 0. We may assume that Di = (c1, d1) where c1 < 0
and d1 > 0. By the density of P we can �nd e1 ∈ P with d1/2 < e1 < d1 and
e2 ∈ P with c1 < e2 < c1/2. Since (e2, e1) ∩ P ⊂ F , then (2e2, 2e1) ∩ P ⊂ F and
thus Di ∩ P ⊂ (2e2, 2e1) ∩ P and (2e2, 2e1) ∩ P is an L-de�nable subset of P (M)
contained in F . Let Ei = (2e2, 2e1)+ai and note that Ei∩P is again a L-de�nable
subset of P contained in F .

Thus every L-de�nable subset Ci ∩ P of F can be covered with an L-de�nable
subset Ei ∩ P of P which is again contined in F . Ths shows F is L-de�nable. �

The main ingredient of the previous proof was that (M,+, <) is an ordered group.
A similar poof works for a multiplicative subgroup F ≤ (P (M), ·) if the theory is o-
minimal and extends the theory of �elds and also for subgroups F ≤ (S1(P (M)), ·).
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Question 5.7. Let T be an o-minimal theory in a language L = {+, <, . . . }, let
M |= T and let (M,P ) be a lovely pair and let F be a 1-dimensional L-de�nable
group. Is every LP -de�nable subgroup of F also L-de�nable?.

5.2. Groups in Mann expansions with induced structure. In this section we
study groups in pairs of the form (R,G), where R is a real closed �eld and G ≤ R≥0

is a group with the Mann property. We will consider the case studied in [11] where
G is a �nite rank group and also G-structures, where the groups G are generated
by by a set H, where H ⊂ R≥0 is dense and algebraically independent. We start
by recalling some de�nitions from [11].

De�nition 5.8. For m ≥ 1, let G[m] = {g ∈ G : ∃h ∈ G g = hm}.
Let ~k = (k1, . . . , kn) ∈ Zn and for each m ≥ 1 de�ne Gm,~k := {(g1, ..., gn) ∈ Gn :

gk11 · . . . · gknn ∈ G[m]} and G~k := {(g1, ..., gn) ∈ Gn : gk11 · . . . · gknn = 1}
For each n ≥ 1, let D(n) be the collection of �nite intersections of the groups

Gm,~k and G~k where ~k ∈ Zn.

We will also need the following characterization of types in G-structures (see
Theorem 4.3 in [4]):

Lemma 5.9. Let (K,G) and (K ′, G′) be su�ciently saturated models of TG and
let g1, . . . , gn ∈ G, g′1, . . . , g′n ∈ G′ be such that:

(1) For every ~k = (k1, . . . , kn) ∈ Zn and every m ≥ 1, we have (g1, . . . , gm) ∈
Gm,~k if and only if (g′1, . . . , g

′
m) ∈ G′

m,~k
.

(2) For any semialgebraic set V de�nable over ∅, ~g ∈ V if and only if ~g′ ∈ V .
Then tpG(~g) = tpG(~g′). Moreover, if ~b ∈ K is such that ~g~b, ~g′~b are G-independent,

G(~g~b) = ~g, G(~g~b) = ~g′ and for any semialgebraic set V de�nable over ~b, ~g ∈ V if

and only if ~g′ ∈ V then tpG(~g/~b) = tpG(~g′/~b).

From this it follows that the de�nable subsets of Gn in the pair (R,G) are �nite
unions of intersections of semialgebraic sets with realizations of group-formulas
θ(~x,~c), where θ(~x,~c) de�nes a �nite boolean combination of cosets of subgroups of
the form F ∈ D(n), where n = |~x|. Note that all groups F ∈ D(n) are de�nable
and dense. This same description of de�nable subsets of the group applies the the
case studied in [11], the proof provided in [4] gives a back and forth system that
also applies for groups of �nite rank.

This description above is the analogue, for tuples in the predicate, of the Type
Equality Assumption that we used earlier in this paper. In this setting need to
take into account the group-type. For dimension one, the structure of G is linear
modulo some new cuts induced by R and thus we do not expect to have new
de�nable groups.

We will try to simplify the picture when we deal with G-structures:

Lemma 5.10. Assume (R,G) is a model of the theory of G-structures. Then

Gn,k = G[ n
gcd(n,k) ]. In particular, if (n, k) = 1 then Gn,k = G[n].

Proof. We may work in the model (R,G), where G(R) is generated by the inde-
pendent set H(R). Then g = hs11 . . . hsll , where hi are distinct elements of H(R).

Note that hi are algebraically independent. Suppose g ∈ Gn,k. Then gk = en for

some e ∈ G(R). Write e as h′
t1
1 . . . h′

tm
m for some distinct h′i ∈ H(R). Therefore,
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gk = hks11 . . . hksll = en = h′
nt1
1 . . . h′

ntm
m . Then clearly m = l and (possibly, after

a permutation) hi = h′i, ksi = nti. Write k = gcd(n, k)k′ and n = gcd(n, k)n′. It

follows that si = n′ti
k′ , and since k′ is coprime with n′, for any i the fraction ti

k′ is

an integer. Therefore n′ divides si for all i ≤ m, and hence g ∈ G[n′] = G[ n
gcd(n,k) ].

Conversely, assume g ∈ G[ n
gcd(n,k) ]. Then gk ∈ G[ nk

gcd(n,k) ] = G[nk′] ⊂ G[n], i.e.
g ∈ Gn,k.

Hence, Gn,k = G[ n
gcd(n,k) ], as needed.

�

Lemma 5.11. Whenever n, k ≥ 1, G[n] ∩G[k] = G[m], where m = lcm(n, k).

Proof. Since this is an elementary property, we may work in the model (R,G) where
G is generated by the independent set H. Clearly G[m] ⊂ G[n] ∩ G[k]. Assume
that g = hs11 . . . hsll where hi stand for generators of G which are algebraically

independent. If g ∈ G[n] ∩G[k] then each of s1, . . . , sl is divisible by n and by k, so
they are also divisible by m. �

Lemma 5.12. Every boolean combination of cosets of groups in D(1) is either
�nite or dense.

Proof. As before, we may work in the model (R,G) where G is generated by the
independent set H. By co-density of H, any coset of G[n] is co-dense. Since G is a
dense ordered subgroup of R>0, then for every n > 1, the group G[n] is also dense
in R>0, and so is every coset of G[n].

By Lemma 5.11, if a, b ∈ G then (aG[n]) ∩ (bG[k]) is either empty or a coset of
G[lcm(n,k)]. For any n1, . . . , nm > 1, [G : G[ni]] is in�nite and whenever a1, . . . , am ∈
G, we have that G\

⋃
i≤m(aiG

[ni]) is an in�nite union of cosets of G[l], where

l = lcm(n1, . . . , nm), and, thus, is dense and co-dense.
�

We now deal with the expansion (R,G), where the pair is either a G-structure
(as in [4]), or an expansion of R with a multiplicative subgroup G ≤ R>0 which is
dense and has the Mann property and for every n ≥ 1 G[n] has �nite index in G
(as in [11]).

Proposition 5.13. Let F ≤ G be LG-de�nable. Then F ∈ D(1).

Proof. We consider two cases.
Case 1. We �rst deal with the case of G-structures. Let F ≤ G be LG-de�nable,

then by Lemma 5.9 we can write F = ((a1, a2) ∩ B1) ∪ ((a3, a4) ∩ B2) ∪ · · · ∪
((a2n, a2n+1)∩Bl)∪F0 where each Bi is a boolean combination of cosets of groups
in D(1), all ai > 0, the intervals (a2i, a2i+1) are disjoint and F0 is a �nite set of
points.

Assume that R is the standard real �eld and F ≤ R>0 is a subgroup. Then
either F is just the identity, in�nite cyclic or dense. Assume that F 6= {e} so it
must be in�nite and thus for some i, (a2i, a2i+1) ∩ Bi is in�nite. By Lemma 5.12,
every boolean combination of cosets of groups in D(1) which is not �nite is dense,
and thus, Bi ∩ (a2i, a2i+1) is dense in (a2i, a2i+1). Therefore F must be dense in
R>0. Note that being dense is a �rst order property and thus this property is true
in all models of the theory.
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Let c ∈ (a1, a2) ∩ B1, then after multiplying by c−1 we may assume that 1 ∈
(a1, a2) ∩B1. Since F is dense in R>0, then for every l, F l is dense in R>0 and in
a saturated model F div, the group consisting of the divisible elements of F , is also
dense in R>0.
Claim B1 and B2 di�er by a �nite set.
Let t ∈ (a3, a4) ∩ B2 be divisible. First observe that t−1G[n] = G[n] and that

for every coset dG[n], we also get t−1dG[n] = dG[n], so t−1B2 di�ers from B2 by at
most a �nite set. Then t−1 · (a3, a4) ∩ B2 = (a3/t, a4/t) ∩ t−1B2 also contains the
identity and (a3/t, a4/t) is an open set around the identity. Let c1 = max(a1, a3/t),
c2 = min(a2, a4/t). Then on the open set (c1, c2), we have F ∩ (c1, c2) = (c1, c2) ∩
B1 = (c1, c2) ∩ t−1B2, so B1 and t−1B2 agree on an open interval and thus they
di�er by at most a �nite set. The claim follows from this result.

Thus after modifying the �nite set F , and using the density of S, we may assume
all the sets Bi are the same and since the group is dense we can write S = ([(b1, b2)∩
B] \ F1) ∪ F2, where F1, F2 are �nite sets and b1 = 0, b2 = ∞. Thus S = B ∪ F2

which is clearly an element in D(1).
Case 2. Now assume G is a dense multiplicative subgroup of R>0 with the

Mann property, and all the G[n] have �nite index in G. Then any �nite Boolean
combination of cosets of elements of D(1) is a �nite union of cosets of elements of
D(1).

�

Now we see how to modify the arguments in the previous proof to deal with
the expansion (R,G), where G ≤ S(R) is dense, has the Mann property and it is
generated by an independent collection of dense-codense elements. This includes
the case studied in [4] and in [2]. We start with some notation.

Let Gre (or Gre(K))be the projection of G (or G(K)) onto the �rst coordinate.
The set Gre is a subset of the interval (−1, 1]. Since G is closed under complex

conjugates (complex reciprocals), for each a ∈ Gre both a+ = (a,
√

1− a2) and

a− = (a,−
√

1− a2) belong to G. For a tuple ~e = (e1, . . . , en) of elements of Gre,
we write ~e+ = (e+

1 , . . . , e
+
n ) for the corresponding tuple of elements of G. We

will also use the notation are for the �rst coordinate of any a ∈ S(K). Given a
structure (K,G) as above, for any set A ⊂ K, we say that A is Gre-independent if
A in independent from Gre over the intersection. Clearly, dcl(Gre) = dcl(G) in K
(in the ring language).

The main tool we will use is the following description of types from [4], Theorem
5.7.

Fact 5.14. Let (K,G) and (K ′, G) be two models of the theory TGS of G-structures

in the circle. Then whenever ~a = ~b~g ∈ K, ~a′ = ~b′~g′ ∈ K ′ are two Gre-independent
tuples such that ~g = Gre(~a), ~g′ = Gre(~a

′), and (writing G for G(K) and G′ for
G′(K))

(1) (G,~g+) ≡gr (G′, ~g′+) (the types of ~g+ and ~g′+ agree in the sense of multi-
plicative groups)

(2) tpRCF (~a) = tpRCF (~a′) (their types agree in the sense of real closed �elds)

Then tpG(~a) = tpG(~a′).

Lemma 5.15. Let U ≤ G be LG-de�nable. Then U ∈ D(1) or U is �nite.
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Proof. Let U ≤ G be LG-de�nable, then by Fact 5.14, we can write U = (C1∩B1)∪
(C2 ∩B2)∪ · · · ∪ (Cn ∩Bn)∪F where each Bi is a boolean combination of cosets of
groups in D(1) (see De�nition 5.8 but now consider G as a subgroup of S(R) which
is a stable 1-based group), the collection Ci is a family of 1-dimensional cells that
are disjoint and F is a �nite set of points. Assume �rst that R is the standard real
�eld and U ≤ S(R) is a subgroup. It is well known that the subgroups of S(R) are
either �nite or dense, since this is a �rst order property the same results holds in all
models of the theory. If U if �nite we get the desired result. If U is in�nite, then it
is dense and we proceed in a similar way as in the previous proof by showing that
all Bi di�er by at most a �nite set and that the Ci form a partition of S(R) up to
a �nite set. �

Question 5.16. Assume Γ ≤ S has �nite rank and consider (R,G, a)a∈Γre∪Γim

as in [2]. Let U ⊂ Γ be de�nable in this extended language. Can we write U =
(C1 ∩B1) ∪ (C2 ∩B2) ∪ · · · ∪ (Cn ∩Bn) ∪ F as we did in the proof of the previous
lemma?

If this is the case, the proof above also works for this expansion and whenever
U ≤ Γ, then U ∈ D(1) or U is �nite.

6. Connected components and the quotient G/G00 for groups with

the Mann property

In this section we study some dynamical properties of G inside the expansion
(R,G), where G is a dense codense subgroup of R>0 (respectively a subgroup of
S(R)) and has the Mann property. We follow the presentation from [9]. First note
that in all settings under consideration G is abelian, so it is de�nably amenable.
Our goals are to �nd explicit invariant measures and f -generic types, characterize
G00 and the quotient G/G00. We also want to compare the connected component of
G inside the pair (R,G) with the connected component of G seen as a pure ordered
group, in all cases under consideration the connected component does not change.

6.1. Dynamics: the in�nite index case. Assume �rst that G ≤ R>0 and
(R,G) |= TG is a G-structure. In particular G is dense, has the Mann property
and the groups G[n] have in�nite index in G.

Lemma 6.1. Let (K,G) be an ℵ1-saturated model model of TG and consider the
type p(x) = x ∈ G ∪ {x > g : g ∈ G} ∪ {x 6∈ gW : g ∈ G,W ∈ D(1),W 6= G}. Let
µp be the measure centered in p. Then µp is G-invariant. Furthermore G00 = G
and Stab(p) = G.

Proof. For any a ∈ K, the formula ϕ(x) = (x > a) ∧ (x ∈ G) has µp-measure 1. If
g ∈ G, then the translate gϕ(x) = (g−1x > a) ∧ (g−1x ∈ G) = (x > ag) ∧ (x ∈ G)
also has µp-measure 1. Similarly for a ∈ G and W ∈ D(1) \ {G}, the formula
ϕ(x) = (x 6∈ aW ) ∧ (x ∈ G) has µp-measure 1. If g ∈ G, then the translate
gϕ(x) = (g−1x 6∈ aW ) ∧ (g−1x ∈ G) = (x 6∈ gaW ) ∧ (x ∈ G) also has measure
1. By the description of de�nable subsets of G from Lemma 5.9 we get that µp is
G-invariant.

Since for any g ∈ G, g · p = p, the orbit of p under the action of G is a singleton,
Stab(p) = G00 = G and p(x) is f-generic (see Theorem 1.2 [9] and also the proof of
[18, Lemma 8.18]).

�
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Corollary 6.2. Let (K,G) be an ℵ1-saturated model model of TG and consider
W ∈ D(1) in�nite. Then W 00 = W .

Proof. For any n ≥ 2, the map that sends g ∈ G to gn ∈ G[n] is a de�nable

group isomorphism, so the group G[n] is also de�nable amenable, G[n]00
= G[n] and

has strong f-generics. Thus the the lemma above also holds for all in�nite groups
W ∈ D(1) and by Proposition 5.13 for all de�nable subgroups of G. �

Question 6.3. Is the lemma above true for W ∈ D(1) just assuming that G has
the Mann property and that all groups Gn,k have in�nite index in G?

As before, we want to compare the connected component of G seen as a pure
ordered group and the connected component of G seen inside the pair (K,G).

Lemma 6.4. Let (K,G) be an ℵ1-saturated model model of TG and consider G as
a pure ordered group in the ordered group language Logr. Consider the Logr-type
p(x) = {x > g : g ∈ G} ∪ {x 6∈ gW : g ∈ G,W ∈ D(1),W 6= G}. Let µp be
the measure centered in p. Then µp is G-invariant. Furthermore G00 = G and
Stab(p) = G.

The proof is the same as before. We can conclude:

G00
ogr = G = G00

where we write G00
ogr for the connected component in the pure ordered group sense

and G00 for the connected component in the model (K,G).

6.2. Dynamics: the �nite index case. We now assume that we are in the setting
studied in [11]. So G has the Mann property and that all groups G[n] have �nite
index in G. There are several examples of Mann-multiplicative subgroups with
this property, for example 2Q3Z, 2Q3Z5Z, etc. In this setting, since all groups G[n]

have �nite index in G, the connected component G00 is a subgroup of the group of
divisible elements Gdiv.

Lemma 6.5. Let (K,G) be an ℵ1-saturated model model of TG and consider the
type p(x) = x ∈ G ∪ {x > g : g ∈ G} ∪ {x ∈ G[n] : n ≥ 2}. Let µ be the
measure de�ned by the conditions µ(x > g) = 1 for any g ∈ G (so bounded sets
have measure zero) and µ(gG[n]) = 1

[G:G[n]]
for any g ∈ G. Then µ is G-invariant,

p(x) is f -generic and Stab(p) = Gdiv = G00.

Proof. For any a ∈ K, the formula ϕ(x) = (x > a)∧(x ∈ G) has µ-measure 1. If g ∈
G, then the translate gϕ(x) = (g−1x > a) ∧ (g−1x ∈ G) = (x > ag) ∧ (x ∈ G) also
has µ-measure 1. Similarly for a ∈ G the formula ϕ(x) = (x ∈ aG[n]) has µ-measure

1
[G:G[n]]

. If g ∈ G, then the translate gϕ(x) = (g−1x ∈ aG[n]) = (x ∈ gaG[n])

also has µ-measure 1
[G:G[n]]

. Since every de�nable set is a boolean combination of

semialgebraic sets and elements in D(1), we get that µ is G-invariant. This also
shows every formula in p(x) has positive measure and we can concude that p(x) is
f-generic. Finally, it is easy to see that Gdivp = p, so Stab(p) = Gdiv = G00. �

Note that it follows from the previous proof for any g ∈ G00, g · p = p and
that the orbit of p under the action of G has cardinality at most 2ℵ0 , the orbit
is determined by choosing a coset of each G[n] (and there are �nitely many such
cosets) for every n.
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We will again compare the connected component of G in the sense of TG with
that in the sense of the pure ordered group language.

Lemma 6.6. Let (K,G) be an ℵ1-saturated model model of TG. Viewing G =
G(K) as a pure ordered abelian group, consider the type p(x) = {x > g : g ∈
G}∪{x ∈ G[n] : n ≥ 2}. Let µ be the measure de�ned by the conditions µ(x > g) = 1
for any g ∈ G (so bounded sets have measure zero) and µ(gG[n]) = 1

[G:G[n]]
for any

g ∈ G. Then µ is G-invariant, p(x) is f -generic and Stab(p) = Gdiv = G00.

Proof. The proof is almost identical to that of Lemma 6.5 and we leave it to the
reader. �

Thus, G00 is the same whether we work in TG or in the pure ordered group
language.

The quotient group G/G00 is a pro�nite group. For every positive pair of integers
n,m such that m divides n, we get a natural map fnm : G/G[n] → G/G[m] de�ned
by fnm(aG[n]) = aG[m]. The group G/G00 is the inverse limit of this system. Note
that the quotients G/G[n] are �nite and thus they are not ordered groups. Similarly
the pro�nite group G/G00 is not ordered and thus G/G00, even when it is in�nite,
is not a model of the theory of G.

Proposition 6.7. The pro�nite topology on limG/G[n] agrees with the logic topol-
ogy on Gogr/G

00
ogr (in the sense of pure ordered groups) and agrees with the logic

topology on G/G00 (in the sense of the pair (K,G))

Proof. We can see the pro�nite group as a closed subgroup of the product group
Πn≥2G/G

[n], where each �nite quotient G/G[n] has the discrete topology and the
product has the product topology. Thus the topology on H is also compact. Every
a ∈ G and k ≥ 2 de�ne a basic clopen set Ca,k in H given by the set of tuples

(gn)n ∈ H such that gnG
[n] = aG[n] for n ≤ k.

Let π : G→ Gogr/G
00
ogr be the projection. Note that π

−1(Ca,k) = ∩n≤k(aG[n]) is
de�nable and thus closed in the logic topology where we see Gogr as a pure ordered
group. Thus we have three topologies on G/G00 all of them Hausdor� and compact,
the pro�nite one contained in the logic topology in the sense of pure ordered groups
and this last one contained in the logic topology on G/G00 in the sense of the pair
(K,G). Thus all topologies agree.

�

Example 6.8. Consider the multiplicative group G = 2Q3Z that is dense in R>0

and has the Mann property (see [11]). Then G/G[n] = Z/nZ and G/G00 is the
in�nite compact group of pro�nite integers.

6.2.1. Dynamics: subgroups of S with the Mann property. Finally we study the
dynamics in subgroups of S in settings.

First we consider the case studied by Belegradek and Zil'ber in [2] which deals
with dense subgroups of S that have the Mann property that have �nite rank.
Under these assumptions, all groups G[n] have �nite index in G and G00 contains
the intersection ∩nG[n] as well as the group of in�nitesimals around 1.

Recall that the shortest arc in the circle between e−iπ/4 and eiπ/4 is homeomor-
phic to (−1, 1) through a map that sends (1, 0) to the point 0. Thus we can identify
the elements in�nitesimally close to (1, 0) with the elements in�nitesimally close to
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0 and give the elements in�nitesimally close to (1, 0) in S an order compatible with
the group operation. We will use the order in the following proof:

Lemma 6.9. Let (K,G) be an ℵ1-saturated model of TG and consider the Haar
measure µ of G that asigns to an arc its length normalized by 2π, where the param-
eters belong to K. Then µ is G-invariant and the measure of G[n] is 1/[G : G[n]].
Consider the type p(x) = x ∈ G ∪ {x > a : a ∈ G, a in�nitesimal } ∪ {x < 1/n :
n ≥ 1} ∪ {x ∈ G[n] : n ≥ 2}, then p is f -generic and Stab(p) = G00 is the set of
in�nitesimals which are divisible.

Proof. The �rst part is clear, as the length of an arc with parameters in K (even
if intersected with G) is preserved under rotations. Also, if the index of Gn on G
is k, then the cosets can be permuted by multiplying by elements in G, so they all
have the same measure and the result follows.

Now we will check that p is f -generic. Given a an in�nitesimal, k ≥ 1 and n ≥ 2,
µ((a < x < 1/k)∩ (x ∈ G[n])) = 1

k[G:G[n]]
> 0 so all formulas have positive measure.

It is easy to see that Stab(p) is the set of the in�nitesimals which are divisible.
By Theorem 1.2 in [9] Stab(p) = G00 is also the set of the in�nitesimals which are
divisible. �

Example 6.10. Consider the multiplicative group G = U of the roots of unity
interpreted as a subset of R2. It is a divisible group but it has torsion points, for
every n ∈ N, the collection of n torsion points are precisely the n-th roots of unity.
In a saturated model, the interpretation of U includes points without torsion that
are dense inside the torsion points and U00 are those points in�nitesimally close to
1. In this setting, U/U00 is the group S.

This is not surprising, as a pure group, U is the interpretation of S in the �eld Qr

(the real closure of the rationals). In a saturated model R̃, the quotient U(R̃)/U00(R̃)

correponds to the quotient of S(R̃)/S00(R̃) which is known to be S(R). One can also
check directly using the work of Szmielew [19] that as pure groups, U is elementary
equivalent to S.
Lemma 6.11. Let (K,G) be an ℵ1-saturated model of TG and consider G in the
language Lgr of groups. Let µ Haar measure of G that asigns to an arc its length

normalized by 2π. Then µ is G-invariant and the measure of G[n] is 1/[G : G[n]].
Furthermore the type p(x) = x ∈ G ∪ {x > a : a ∈ G, a in�nitesimal } ∪ {x <
1/n : n ≥ 1} ∪ {x ∈ G[n] : n ≥ 2} is f -generic and Stab(p) = G00 is the set of
in�nitesimals which are divisible.

Proof. The proof is very similar to the one for Lemma 6.9. �

Now we consider the case of G-structures as studied in [4] which deals with dense
subgroups of S that have the Mann property and have in�nite rank. Now all groups
G[n] have in�nite index in G and G00 is the group of in�nitesimals around 1.

Lemma 6.12. Let (K,G) be an ℵ1-saturated model model of TG and and consider
the Haar measure µ of G that asigns to an arc its length normalized by 2π. Then
µ is G-invariant and the measure of G[n] is zero. Consider the type p(x) = x ∈
G ∪ {x > a : a ∈ G, a in�nitesimal x < 1/n : n ≥ 1} ∪ {x 6∈ aG[n] : n ≥ 2, a ∈ G}.
Then p is f -generic and Stab(p) is the set of in�nitesimal elements.

Proof. The proof is very similar to the one of the previous lemma and we leave it
to the reader. �
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Remark 6.13. The logic topology on Ggr/G
00
gr (in the sense of pure ordered groups)

is compact and re�ned by the logic topology on G/G00 (in the sense of the pair
(K,G)) which is also compact and Hausdor�. Thus the two topologies agree.

Question 6.14. Assume F is small, bounded and de�nable in (R,K) |= TG, where
(R,K) is ℵ1-saturated and G ≤ S has the Mann property (regarless if it has �nite
or in�nite rank). Does it hold that F ≡ F/F 00 as pure groups?, i.e. Does a partial
version of Pillay's conjecture hold in this setting?

Note that since the groups Gn are de�nably amenable, by [9] we do have a
positive answer for Newelski's conjecture.

7. Imaginaries in pairs

7.1. Imaginaries in T ind. Assume that in T we have acl(∅) = ∅, and for any
singleton a, acl(a) = {a}. That is, in model of T , acl induces a geometry. Note that
any ω-categorical geometric structure can be transformed into one satisfying the
above assumption by taking a quotient modulo the de�nable equivalence relation
of interalgebraicity acl(x) = acl(y). The assumption also holds in an a�ne space
over any division ring.

We will be working in a su�ciently saturated H-structure (M,H) of T .

Proposition 7.1. Let E(x, y) be an LH-de�nable over ∅ equivalence relation on
M . Then there exists an L-de�nable (over ∅) equivalence relation E′(x, y) such that
ldim(E′∆E) ≤ 1.

Proof. By Proposition 2.5, there exists an L-de�nable (over ∅) relation E∗(x, y)
such that ldim(E∗∆E) ≤ 1. Let E′(x, y) = E∗(x, y) ∨ E∗(y, x) ∨ x = y.

Clearly E′(x, y) is symmetric and re�exive.
Claim: ldim(E′∆E) ≤ 1.
Indeed, suppose |= E′(a, b) ∧ ¬E(a, b). Then at least one of a = b or E∗(a, b)

or E∗(b, a) holds in M . In each case, dim(ab/H(M)) ≤ 1: if a 6= b, then (a, b) or
(b, a) satis�es E∗∆E. Next, suppose |= ¬E′(a, b) ∧ E(a, b). Then, in particular,
|= ¬E∗(a, b) and therefore (a, b) satis�es E∗∆E. Then dim(ab/H(M)) ≤ 1. This
proves the claim.

We will now show that E′ is transitive. By re�exivity of E′, it su�ces to show
that for a, b, c ∈M pairwise distinct, such that both E′(a, b) and E′(b, c) hold inM ,
we have |= E′(a, c). By the extension property, we may assume that abc |̂ ∅H(M).

Then a, b, c are pairwise independent over H(M). By the Claim, E(a, b) and E(b, c)
both hold in (M,H). Then we also have |= E(a, c). By the Claim again, |= E′(a, c),
as needed. �

The above proposition suggests that, at least for LH -de�nable equivalence re-
lations in one variable, new imaginaries can be expressed in terms of the �old�
imaginaries. We know that geometric elimination of imaginaries holds in the case
of SU-rank 1 [3] as well as in the case of o-minimal theories [10].

7.2. Imaginaries in trivial theories. Now assume that T is geometric and trivial
(the pregeometry is disintegrated). That is, for M |= T be su�ciently saturated
and A ⊂M , we have acl(A) = ∪a∈A acl(a).

Also assume that T weak elimination of imaginaries. Finally we will assume that
the criterion from [17] holds for algebraic independence in M :
Criterion (*):
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(1) For all E = acl(E) ⊂ M , tuple ~a ∈ M and C ⊂ M , there exists ~a∗ such
that tp(~a∗/E) = tp(~a/E) and ~a∗ |̂

E
C.

(2) For all E = acl(E) ⊂ M and tuples ~a,~b,~c ∈ M , if ~b |̂
E
~a, ~c |̂

E
~a~b and

tp(~a/E) = tp(~b/E), then there exists ~c∗ such that tp(~a~c/E) = tp(~a~c∗/E) =

tp(~b~c∗/E).

Note that part (1) always holds for algebraic independence (T is geometric and
algebraic independence satis�es existence). It is proved in [17] that the criterion
implies that T weak elimination of imaginaries. We will prove below that the
criterion will transfer for some H-structures, thus showing that they also have
weak elimination of imaginaries.

Assume now that (M,H) is a su�ciently saturated model of H-structures. For

~a,~b ∈ M (possibly in�nite tuples) and C ⊂ M we will write ~a |̂ H
C
~b (and call

this notion H-independence) if ~a |̂
CH(M)

~b and HB(~a/C~b) = HB(~a/C). This

is a natural notion of independence that coincides with non-forking when T has
SU-rank one (see [3]).

Lemma 7.2. Suppose (M,H) is an H-structure, ~a ∈ M and E = acl(E) ⊂ M .
Then HB(~a/E) = H(acl(~a))\E.

Proof. Recall that HB(~a/E) is the smallest tuple ~h ∈ H(M) such that

~a |̂
~hE

H(M)E.

Since acl is disintegrated and E = acl(E), we have

~a |̂
H(acl(~a))E

H(M)E.

Then ~h = acl(~a)∩H(M)\E is the smallest tuple inH(M) such that ~a |̂ ~hE H(M)E.
�

Lemma 7.3. Let ~a,~b ∈ M (possibly in�nite tuples) and C ⊂ M . Then ~a |̂ H
C
~b

implies ~a |̂
C
~b.

Proof. Assume that ~a 6 |̂
C
~b, so we can write ~b = ~b1b2 so that b2 ∈ acl(~b1C~a) \

acl(~b1C).

Case 1 Assume that b2 ∈ acl(~b1C~aH(M)) \ acl(~b1CH(M)). Then ~a 6 |̂
CH(M)

~b

as we wanted.
Case 2 Assume that b2 ∈ acl(~b1CH(M)). Since b2 6∈ acl(~b1C) by triviality there

is h ∈ H(M) such that b2 ∈ acl(h) and h ∈ acl(b2). Since b2 ∈ acl(~b1C~a)\acl(~b1C),
there is a2 ∈ ~a such that b2 ∈ acl(a2) and a2 ∈ acl(b2). Then we also get a2 ∈
acl(h) and h ∈ acl(a2). This proves that h ∈ HB(b2/C), but h 6∈ HB(b2/C~a), so

HB(~a/C~b) 6= HB(~a/C). �

Lemma 7.4. Suppose (M,H) is an H-structure, ~a,~b ∈ M and E = acl(E) ⊂ M .

Suppose ~a |̂ H
E
~b. Let ~a′ = ~aHB(~a/E) and ~b′ = ~bHB(~b/E). Then ~a′ |̂ H

E
~b′.

Proof. We need to show that ~a′ |̂
EH(M)

~b′ and HB(~a′/E) = HB(~a′/E~b′). The

former follows the fact that acl(~a′) = acl(~a), acl(~b′) = acl(~b) (by Lemma 7.2) and
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~a |̂
EH(M)

~b. To show the latter, note that, by Lemma 7.2,

HB(~a′/E) = H(acl(~a′))\E = H(acl(~a))\E = HB(~a/E).

It remains to show that HB(~a/E~b) = HB(~a′/E~b′). First, note that

HB(~a′/E~b′) = H(acl(~a′))\ acl(E~b′) = H(acl(~a))\ acl(E~b ∪ (H(acl(~b))\E)) =

H(acl(~a))\(acl(E~b) ∪ acl(H(acl(~b))\E)) ⊂ H(acl(~a))\(acl(E~b)).

Since ~a |̂
E
~b, we have acl(~a) ∩ acl(~b) ⊂ acl(E) = E. Thus,

H(acl(~a))\(E~b ∪ (H(acl(~b))\E)) = H(acl(~a))\(E~b) = HB(~a/E~b).

Hence, HB(~a′/E~b′) = HB(~a/E~b).
�

Proposition 7.5. Let (M,H) is a su�ciently saturated H-structure and assume
the criterion (*) holds for algebraic independence in M . Assume also that T is
trivial. Then the criterion (*) holds for H-independence in (M,H).

Proof. We �rst show that part (1) of criterion (*) holds. Let E = aclH(E) ⊂ M ,
let ~a ∈ M and C ⊂ M . By making the tuple larger if necessary, we may assume
that ~aE is H-independent and write ~a = ~a1~a2~a3, where ~a1 is independent over
EH(M), ~a2 is independent over E but ~a2 ∈ H(M) and ~a3 ∈ acl(E~a1a2). Choose
~a′ = ~a′1~a

′
2~a
′
3 ≡E ~a1~a2~a3 independent from C over E (in the sense of algebraic

closure). By the extension property, we may assume that ~a′1 |̂ ECH(M). By the
density property we may assume that ~a′2 ∈ H(M). Then since ~aE and ~a′E are

H-independent we get ~a′1~a
′
2~a
′
3 ≡HE ~a1~a2~a3. We also get ~a′ |̂ H

E
C.

We now show that part (2) of criterion (*) holds. Let E = acl(E) ⊂ M and let

~a,~b,~c ∈M , be such that ~b |̂ H
E
~a, ~c |̂ H

E
~a~b and tpH(~a/E) = tpH(~b/E). By Lemma

7.4, we may assume that ~b = ~b∪HB(~b/E), ~a = ~a∪HB(~a/E) and ~c = ~c∪HB(~c/E).

By the previous lemma, ~b |̂
E
~a and ~c |̂

E
~a~b. Since the criterion holds inside

M , there exists ~c∗ such that tp(~a~c/E) = tp(~a~c∗/E) = tp(~b~c∗/E). In particular

~c∗ |̂
E
~a, ~c∗ |̂

E
~b and by triviality ~c∗ |̂

E
~a~b. We may write ~c = ~c1~c2~c3 where

~c1 is independent from EH(M), ~c2 is independent from E but belongs to H(M)
and ~c3 ∈ acl(E~c2~c1). Since ~c ≡E ~c∗, we may also write ~c∗ = ~c∗1~c

∗
2~c
∗
3. Using the

extension property and the density property we may assume that ~c∗1 is independent

over H(M)E~a~b, ~c∗2 is independent over E~a~b and belongs to H(M) and we still have
~c∗3 ∈ acl(E~c∗2~c

∗
1). Then the tuple ~c∗ is H-independent.

By triviality, both ~a~cE and ~a~c∗E are H-independent. Similarly ~b~cE and ~b~c∗E
are H-independent. Thus

tpH(~a~c/E) = tpH(~a~c∗/E) = tpH(~b~c∗/E)

as we wanted. �

Assume now that (M,P ) is a su�ciently saturated lovely pair of models of T and
that T is trivial. For ~a ∈M a �nite tuple we will write PB(~a) for some independent

tuple ~h ∈ P (M) such that ~a |̂ ~h P (M) which is minimal in lenght. Note that by

triviality each element in ~h will be interalgebraic with an element in ~a. The choice

for the elements in ~h is not unique, but any other choice will be interalgebraic
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with ~h. Similarly, for C ⊂ M , we write PB(~a/C) for some independent tuple
~h ∈ P (M), which is independent over C, such that ~a |̂ ~hC P (M). The tuples

PB(~a) and PB(~a/C) work in a way similar to an H-basis for H-structures. For an
in�nite tuple ~a we can de�ne PB(~a/C) = ∪{PB(~a0/C) : ~a0 ⊂ ~a �nite }.

For ~a,~b ∈ M (possibly in�nite tuples) and C ⊂ M we will write ~a |̂ P
C
~b (and

call this notion P -independence) if ~a |̂
CP (M)

~b and PB(~a/C~b) = PB(~a/C). As

before, this notion agrees with non-forking independence when T has SU-rank one
and is trivial. The following proposition can be proved by mody�ng slightly the
arguments from Proposition 7.5.

Proposition 7.6. Let (M,P ) is a su�ciently saturated lovely pair of models of T
and assume the criterion (*) holds for algebraic independence in M . Assume also
that T is trivial. Then the criterion (*) holds for P -independence in (M,H).

7.3. Imaginaries in the structure induced in the predicate. Here we follow
the ideas from Eleftheriou [13]. We start with (M,P ) a dense/codense pair sat-
isfying TEA and study imaginaries in the induced structure on the predicate P
from M . This is also related to generic trivializations [6], where the authors of this
paper studied the induced structure on P without parameters. Does it matter if we
consider parameters from a �xed model?.

Eleftheriou [13] proved that when T is an o-minimal theory extending the theory
of a divisible abelian group, then Th(P ∗) has elimination of imaginaries.

We consider �rst the case of SU -rank one.

Theorem 7.7. Let T is of SU -rank one and (M,H) is a model of the theory of
H-structures. Then the theory of H with the induced structure from M has weak
elimination of imaginaries.

Proof. It is easy to see that Th(H∗) has SU -rank one. Since the elements of H are
algebraically independent, forking in H∗ is trivial. Furthermore, for each a ∈ H∗
we have acl∗(a) = {a} and for each A ⊂ H∗, acl∗(A) = A. Then for A ⊂ H∗ and
~b = (b1, . . . , bn) we have that ~b |̂ ∗~b∩AA. Thus Cb(~b/A) = ~b ∩ A so Th(H∗) has
weak elimination of imaginaries. �
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