
THE INDEPENDENCE PROPERTY IN GENERALIZED DENSE

PAIRS OF STRUCTURES

ALEXANDER BERENSTEIN, ALF DOLICH, AND ALF ONSHUUS

Abstract. We provide a general theorem implying that for a (strongly) de-
pendent theory T the theory of su�ciently well-behaved pairs of models of T is
again (strongly) dependent. We apply the theorem to the case of lovely pairs
of thorn-rank one theories as well as to a setting of dense pairs of �rst-order
topological theories.

1. Introduction

In this paper we study properties of theories obtained by beginning with a com-
plete �rst order theory T with in�nite models, a model M |= T , and a subset A ⊂M
and considering the pair (M, A) comprised of M together with a new predicate for
A. This situation has been studied extensively, typically in the case where A is an
elementary submodel of M [20], [3], [24] or in the context of stable theories, when
the induced structure on the predicate is stable [7], [2].

Our concern here is with the independence property and pairs. Namely we
consider theories T without the independence property (in which case we refer to
T as being dependent) and then give a criterion so that a theory of pairs arising
from models of T also does not have the independence property. We also prove
an analogous result deriving strong dependence for pairs when the original theory
is strongly dependent. Our motivations for studying this problem are manifold.
To begin with there has recently been considerable interest in theories without the
independence property (see for example [21] or [1]) and thus is seemed appropriate
to consider the properties of pairs in the context of dependent theories. On the
other hand, motivation also came out of three interrelated topics: the study of
lovely pairs of structures in a general context; the study of theories with o-minimal
open core; and the study of �rst order topological theories, speci�cally the p-adics.
We elaborate on all of these below.

The paper is structured as follows. The second section is devoted to the state-
ment and proof of two general theorems, the �rst one providing a criterion under
which given a dependent theory T , M |= T , and A ⊆ M the theory of the pair
(M, A) is also dependent, the second one a criterion for the pair (M, A) to be
strongly dependent assuming that T is strongly dependent. The next two sections
are devoted to examples where the theorem applies; the �rst example is lovely pairs
of theories where acl has the exchange property, studied in section 3, and the second
is a class of �rst order topological theories studied in section 4.
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Lovely pairs have been studied from many points of view. They were �rst de�ned
by Poizat [20] in the stable setting and used by Buechler to study pregeometries
associated to strongly minimal sets [6]. The idea was generalized by Vassiliev [24]
to the setting of rank one simple theories in order to study their pregeometries.
Ben Yaacov, Pillay and Vassiliev [3] worked out the theory of pairs in the general
framework of simple theories. Vassiliev's original setting can be easily modi�ed to
deal with theories where the algebraic closure satis�es the exchange property (see
[4]), this new framework includes the rank one simple theories, o-minimal theories
and þ-rank one rosy theories. As before, the pair provides information about the
underlying pregeometries in the o-minimal case [4]. The lovely pairs of o-minimal
structures had been studied already by van den Dries as dense pairs of o-minimal
structures [10].

Many properties of the original theory are preserved in the associated theory of
lovely pairs, such as (super) stability and (super) simplicity. The aim of section 3 is
to show that if the original theory is (strongly) dependent, then the corresponding
theory of lovely pairs is again (strongly) dependent. Similar results have been
obtained independently by Boxall (for lovely pairs of real closed �elds) and by
Günaydin and Hieronymi [15]. For this section we assume the reader is familiar
with basic ideas of rosy theories and dependent theories, we refer the reader to
[1, 19] and [23].

A speci�c example of a lovely pair of thorn-rank one structures is a dense pair
of o-minimal structures as studied by van den Dries in [10]. Speci�cally if T is an
o-minimal theory extending the theory of an ordered abelian group, N |= T , and
M ≺ N with M dense in N , then the pair (N,M) is a model of the corresponding
theory of lovely pairs (see [4]). Thus our main theorem applies and the theory of
this pair is dependent. This result was of primary interest to the second author
in light of work on o-minimal open cores (see [9]). The theory of a dense pair of
o-minimal structures provides a canonical example of a theory with all of whose
models have o-minimal open core as do �generic� expansions of o-minimal theories
(see [8]). Arguably the dense pairs are the more �natural� of these examples. In
[9] a host of desirable model theoretic properties are studied in the context of o-
minimal open cores and for the vast majority of these the generic expansions have
the property while the dense pairs do not. Thus our main theorem establishes that
at least in so far as the independence property is concerned dense pairs have the
desirable property (dependence) while it is well known that generic expansions have
the independence property under very weak assumptions.

Finally given dense pairs of o-minimal structures as a starting point it is natural
to ask whether similar results hold in other structures with a de�nable topology,
for example the theory of the p-adic �eld. We use this opportunity to develop in a
general context of �rst order topological structures (inspired by the work in [18])
much of the machinery of dense pairs found in [10]. Given these results we then
may apply our main theorem to show that if the theory we begin with is dependent
then so is the resultant theory of dense pairs. Speci�cally we prove that we have a
good theory for dense pairs of p-adic �elds and the theory of the such dense pairs
is dependent.
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2. The Context and The Main Theorem

Throughout this section we consider L-structures M with theory T that for
convenience we assume has quanti�er elimination. We consider an expansion of L
by a new unary predicate P which we denote by LP . For A ⊆M we write (M, A)
for the LP -structure obtained from M by interpreting P as A. We will denote its
theory by TA.

Notation 2.1. With the above notation for B ⊆M we write P (B) for B ∩ A. In
particular note that P (M) = A.

Notation 2.2. Let (M, A) be a pair as above. Throughout this paper, acl, aclP
stand for the algebraic closure in the languages L, LP respectively. We write tp(~b),
qftp(~b), tpP (~b), qftpP (~b) for types and quanti�er free types in the languages L, LP

respectively. When (M, acl) is a pregeometry independence means acl-independent,
dimension is considered in terms of (M, acl).

Assumption 2.3. Throughout this section we assume that for any T we consider
acl satis�es exchange and that any subset A ⊆M we choose to name for the pred-
icate is acl-closed.

De�nition 2.4. Given T , M |= T , and A ⊆ M we may form the LP -structure
(M, A). We say that B ⊆ M is P -independent if B is algebraically independent
from P (M) over P (B).

The next de�nition is key, we isolate the essential property of a subset of a model
so that upon naming it by a predicate the resulting theory is still well-behaved.

De�nition 2.5. We say that A is innocuous if whenever (M0, A0), (M1, A1) |= TA,
~a0 ∈ M0, ~a1 ∈ M1 are both P -independent, and qftpP (~a0) = qftpP (~a1) then
tpP (~a0) = tpP (~a1).

The following is a key property of innocuous sets, see for example Proposition
3.2 in [4] for a proof of how this follows from A being innocuous.

Observation 2.6. If A is innocuous and (N, B) |= TA then any LP -de�nable
X ⊆ B is simply the intersection of an L-de�nable subset of N with P (N).

Now we prove our main result:

Theorem 2.7. Let T be a dependent theory in a language L so that acl satis�es
the exchange property on models of T . Let M |= T and suppose that A ⊆ M is
innocuous and acl(A) = A. Then the theory of the pair (M, A) is also dependent.

Proof. Assume TA has the independence property. Let (M, A) |= TA be a monster
model, let κ = 2|L|, let {ai : i ∈ κ} be an LP -indiscernible sequence and assume

there is an LP -formula ϕ(x, ~y) such that for any I, J ⊂ κ disjoint, there is ~bIJ ∈M
such that ϕ(ai,~bIJ) holds for i ∈ I and ¬ϕ(ai,~bIJ) holds for i ∈ J .

Note that {ai : i ∈ κ} is an L-indiscernible sequence.
Claim {ai : i ∈ κ} is an acl-independent sequence.
Otherwise, as acl satis�es the exchange property, we have for some n that an ∈

acl{ai : i < n} and there is an algebraic formula χ(x, a0, . . . , an−1) true for an.
Since the sequence is indiscernible then this formula holds for all ai with i ≥ n and
thus ai = an for i > n. This implies that {ai : i ∈ κ} is a constant sequence and it
can not be a witness for the independence property, a contradiction.
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Let ~b be such that ϕ(ai,~b) if and only if i is odd.
Claim ai ∈M \ P (M)
Otherwise ai ∈ P (M) for each i ∈ κ. Since A is innocuous the de�nable subsets

of P (M) are intersections of the L-de�nable subsets of M with P (M). So there is

an L-formula ψ(x, ~z) such that ϕ(x,~b) ∧ P (x) = ψ(x,~c) ∧ P (x) for some ~c. Thus
ψ(ai,~c) holds if and only if i is odd and the L-formula ψ(x, ~z) has the independence
property, a contradiction.

We consider two cases:
Case 1: There is no ~d such that ai ∈ acl(P (M), ~d) for co�nally many i. In a

naïve sense, we are dealing the case when {ai : i ∈ κ} is a LP -Morley sequence

of generics. Making ~b larger if necessary, we may assume that ~b is P -independent.
By our assumption, we can �nd a set of indices I0 such that I0 is not co�nal in κ

and ai 6∈ acl(~b, P (M)) for i ∈ κ \ I0. Note that the tuple ~bai is also P -independent

for all i 6∈ I0. Let Φ(x, ~y) be a partial LP -type such that |= Φ(ai,~b) for i 6∈ I0
and whenever |= Φ(c,~b′) holds, we have that tpP (~b) = tpP (~b′) (in particular ~b′ is

P -independent) and c 6∈ acl(P (M),~b′). Since A is innocuous for any c, d |= Φ(x,~b),
tpP (c,~b) = tpP (d,~b) if and only if qftpP (c,~b) = qftpP (d,~b). Thus by compactness,

we can �nd a quanti�er free LP -formula ψ(x, ~y) such that for any c |= Φ(x,~b),
|= ϕ(c,~b) if and only if |= ψ(c,~b). Let i ∈ κ \ I0, then |= ψ(ai,~b) holds i� i is odd.

So it remains to show that quanti�er free LP -formulas on do not have the inde-
pendence property. The result is clear for quanti�er free L-formulas and since for-
mulas with the Independence Property are closed under boolean combinations, the

problem reduces to show that formulas of the form ψ(x,~b) = P (t(x,~b)), where t(x, ~y)
is a term, do not have the Independence Property. So assume that for i ∈ κ \ I0,
P (t(ai,~b)) holds if and only if i is odd. Since the tuple ai

~b is P -independent, for i

odd t(ai,~b) ∈ acl(P (~b)). We may write ~b = (b1, . . . , bl, bl+1, . . . , bn), where P (~b) =
(b1, . . . , bl). There is a single algebraic L-formula ρ(x, b1, . . . , bl) and I1 ⊂ κ \ I0
in�nite such that ρ(t(ai,~b), b1, . . . bl) holds for i ∈ I1. Note that since ρ(x, b1, . . . , bl)
is algebraic and A is algebraically closed, all the realizations belong to P and thus

¬ρ(t(ai,~b), b1, . . . bl)) holds for even i. Thus the L-formula ρ(t(x,~b), b1, . . . bl)) has
the independence property, a contradiction.

Case 2: There is ~d such that ai ∈ acl(P (M), ~d) for co�nally many i. Since
κ = 2|L| there is a single formula θ(x, ~y, ~z), I0 ⊂ κ co�nal and tuples {~ci : i ∈ I0} ⊂
P (M) such that θ(x,~ci, ~d) is algebraic for all i ∈ I0 and θ(ai,~ci,~b) holds for all
i ∈ I0. Thus, exchanging the original sequence {ai : i ∈ κ} for {ai : i ∈ I0} we may

assume that the elements in the sequence {ai : i ∈ κ} are algebraic over ~dP (M)
and that the algebraic formula θ(x,~ci, ~d) isolates tp(ai/~ci, ~d). Furthermore, we may

assume there is n ≥ 1 such that ∃≤nxθ(x,~ci, ~d) for all i.
Now let λ be larger than i(2|T |)+ and enlarge {(ai~ci ~d) : i ∈ κ} to a sequence of

length λ. By an Erdös-Rado argument(the method used to prove Morley's omitting

types theorem), there is an indiscernible sequence {(a′i~c′i ~d′) : i ∈ ω} such that for
any n there are i1 < i2 < · · · < in ∈ λ such that

tp(ai1 ,~ci1 ,
~d, . . . , ain ,~cin ,

~d) = tp(a′1~c
′
1
~d′, . . . , a′n~c

′
n
~d′).

In particular, tp(ai : i < ω) = tp(a′i : i < ω). Again we may exchange {ai : i ∈ ω}
for {a′i : i ∈ ω} and assume that {(ai~ci ~d) : i ∈ ω} is an indiscernible sequence.
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We work now with the sequence {aici ~d : i ∈ ω} and we assume there is ~b

such that ϕ(ai,~b) holds if and only if i is odd. Making the tuple ~b larger if

necessary, we may assume that ~d~b is P -independent. Note that for all i, the

tuple ~d~b~ciai is also P -independent. Let Φ(x, ~y, ~z, ~w) be a partial LP -type such

that |= Φ(ai,~ci, ~d,~b) for i ∈ ω and whenever |= Φ(a′,~c′, ~d′,~b′) holds, then we

have that tpP (~d~b) = tpP (~d′~b′), ~c′ ∈ P (M), θ(a′,~c′, ~d′) holds and ∃≤nxθ(x,~c′, ~d′).
In particular, all realizations of Φ(x, ~y, ~z, ~w) are P -independent. Since A is in-

nocuous, for any (e, ~f), (e′, ~f ′) |= Φ(x, ~y, ~d,~b), tpP (e, ~f, ~d,~b) = tpP (e′, ~f ′, ~d,~b) if

and only if qftpP (e, ~f, ~d,~b) = qftpP (e′, ~f ′, ~d,~b). By compactness, we can �nd

a quanti�er free LP -formula ψ(x, ~y, ~z, ~w) such that for any a′~c′ |= Φ(x, ~w,~b, ~d),
|= ϕ(a′,~b) if and only if |= ψ(a′,~c′,~b, ~d). So we get a quanti�er free LP -formula
witnessing the independence property. As before, the problem reduces to show-

ing that formulas of the form ψ(x, ~z,~b, ~d) = P (t(x, ~z,~b, ~d)), where t(x, ~z, ~y, ~w) is
a term, do not have the Independence Property. We may assume the sequence

has length |T |+ instead of ω. Since each tuple ai~ci~b~d is P -independent, for odd i

we have that t(ai,~ci,~b, ~d) ∈ acl(~ci, b1, . . . , bl, d1, . . . , dt), where (d1, . . . dt) = P (~d),
(b1, . . . , bl) = P (~b). Since |T |+ > |T |, there is I1 ⊂ |T |+ in�nite and a single for-
mula ρ(x, ~z, b1, . . . , bl, d1, . . . , dt) which is algebraic for any choice of ~z such that

ρ(t(ai,~ci,~b, ~d),~ci, b1, . . . bl, d1, . . . , dt) holds for i ∈ I1. Since the formula

ρ(x, ~z, b1, . . . , bl, d1, . . . , dt)

is algebraic for any choice of ~z, we have for any i that the sets of realizations of
ρ(x,~ci, b1, . . . , bl, d1, . . . , dt)) belong to P and thus

¬ρ(t(ai,~ci,~b, ~d), b1, . . . , bl, d1, . . . , dt)

holds for even i. Thus the L-formula ρ(t(x, ~z,~b, ~d), b1, . . . bl, d1, . . . , dt)) has the
independence property, a contradiction. �

We now consider the special case where T is strongly dependent. We recall the
de�nition (see [22] for details).

De�nition 2.8. A theory T is strongly dependent if we may not �nd M |= T ,

formulas φi(~x, ~y) for i ∈ ω, elements ~aj
i ∈ M so that for each η : ω → ω the type

pη(~x): ∧
{i,j∈ω:η(i)=j}

φi(~x,~a
j
i ) ∧

∧
{i,j∈ω:η(i) 6=j}

¬φ(~x,~aj
i )

is consistent.

Recall the following fact from [22].

Fact 2.9. The following conditions are equivalent for a complete theory T .

(1) T is strongly dependent.
(2) We may not �nd M |= T , formulas ϕi(~x, ~y) for i ∈ ω and a sequence {~ai

k :
k < ω, i < ω} of elements of M so that {~ai

k : k < ω} is indiscernible over

{~aj
k : j < k, j 6= i, k < ω} for each i < ω and {ϕ(~x,~ai

0) ∧ ¬ϕ(~x,~ai
1) : i < ω}

is consistent.
(3) For every indiscernible sequence (~bi)i<κ with tuples ~bi that are at most

countable, and every �nite set C, there is a convex equivalence relation ∼
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on κ with �nitely many classes and such that tp(~bi/C) only depends on the
∼-class of i.

(4) For every indiscernible sequence (~bi)i∈I with tuples ~bi that are at most
countable, and every �nite set C, there is a convex equivalence relation

∼ on I with �nitely many classes and such that (~bi)i∈j/∼ is indiscernible
over C.

Furthermore, in clauses (3), (4) it is enough to consider the case where C is a
singleton.

Theorem 2.10. Let T be a strongly dependent theory in a language L so that
acl satis�es the exchange property on models of T . Let M |= T and suppose that
A ⊆ M is innocuous and acl(A) = A. Then the theory of the pair (M, A) is also
strongly dependent.

Proof. Let (~bi)i<κ be an LP -indiscernible sequence, where the tuples ~bi that are
at most countable and let a ∈ M be an element. We will use Fact 2.9(3), so we
want to show that there is a convex equivalence relation ∼ on κ with �nitely many

classes such that tpP (~b/a) only depends on ∼-class of i. We may assume after

enlarging each ~bi if necessary and using an Erdös-Rado argument, that each ~bi is
P -independent. We divide our work by cases:
Case 1. a ∈ P (M)
We prove the result for a tuple ~a ∈ P (M)k. Note that the tuples ~bi~a are again

P -independent. Since the sequence (~bi)i<κ is an L-indiscernible sequence, there is
an equivalence relation ∼ on κ with �nitely many convex classes and such that

tp(~bi/~a) only depends on the ∼-class of i. Our goal is to prove that tpP (~bi/~a) only
depends on the ∼-class of i. Since ~bi~a is P -independent, it su�ces to show that

qftpp(~bi/~a) is the same for all ∼-classes and in order to prove this, it is enough

to check that for a term t(~bi, a), the value of P (t(~bi,~a)) is constant on each ∼-
class. Assume that P (t(~bi,~a)) holds for some i and that i ∼ j. Since ~bi~a is P -

independent, t(~bi,~a) ∈ acl(P (~b~a)) = acl(P (~b)~a) and there is an algebraic L-formula

θ(x,~a, P (~bi)) such that θ(t(~bi,~a),~a, P (~bi)) holds. Since tp(~bi/~a) = tp(~bj/~a) we have
that θ(t(~bj ,~a),~a, P (~bj)) also holds and since P is algebraically closed, we get that

P (t(~bj ,~a)) holds as well.
Case 2. a ∈ acl(P (M), (~bi)i<κ)
Then there are t1, . . . , tm ∈ P (M) and ~bi1 , . . . ,

~bil
∈ (~bi)i<κ such that a ∈

acl(~bi1 , . . . ,~bil
, t1, . . . , tm). First consider ∼1 de�ned on κ by k ∼1 j if k, j are

in the same interval de�ned by i1, . . . , il. For each i, we have (~bj~bi1 , . . . ,~bil
)j∈i/∼ is

an indiscernible sequence and the ∼1-classes are convex. Fix i ∈ κ such that i/ ∼ is

in�nite and we work now with the sequence (~bj~bi1 , . . . ,~bil
)j∈i/∼. Enlarging the ~bj 's

if necessary and using an Erdös-Rado argument, we may assume that (~bj~bi1 , . . . ,~bil
)

is P -independent for j ∈ i/ ∼. Since T is strongly dependent there is an equiv-
alence relation ∼ that re�nes ∼1 also with �nitely many equivalence classes, each

of which is convex, such that for each j we have tp(~bk,~bi1 , . . . ,~bil
, t1, . . . , tm, a) =

tp(~bj ,~bi1 , . . . ,~bil
, t1, . . . , tm, a) whenever k ∼ j. As in the previous case we have,

by transitivity, that each tuple (~bk,~bi1 , . . . ,~bil
, t1, . . . , tm) is P -independent, so

(~bk,~bi1 , . . . ,~bil
, t1, . . . , tm, a) is also P -independent and thus it su�ces to prove

6



that qftpP (~bk,~bi1 , . . . ,~bil
, t1, . . . , tm, a) = qftpP (~bj ,~bi1 , . . . ,~bil

, t1, . . . , tm, a). This
is checked as in case 1.
Case 3. a 6∈ acl(P (M), (~bi)i<κ)
As in case 1, the tuples ~bia are again P -independent. Since the sequence (~bi)i<κ

is an L-indiscernible sequence, there is an equivalence relation ∼ on κ with �nitely

many convex classes and such that tp(~bi/~a) only depends on the ∼-class of i. Our
goal is to prove that tpp(~bi/~a) only depends on the ∼-class of i. Since ~bia is P -

independent, it su�ces to check that for a term t(~bi, a), the value of P (t(~bi, a)) is

constant on each ∼ class. Assume that P (t(~bi, a)) holds for some i and that i ∼ j.

Since ~bia is P -independent, there is an algebraic L-formula θ(x, P (~bi)) such that

θ(t(~bi, a), P (~bi)) holds. Since tp(~bi/a) = tp(~bj/a) we have that θ(t(~bj , a), P (~bj))
also holds and since P is algebraically closed, we get that P (t(~bj , a)) also holds. �

3. Lovely Pairs of Theories with the Exchange Property

In this section we give our �rst application of Theorem 2.7 to the case of lovely
pairs associated to theories where the algebraic closure satis�es the exchange prop-
erty. Let T be a complete theory in a language L with quanti�er elimination
that eliminates the quanti�er ∃∞ and such that acl satis�es exchange. Examples
of such theories includes SU -rank one simple theories with quanti�er elimination,
O-minimal theories extending DLO and thorn-rank one theories with quanti�er
elimination and eliminating ∃∞ (see [19] for details on thorn-rank and related is-
sues).

For the ensuing we let T ′ be the theory of pairs (M, P (M)) where M |= T and
P (M) is algebraically closed in M .

De�nition 3.1. We say that a structure (M, P (M)) is a lovely pair of models of
T if

(1) (M, P (M)) |= T ′

(2) (Coheir or density property) If A ⊂ M is algebraically closed and �nite
dimensional and q ∈ S1(A) is non-algebraic L-type, there is a ∈ P (M) such
that a |= q.

(3) (Extension property) If A ⊂M is algebraically closed and �nite dimensional
and q ∈ S1(A) is non-algebraic L-type, there is a ∈ M , a |= q and a 6∈
acl(A ∪ P (M)).

It is proved in [4] that two lovely pairs of T are elementarily equivalent. We
write TP for their common complete theory. It is also proved in [4] that since T
eliminates the quanti�er ∃∞ the saturated models of TP are again lovely pairs. The
proofs are a straightforward generalization of the corresponding results from [24]
where the underlying theory T is simple of rank one.

Recall that a subset B ⊆ M is P -independent if B is algebraically independent
from P (M) over P (B). The main property of P -independent sets is (see [4, Lemma
2.6], [3, Lemma 3.8]):

Theorem 3.2. Let T be a complete theory where acl satis�es exchange and that
eliminates ∃∞. If (M, P (M)) is a lovely pair of models of T then P (M) is an
innocuous subset of M .

Corollary 3.3. If T is a complete dependent theory where acl satis�es exchange,
that has quanti�er elimination and that eliminates ∃∞, then the theory of lovely
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pairs of models of T is also dependent. Moreover, if T is strongly dependent, then
the corresponding theory of lovely pairs TP is strongly dependent.

Proof. We apply Theorem 2.7. If (M, P (M)) is lovely then the previous theorem
yields that P (M) is innocuous in M . For the �moreover� part apply Theorem
2.10. �

In particular, the theory of lovely pairs of thorn-rank one dependent theories
that eliminate the quanti�er ∃∞ is again dependent.

4. Dense Paris and the P-adics

In this section we consider properties of pairs of structures (N,M) with M ≺ N
(notice we insist that this is a proper inclusion) where, most typically, M and N
are expansions of �elds. Our primary interest is in the case where M is a model of
the theory of the p-adics Qp in the language of �elds. Throughout T will denote
a complete theory expanding that of integral domains in a language L. P will be
a new unary predicate and LP denotes L augmented by P . We begin with some
observations originally motivating this part of our study.

It is a simple yet useful observation (originally due to van den Dries) that the real
closed �eld R = 〈R,+, ·, <〉 is the unique real closed �eld so that every elementary
submodel of R is dense in R and every elementary extension of R is tame (recall
that R1 � R2 is a tame extension of real closed �elds if for every x ∈ R2 in the
convex hull of R1 there is a unique y ∈ R1 so that |x− y| < z for every z ∈ R>0

1 ).
This observation makes it natural to study two genres of pairs of real closed �elds
(or more generally o-minimal theories): dense pairs (as in [10]) or tame pairs (as in
[12]).

Considering the usual analogy between real closed �elds and p-adically closed
�elds we may try to treat the p-adic �elds Qp similarly. Of course we need to �rst
develop a reasonable analog for tameness in this context. For the ensuing de�nition
given a valued �eld K we write Γ(K) for its value group and v for the valuation.

De�nition 4.1. Given p-adically closed �elds K � L we say that K is tame in L
if for any x ∈ L so that v(x) ∈ Γ(K) there is a unique y ∈ K so that v(x− y) > γ
for all γ ∈ Γ(K).

With this de�nition we obtain the desired result for the p-adics. In the following
proof we write Qalg

p for the prime model of Th(Qp).

Proposition 4.2. Qp is the unique p-adically closed �eld K so that any elementary
submodel is dense in K and K is tame in any elementary extension.

Proof. We �rst verify that Qp satis�es the conclusions of the proposition. The fact
that any elementary sub�eld of Qp is dense is immediate since Q is dense in Qp.
Next suppose that Qp � K and x ∈ K with v(x) = n ∈ Z. Note that we can
�nd an ∈ Qp so that v(x − anp

n) ≥ n + 1. Continuing we can �nd an+1 so that
v(x− anp

n − an+1p
n+1) ≥ n+ 2. Continuing in this manner we obtain a sequence

ai with i ≥ n. Let a = Σi≥naip
i ∈ Qp. Then v(x − a) > n for all n ∈ Z. For

uniqueness suppose that there are distinct b1, b2 ∈ Qp such that v(x − b1) > n for
all n and v(x− b2) > n for all n. But then v(x− b2− (x− b1)) = v(b1− b2) > n for
all n a contradiction.

Now suppose that K is a p-adically closed �eld meeting our two criteria. We
�rst claim that Γ(K) = Z. Notice that by assumption Qalg

p � K. Suppose that
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Γ(K) 6= Z. Pick γ ∈ Γ(K) so that γ > n for all n ∈ Z and consider the open set
U = {x ∈ K : v(x) > γ} \ {0}. Then U ∩Qalg

p = ∅ a contradiction. So Γ(K) = Z.
Now �x K∗ a very saturated elementary extension of K so that Qp � K∗. By
assumption for every x ∈ Qp there is y ∈ K so that v(x− y) > n for all n ∈ Z and
similarly for any y ∈ K there is a unique x ∈ Qp so that v(x− y) > n for all n ∈ Z.
Hence we may de�ne an isomorphism of K to Qp by simply sending x ∈ K to the
unique y ∈ Qp so that v(x− y) > n for all n ∈ Z. �

Given the previous result one is led, as in the case for real closed �elds (or more
generally o-minimal structures), to consider two situations for pairs of p-adically
closed �elds (K1,K2) with K2 � K1, the �rst being where K2 is dense in K1 the
second where K2 is tame in K1. In this note we will consider the �rst of these two
cases.

Our goal is to generalize many of the result of [10] from the o-minimal context to
the context of dense pairs of p-adically closed �elds. But in fact we can work at a
much greater level of generality and thus encompass a larger class of examples. Thus
we now proceed to develop the machinery of dense pairs of o-minimal structures in
a context of �elds with a de�nable topology. Ultimately we will be able to show
that much of the machinery from [10] carries over into this new context. This will
allow us to use theorem 2.7 to show that if our initial theory is dependent the theory
of the dense pairs we obtain is also dependent.

We begin by describing the context in which we will work. Our exposition relies
heavily on that of Matthews in [18].

De�nition 4.3. Let M be an L-structure and φ(x, ~y) be an L formula. The pair
(M, φ) is called a �rst order topological structure if the set {φ(M,~a) : ~a ∈ M}
forms the basis for a topology on M .

We will from now on assume that L contains symbols {+, ·, 0, 1} and any L-
structures considered are integral domains.

De�nition 4.4. For (M, φ) a topological structure a de�nable set X ⊂ Mn is a
cell if for some coordinate projection π : Mn →Mm, π is a homeomorphism of X
onto its image and π(X) is open.

De�nition 4.5. The topological structure (M, φ) is said to have the cell decompo-
sition property if for any A ⊂M and any A-de�nable X ⊂Mn there is a partition
of X into A-de�nable cells X1 . . . Xn.

Notice that this is weaker than the cell decomposition property as de�ned in
[18] in that we do not insist that a �xed function can be assumed to be continuous
when restricted to a cell. The following de�nitions provides us with the class of
�rst-order topological theories with which we will work.

De�nition 4.6. Let (M, φ) be a topological structure the T = Th(M). We say that
(M, φ(x, ~y)) is geometric if:

(1) T has de�nable Skolem functions.
(2) If N |= T then (N, φ) has the cell decomposition property.
(3) If N |= T then acl on N satis�es the exchange property.
(4) If N |= T and f : N → N is de�nable then f is continuous o� of a �nite

subset of N .
(5) If N |= T and X ⊆ N is de�nable and in�nite then X has interior.
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(6) If p(x) ∈ M [x] is a polynomial with coe�cients from M then p(x) is con-
tinuous.

(7) If ~a ∈ Mn (here n = |~y|) and M |= φ(b,~a) then there is U a neighborhood
of ~a so that if ~c ∈ U then M |= φ(b,~c).

Properties (5)-(7) above ensure that the de�nable topology and general de�nable
sets interact in a reasonable way (although (5) is rather stringent) while properties
(1)-(4) carry the actual weight that allow us to think of these theories as in some
sense �geometric�.

Recall that for any structure M in which acl satis�es the exchange property
we may de�ne the rank rk(~a/A) of a tuple ~a over a set A. Thus we may de�ne
the dimension of an A-de�nable set X ⊆ Mn as the maximal m ∈ N so that
for some ~a ∈ X (after potentially passing to a su�ciently saturated elementary
extension), rk(~a/A) = m. Also if (M, φ) is topological we may de�ne, for X ⊆Mn

de�nable, the dimension of X to be the largest l ∈ N so that for some coordinate
projection φ : Mn →M l, π(X) has interior. Under the assumptions that (M, φ) is
a geometric topological structure it follows by Lemmas 8.11 and 8.12 in [18] that
these two notions of dimension are the same and hence we are justi�ed in simply
speaking of dimension (we note that in [18] Lemmas 8.11 and 8.12 are proved under
the stronger assumption for cell decomposition used in that paper, but for these
two results our weaker de�nition su�ces). Also notice that if (M, φ) is geometric
then any locally constant de�nable f : M → M has �nite image. Furthermore
it follows from 1.18 and the ensuing remarks in [9] that if T is geometric then it
eliminates ∃∞. Finally the assumption that T has Skolem functions yields that for
any M |= T if A ⊂ M then dcl(A) = acl(A) hence these two notions can be used
interchangeably.

We now develop the dense pairs machinery of [10] in the context of geometric
topological theories. Our exposition is almost identical to that of [10]. We recall
some de�nitions.

De�nition 4.7. Given a �rst order topological theory T (recall our conventions
on T ) the theory of dense pairs of models of T , T d is the theory of pairs of model
of T , (N,M) where M ≺ N and M is dense in N .

De�nition 4.8. If (N,M) |= T d, a de�nable set X ⊆ N is called small if there is
an N-de�nable function f : Nm → N so that X ⊆ f(Mm).

We now summarize the results we intend to develop for dense pairs of geometric
topological theories. Essentially this theorem summarizes theorems (1)-(4) in [10]
with very modest alterations for the broader context. In the ensuing Theorem, we
write (B,A) instead of (N,M) in order for our notation to coincide with that of
[10].

Theorem 4.9. It T is a geometric topological theory and T d is the theory of dense
pairs of models of T then:

(1) T d is complete and any formula is T d equivalent to a Boolean combination
of formulas of the form:

∃~x(P (~x) ∧ φ(~x, ~y))

where φ is an L formula.
(2) If (B,A) |= T d then Y ⊆ Am is de�nable in (B,A) if and only if Y = Z∩Am

for some Z ⊆ Bm de�nable in B.
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(3) If F : B → B is de�nable in (B,A) then F agrees o� of some A-small
subset of B with a function de�nable in B.

(4) If S ⊆ B is de�nable in (B,A) then there exists a small subset X ⊆ B so
that S \X = S′ \X for some B-de�nable S′ ⊆ B.

(5) If f : An → A is de�nable in (B,A) then there are f1 . . . fl : An → A
de�nable in A so that for each x ∈ Mn there is 1 ≤ i ≤ l so that f(x) =
fi(x).

(6) If X ⊆ B is A-small and de�nable then there are de�nable open sets U, V
so that B \ (U ∪ V ) is �nite, U ∩X = ∅ and X is dense and codense in V .
If S ⊆ B is de�nable in (B,A) then there are de�nable open sets U, V,W
so that N \ (U ∪ V ∪W ) is �nite, U, V,W are pairwise disjoint, U ⊆ S,
S ∩ V = ∅, and S ∩W is dense and co-dense in W .

Proof. The proof of this theorem is almost identical to those found in [10]. We
do not intend to rewrite all of van den Dries's arguments, rather we point out
any places in the exposition of [10] where signi�cant alterations are needed for our
context. Throughout we refer to the numbering found in [10]. Our goal is to verify
results 1.1-4.6 in [10] in our context. We provide a guide to the alterations necessary
to generalize van den Dries's proof. We assume T is a �rst order topological theory
witnessed by a formula φ(x, ~y). Notice that throughout where [10] has �cut of a
over B� we must rephrase this as �tpL(a/B)�. Similarly throughout we must replace
�interval� with �basic open set�.

Results 1.1,1.3, and 1.4 follow immediately, notice we do not consider 1.2 because
we assume that we are working in structures which are at least integral domains.
Once again 2.1 and 2.3 follow immediately and we omit 2.2 (which is not necessary
for the rest of the results). We need a new proof for 2.4:
Claim. B \A is dense in B.

Suppose that A ≺ B. For contradiction suppose that for some ~b ∈ Bm a basic

open set U = φ(B,~b) is a subset of A. Since acl is a pregeometry it follows from
1.18 and the ensuing remarks in [9] that there is a ∅-de�nable function F : B4 → B
in the language of rings so that F (U) = B, but since A |= T , U ⊆ A, and f is
L-de�nable over ∅ it follows that F (U) ⊆ A. Thus B = A a contradiction.

Given this 2.5-2.10 follow mutatis mutandis except that for 2.11 we only consider
the equivalence of statements (1) and (2), (3) of course being only relevant in the o-
minimal case. Similarly 3.1 and 3.2 also follow. We must make a slight adjustment
to verify 3.3:
Claim. Let (B,A) ⊂ (B∗,A∗) |= T p and suppose that B andA∗ are algebraically

independent over A. Then B is de�nably closed in (B∗,A∗).
The proof of 3.3 remains the same except the we may not assume upon cell

decomposing and choosing an open cell E that f � E is monotone or constant.
Notice that Case 1 of the proof of 3.3 from [10] holds hence we may assume that
b∗ depends on all of a∗1 . . . a

∗
k. As in the original proof we choose by saturation

ak so that tpL(ak/B
′) = tpL(a∗k/B

′) and so that ak /∈ aclL(Ba∗1 . . . a
∗
kb
∗). But we

have that b∗ ∈ acl(Ba∗1 . . . a
∗
k−1ak) and thus by the exchange property we have that

ak ∈ aclL(Ba∗1 . . . a
∗
k−1b

∗) a contradiction.
With this 3.4-3.6 follow as does 4.1. 4.2 is the last result in which we need to

make minor modi�cations.
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Claim. Let S ⊂ Bm be de�nable in B, and let the map g = (g1, . . . , gk) : Bm →
Bk be de�nable in B. Then there is a set S′ ⊂ S de�nable in B such that

Am ∩ S ∩ g−1(Ak) = Am ∩ S′

Our proof parallels that of [10] to the point where we take a functionG : Bm+n →
B which is A-de�nable in B and a point b = (b1 . . . bn) ∈ Bn so that g(x) = G(x, b)
for all x ∈ Bm. We also assume that b1 . . . bn are independent over A and following
[10] proceed by induction on n. We may also assume that n > 0. We now take
a cell decomposition of Bm+n. By induction we may without loss of generality
restrict our attention to open cells E. After further cell decomposition we may also
assume that either for any a1 . . . an+m ∈ E, G(a1 . . . an+m−1, x) is locally constant
in a neighborhood of an+m or for no a1 . . . anm ∈ E is G(a1 . . . an+m−1, x) locally
constant in a neighborhood of an+m. Thus we divide into two cases paralleling
cases (1) and (2) of the proof of 4.3 in [10]

Suppose we are in the �rst case. Let E∗ be the projection of E onto the
�rst n + m − 1 coordinates. Notice that for any a1 . . . an+m−1 ∈ E∗ the func-
tion G(a1 . . . an+m−1, x) obtains only �nitely many values on the �ber of E above
a1 . . . an+m−1 and hence there is uniform bound on the number of values, N . Since
we have Skolem functions we may �nd functions G1 . . . GN : E∗ → B which
pick out these values. Now let Ei be the set of all a1 . . . an+m ∈ E so that
G(a1 . . . an+m−1, x) = Gi(a1 . . . an+m−1) in some neighborhood of am+m. Thus
E = ∪Ei and G is independent of the last coordinate on each Ei. Now we may
apply cell decomposition to each of the Ei and proceed as in case 1 of the proof of
4.2 in [10].

Now suppose we are in the second case. Let a1 . . . an+m ∈ E. Notice that the
set E(a1 . . . an+m) of all z ∈ B so that a1 . . . an+m−1, z ∈ E and G(a1 . . . an+m) =
G(a1 . . . an+m−1, z) must be �nite since otherwise E(a1, . . . an+m) would have inte-
rior, contradicting the assumptions on E. By elimination of ∃∞ for T we may �nd a
uniform bound, N , on the cardinality of E(a1, . . . an+m) as we vary a1 . . . an+m. We
may �nd functions G1, . . . , GN so that if a1 . . . an+m ∈ E and G(a1 . . . an+m) = c
then

G1(a1 . . . an+m−1, c) . . . GN (a1 . . . an+m−1, c)
lists all elements z so that a1 . . . an+m−1, z ∈ E and G(a1, . . . an+m−1, z) = c. Thus
if a1 . . . am ∈ Mm ∩ SE ∩ g−1(A) then G(a1 . . . am, b) = a′ ∈ A so that bn =
Gi(a1, . . . amb1, . . . bn−1a

′) for some i contradicting that bn /∈ acl(Mb1 . . . bn−1).
Hence Am ∩ SE ∩ g−1(A) is empty.

Now 4.3-4.6 go through mutatis mutandis.
�

Corollary 4.10. If T is a geometric �rst-order topological theory without the inde-
pendence property then the theory of dense pairs of models of T also does not have
the independence property. Moreover if T is strongly dependent so is the theory of
dense pairs of models of T .

Proof. The previous theorem establishes that if N |= T and M is a dense elementary
submodel then M is an innocuous subset of N so the result is immediate from
Theorem 2.7. For the �moreover� we apply Theorem 2.10 instead. �

Corollary 4.11. For any of the following theories, the resulting theory of dense
pairs of models of T is strongly dependent:
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(1) O-minimal theories.
(2) P-minimal theories with Skolem functions. Examples include: Th(Qp) and

Th(Qan
p ) the theory of the p-adics with restricted analytic functions (for

which see [13]).
(3) Weakly o-minimal theories with Skolem functions for which acl-satis�es ex-

change. In particular the theory of real closed rings (see [18] and [17]).

Proof. The result follows in that each of the above theories is a geometric �rst
order dependent topological theory. For the fact that each of these is geometric:
see [18] for the o-minimal case as well as for the p-adics, for the weakly o-minimal
case see [17] and [18] for speci�cs on real closed rings, see [16] for generalities on
p-minimal theories, and [13] for speci�c facts on Qan

p . For the strong dependence
in the weakly o-minimal (and hence o-minimal case) see [14] where even stronger
results than strong dependence are proved. For the p-minimal case see [22] for the
strong dependence of the p-adics and then argue as in [16] for the general p-minimal
case. �
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