
EVERY DEFINABLE C∞ MANIFOLD IS AFFINE

TOMOHIRO KAWAKAMI

Abstract. Let M = (R,+, ·, <, ex, . . . ) be an exponential o-minimal expansion of the
standard structure R = (R,+, ·, <) of the field of real numbers with C∞ cell decom-
position. We prove that every n-dimensional definable C∞ manifold is definably C∞

imbeddable into R2n+1.

1. Introduction

M. Shiota proved that if 0 < r < ∞, then every Cr Nash manifold is affine [9]. Let
M = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard structureR = (R,+, ·, <)
of R. Note that if M = R, then a definable Cr manifold is a Cr Nash manifold. Definable
Cr categories based on M are generalizations of the Cr Nash category.

General references on o-minimal structures are [1], [2], see also [10]. The term “defin-
able” means “definable with parameters in M”.

If r is a non-negative integer, then every definable Cr manifold is affine [7]. We have
the following theorem as a generalization of this result.

Theorem 1.1. Let M = (R,+, ·, <, ex, . . . ) be an exponential o-minimal expansion of the
standard structure R = (R,+, ·, <) of the field of real numbers with C∞ cell decomposition.
Then every n-dimensional definable C∞ manifold X is definably C∞ imbeddable into
R2n+1.

The above theorem is the definable version of Whitney’s imbedding theorem (e.g. 2.14
[3]). Even in the Nash category (i.e. M = R), we cannot drop the assumption that M
is exponential by Theorem 1.1 [9].

Theorem 1.2 ([5]). If 0 ≤ s <∞ and M is an exponential o-minimal expansion of R =
(R,+, ·, <) with C∞ cell decomposition, then every definable Cs map between definable
C∞ manifolds is approximated in the definable Cs topology by definable C∞ maps.

Using Theorem 1.2 and by a way similar to the proof of Theorem 1.1 and 1.3 [4], we
have the following theorem.

Theorem 1.3. Let 1 ≦ s < r ≦ ∞, then every definable Cs manifold admits a unique
definable Cr manifold structure up to definable Cr diffeomorphism.
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2. Proof of our result

Theorem 2.1. Let X be an affine definable C∞ manifold and V a definable subset closed
in X. Then there exists a non-negative definable C∞ function f : X → R such that
f−1(0) = V .

Proof . By definition of affineness and 3.2 [8], X is definably C∞ diffeomorphic to a
definable C∞ submanifold of some Rl which is closed in Rl. We identify X with its image.
Thus V is closed in Rl. Since M admits C∞ cell decomposition, there exists a C∞ cell
decomposition D partitioning V . For every cell C ∈ D, the closure C of C in X lies in V .
Thus if V = C1 ∪ · · · ∪Cm, then V = C1 ∪ · · · ∪Cm. If Ci is bounded and k-dimensional,
then Ci is definably C∞ diffeomorphic to [−1, 1]k. Hence Ci is the zeros of a definable
C∞ function. Thus the case where V is compact is proved.

Let Ci be unbounded. Replacing Rl by Rl+1, we may assume that 0 ̸∈ Ci. Let i :
Rl+1 − {0} → Rl+1 − {0}, i(x) = x

||x||2 , where ||x|| denotes the norm of x. Then C ′
i =

i(Ci) ∪ {0} is the one point compactification of Ci. Thus there exists a definable C∞

function ψ : Rl+1 → R with C ′
i = ψ−1(0). Hence Ci is definably C

∞ diffeomorphic to the
set C ′′

i = {(x, y) ∈ Rl+1×R|ψ(x) = 0, ||x||2y = 1}. Therefore Ci is the zeros of a definable
C∞ function. Since V = C1∪ · · · ∪Cm, V is the zeros of a definable C∞ function ϕ. Thus
f := ϕ2 : X → R is the required function. □

The following is a definable C∞ partition of unity.

Proposition 2.2. Let {Ui}ki=1 be a definable open covering of a definable C∞ manifold
X. Then there exist definable C∞ functions λi : X → R (1 ≤ i ≤ k) such that 0 ≤ λi ≤ 1,

supp λi ⊂ Ui and
∑k

i=1 λi = 1.

If X is affine, then the definable Cr version of Proposition 2.2 is known in 4.8 [6].

Proof . We now prove that there exists a definable open covering {Vi}ki=1 of X such
that Vi ⊂ Ui, (1 ≤ i ≤ k), where Vi denotes the closure of Vi in X.

We proceed by induction on k. If k = 1, then there is nothing to prove. Assume
that there exists a definable open covering {Vi}k−1

i=1 ∪ {Uk} of X such that Vi ⊂ Ui,
(1 ≤ i ≤ k − 1).

Let Xk−1 := ∪k−1
i=1 Vi. By the inductive hypothesis, there exists a definable open covering

{Wi}k−1
i=1 of Xk−1 such that cl Wi ⊂ Vi, where cl Wi means the closure of Wi in Xk−1.

We may assume that Uk is affine. Let Zk := Uk∩∪k−1
i=1 Vi and Cl Zk denote the closure of

Zk in Uk. By Theorem 2.1, there exists a non-negative definable C∞ function ϕk : Uk → R
such that ϕ−1

k (0) = Cl Zk. Since cl W1 ⊂ V1, ϕk is extensible to a non-negative definable

C∞ function ϕ1
k : Uk ∪W1 → R such that ϕ1

k
−1
(0) = Cl Zk ∪W1. Inductively, we have a

non-negative definable C∞ function ϕ : X → R such that ϕ−1(0) = Cl Zk∪W1 · · ·∪Wk−1.
Let Vk := {x ∈ Uk|ϕ(x) > 0}. Then Vk = {x ∈ X|ϕ(x) > 0}, Vk ⊂ Uk and {Vi}ki=1 is the
required definable open covering of X.

By Theorem 2.1, we have a non-negative definable C∞ function µi : Ui → R such
that µ−1

i (0) = Ui − Vi. Thus µi is extensible to a non-negative definable C∞ function

µ′
i : X → R such that µ′

i
−1(0) = X − Vi. Therefore λi := µ′

i/
∑k

i=1 µ
′
i is the required

definable Cr partition of unity. □
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Proof of Theorem 1.1. Let {ϕi : Ui → Rn}ki=1 be a definable Cr atlas of X. By
Proposition 2.2, we have definable C∞ functions λi : X → R, (1 ≤ i ≤ k) such that

0 ≤ λi ≤ 1, supp λi ⊂ U and
∑k

i=1 λi = 1. Thus the map F : X → Rnk × Rk defined by
F (x) = (λ1(x)ϕ1(x), . . . λk(x)ϕk(x), λ1(x), . . . , λk(x)) is a definable C∞ imbedding. Hence
X is affine. Thus it is either compact or compactifiable by 1.2 [6]. Hence we may assume
that X is affine and compact at the beginning. A similar argument of the proof of 1.4
[11], every definable C∞ map f : X → R2n+1 can be approximated in the Cr topology
by an injective definable C∞ immersion h : X → R2n+1. Since X is compact, h is the
required definable C∞ imbedding. □
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