
A NOTE ON DOLICH’S PAPER

SERGEI STARCHENKO

Let T be an o-minimal theory extending the theory of real closed fields. We fix
a large saturated model C of T . Our goal is to give a ‘”more conceptual proof” of
the following theorem of Dolich (see Definition 1.3 for the notion of “goodness”).

Theorem 0.1 ([2, Theorem 3.5]). For a formula ϕ(x̄, ȳ), ā ∈ C and A ⊂ C the
following conditions are equivalent.
(1) ϕ(x̄, ā) is good over A.
(2) ϕ(x̄, ā) does not fork over A.

In the paper [4] Y. Peterzil and A. Pillay considered a special case when the set
ϕ(C, ā) is closed and bounded and derived the following result from Dolich’s paper.

Theorem 0.2 ([4, Theorem 6.5]). Let M ≺ C, ϕ(x̄, ȳ) be a formula, and ā ∈ C.
Assume the set ϕ(C, ā) is closed and bounded in C. Then φ(x̄, ā) does not fork over
M if and only if ϕ(C, ā) has a point in M .

The proof of the above theorem, derived from ideas of A. Dolich, is more direct
then the original proof of Theorem 0.1.

Unfortunately, Theorem 0.2 fails in the case when ϕ(C, ā) is not closed and
bounded.

Our proof of Theorem 0.1 is similar to the proof of Y. Peterzil and A. Pillay,
and is also more direct then the original proof of A. Dolich. We also derive an
appropriate generalization of Theorem 0.2

Theorem 0.3 (see Corollary 4.3). Let M ≺ C, ϕ(x̄, ȳ) be a formula, and ā ∈ C.
The φ(x̄, ā) does not fork over M if and only if ϕ(C, ā) has a point in M〈δ〉 for any
(some) δ ∈ C satisfying δ > M〈ā〉.

As a corollary we have a characterisation of forking for types.

Corollary 0.4. Let M ≺ N ≺ C and p ∈ S(N). The type p does not fork over M
if and only if for some δ ∈ C with δ > N the type p has an extension q ∈ S(N〈δ〉)
such that q is finitely realizable in M〈δ〉.

Remark 0.5. We don’t really need that T expands the theory of real closed field.
We only need that T has definable Skolem functions, and any two definable 1-types
are inter-algebraic.

In the case when ϕ(x̄, ā) defines a bounded set, we only need to consider bounded
definable types, and in this case it is sufficient to assume that T expands an ordered
group.
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1. Preliminaries

Since T has definable Skolem functions for any A ⊆ C we have that dcl(A) is the
universe of an elementary substructure of C.

1.1. Notations. We use A ⊂ C and M ≺ C to denote that A and M are small
subset and elementary substructure of C, respectively.

For M ≺ C and A ⊆ C we will use M〈A〉 to denote dcl(M ∪A).
If A,B ⊆ C then we will write A < B if a < b for all a ∈ A, b ∈ B.
For a set A ⊆ C and a type q over A (possibly not complete) we will denote by

dclq(A) the set dcl(A) ∩ q(C).
By a global type we mean a complete type over C.

1.2. The notion of “goodness”. First we recall the definition of a definable type.

Definition 1.1. Let N 4 C, A ⊆ N and p(x̄) a type over N . The type p is
definable over A if for every formula ϕ(x̄, ȳ) there is a formula ψ(ȳ) over A such
that for every b̄ ∈ N we have N |= ψ(b̄) if and only if ϕ(x̄, b̄) ∈ p(x̄).

If A = N then we just say that p is definable.

It is very easy to see that if A ⊆ N and p(x̄) ∈ S(N) is definable over A then p
has a unique global extension definable over A.

We introduce strongly definable types.

Definition 1.2. Let N 4 C, A ⊆ N , and p(x̄) ∈ Sn(N). We say that the type p is
strongly definable over A if for a realization (a1, . . . , an) of p we have that the type
tp(ai/N〈a1, . . . , ai−1〉) is definable over A ∪ {a1, . . . , ai−1} for all i = 1, . . . , n.

It is easy to see that if a type p ∈ S(N) is strongly definable over A then it is
definable over A, however converse is not true in general.

We are ready to unwrap Dolich’s definition of goodness.

Definition 1.3. For ā ∈ C and a formula ϕ(x̄, ȳ) we say that the formula ϕ(x̄, ā) is
good over a set A ⊂ C if either length(x̄) = 0 and C |= ϕ(x̄, ā), or length(x̄) > 0 and
there is a type p(x̄) ∈ S(Aā) such that ϕ(x̄, ā) ∈ p(x̄) and p(x̄) is strongly definable
over A.

1.3. Splitting. Recall that if A ⊆ B ⊆ C and p(x̄) ∈ S(B) then p does not split
over A if for any formula ψ(x̄, ȳ) and b̄, b̄′ ∈ B with tp(b̄/A) = tp(b̄′/A) we have
ψ(x̄, b̄) ∈ p if and only if ψ(x̄, b̄′) ∈ p.

It is easy to see that if p is a global type and A ⊂ C then p does not split over
A if and only if p is invariant under all automorphisms of C fixing A. In this case
we also say that p is A-invariant.

In the following fact we list some basic properties of splitting.

Fact 1.4. (1) If A ⊆ N 4 C and p(x̄) ∈ S(N) is definable over A then p
has unique global extension q that is definable over A and this type q does
not-split over A.

(2) If M 4 N ≺ C, p ∈ S(N), and p does not split over M then p has a global
M -invariant extension. Moreover, if N is |M |+-saturated then such global
M -invariant extension is unique.

(3) Let p ∈ S(C). If p is definable and does not split over M ≺ C then p is
definable over M .
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The following claim is also easy.

Claim 1.5. Let A ⊆ N 4 C, and p(x̄) ∈ Sn(N) strongly definable over A. If q is
the global extension of p definable over A then q is strongly definable over A.

Definition 1.6. For global types p(x̄), q(ȳ) and a set A ⊂ C we say that p and q
commute over A if
(a) both p and q do not split over A, and
(b) for any A ⊆ B ⊂ C, a realization ā of p�B and any realization b̄ of q�Bā we

have ā |= p�Bb̄.

Remark. In notations of Hrushovski-Pillay (see [3]) , part (b) means pnq = poq.

Remark 1.7. In the above definition, since non-splitting is equivalent to be A-
invariant, “for any realization” can be replaced by “for some realization”, and
commuting is a symmetric relation.

2. Some properties of types

2.1. More on definable types. The following fact follows from definability of
types in o-minimal theories.

Fact 2.1. Let M ≺ C, p(x) ∈ S1(M) a non-algebraic type, and c |= p. The
following are equivalent.
(a) p(x) is definable.
(b) M is not co-final in M〈c〉.

Let ∆(x) be the global 1-type over C with c < x ∈ ∆(x) for every c ∈ C, i.e.
∆(x) is the type of infinitely large positive element. Obviously, ∆ is definable over
∅.

Corollary 2.2. Let M ≺ C and δ |= ∆(x)�M . A 1-type p(x) ∈ S1(M) is definable
if and only if p has a realization in M〈δ〉.

Proof. Easy. �

Construction 1. By induction on n we construct global types ∆n(x̄) ∈ Sn(C) all
strongly definable over the empty set. We take ∆1(x) = ∆(x). To construct ∆n+1,
let ā be a realization of ∆n � dcl(∅), and δ a realization of ∆� dcl(ā). Then the
type tp(āδ/dcl(∅)) is strongly definable and we take ∆n+1 to be its unique global
extension definable over ∅.

Remark. In notations of Hrushovski-Pillay, ∆n+1 = ∆n o ∆.

Obviously, for a model M ≺ C and (δ1, . . . , δn) |= ∆n � M we have δi+1 >
M〈δ1, . . . , δi〉 for all i = 1, . . . , n.

Claim 2.3. Let M ≺ C and p(x̄) ∈ Sn(M). The type p is strongly definable if and
only if there is a realization ā = (a1, . . . , an) of p and a realization (δ1, . . . , δn) of
∆n�M such that ai ∈M〈δ1, . . . , δi〉 for all i = 1, . . . , n.

Proof. Follows from Corollary 2.2. �

We need the following claim and its consequences.
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Claim 2.4. Let M 4 N ≺ C with N finitely generated over M . Then there is
t ∈ N such that M〈t〉 is co-finial in N .

Proof. We prove it by induction on dim(N/M). The claim is easy if dim(N/M) ≤ 1.
Assume dim(N/M) = n + 1 with n ≥ 1. By [5, Lemma], there is M ≺ M1 ≺ N
such that M1 is co-final in N and dim(M1/M) = n, Applying induction hypothesis,
we can find t ∈M1 such that M〈t〉 is co-final in M1, hence in N . �

Corollary 2.5. If M ≺ N and δ |= ∆�N then M〈δ〉 is co-final in N〈δ〉.

Proof. It is sufficient to consider the case when N is finitely generated over M .
Then, by Claim 2.4, there is t ∈ N〈δ〉 such that M〈t〉 is co-final in N〈δ〉. Thus
there t′ ∈M〈t〉 with t′ ≥ δ > N .

Since t′ ∈ M〈t〉 \M , we have M〈t〉 = M〈t′〉, and, for the same reason, N〈δ〉 =
N〈t′〉. Thus M〈t′〉 is co-final in N〈t′〉. Since t′ > N , t′ realizes ∆�N , and there is
an automorphism of C fixing N that maps δ to t′. �

Corollary 2.6. Let A ⊆ C, c ∈ C such that c 6∈ dcl(A), and δ |= ∆� Ac. Then
tp(c/dcl(Aδ)) is not definable.

Proof. For M = dcl(A) and M1 = dcl(Aδ), by the previous Corollary, we have that
M1 is co-final in M1〈c〉, hence tp(c/M1〈δ〉) is not definable. �

Corollary 2.7. Let A ⊆ C, c ∈ C such that c 6∈ dcl(A), k ∈ N, and δ̄ |= ∆k�Ac.
Then tp(c/dcl(Aδ̄)) is not definable.

Proof. Follows from Corollary 2.6 by induction on k. �

Corollary 2.8. Let M ≺ C and ā ∈ C. Assume tp(ā/M) is not algebraic. Then
there are c1, . . . , cm ∈ C independent over M such that ā and c̄ = (c1, . . . , cm) are
interdefinable over M , and for i = 2, . . . ,m the type tp(ci/M〈c1, . . . , ci−1)〉 is not
definable.

Proof. Let N = M〈ā〉. If dim(N/M) < 2, then we can take c̄ = c1 such that
N = M〈c1〉.

Assume dim(N/M) ≥ 2. By Claim 2.4, we can choose c1, . . . cm ∈ N independent
over M such that M〈c1〉 is co-final in N and N = M〈c1, . . . , cm〉. Then, for i =
2, . . . ,m, M〈c1, . . . , ci−1〉 is co-final in M〈c1, . . . , ci〉, hence tp(ci/M〈c1, . . . , ci−1)〉
is not definable. �

2.2. Special Extensions. In this section we consider “nice” extensions introduced
by Dolich.

Let A ⊆ B ⊂ C, p(x) ∈ S1(A) a non-algebraic type, and a |= p. Then, by o-
minimality, the type tp(a/B) does not split over A if and only if either a > dclp(B)
or a < dclp(B).

Thus, if A ⊂ C and p ∈ S1(A) is non-algebraic then p has exactly two A-invariant
global extensions, that we will denote by p0 and p1, where p0(x) = p(x) ∪ {x <
c : c ∈ p(C)}; and similarly, p1(x) = p(x) ∪ {x > c : c ∈ p(C)}.

For a convenience, in the case when p ∈ S1(A) is algebraic, we take p0 = p1 to
be the unique global extension of p.

Notice that if A ⊆ B ⊂ C, p ∈ S1(A) is not algebraic, and a |= p then a |= p0�B
if and only if a < dclp(B), and a |= p1�B if and only if a > dclp(B).
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Construction 2. For a set A ⊂ C, an n-type p(x1, . . . , xn) ∈ Sn(A), and η =
(η(1), . . . , η(n)) ∈ 2n, by induction on n, we construct a global extension pη(x̄) of
p(x̄) that does not split over A.

We have constructed such extensions for n = 1.
Assume we have such extensions for n, and let p(x1, . . . , xn+1) ∈ Sn+1(A). We

first choose an |M |+-saturated elementary extension N of M . Let q(x1, . . . , xn) ∈
Sn(A) be the restriction of p to the first n variables. Let (a1, . . . , an) be the realiza-
tion of qη�n�N . Let r(xn+1) ∈ S1(A∪{a1, . . . , an}) be the type p(a1, . . . , an, xn+1),
and an+1 be a realization of rη(n+1)�N〈a1, . . . , an〉. It is easy to see that the type
tp(a1, . . . , an+1/N) does not split over A (since tp(a1, . . . , an/N) does not split over
A and tp(an+1/N〈a1, . . . , an〉) does not split over A∪〈a1, . . . , an}), and, since N is
|M+|-saturated, this type has unique global extension pη that does not split over
A.

Remark. In notations of Hrushovski-Pillay for p(x1, . . . , xn+1) ∈ Sn+1(A) and

η ∈ 2n+1 the type pη is qη�n o rη(n+1), where q = tp(a1, . . . , an/A) and r =

tp(an+1/A ∪ {a1, . . . , an}) for some (a1, . . . , an+1) realizing p.

It is not hard to see that if A ⊂ C, p ∈ Sn(A), η ∈ 2n, B ⊃ A then ā =
(a1, . . . , an) realizes pη � B, if and only if ā realizes p, and, for i = 1, . . . , n and
pi(x) = tp(ai/A∪{a1, . . . , ai−1}) we have ai < dclpi

(B∪{a1, . . . , ai−1}) if η(i) = 0;
and ai > dclpi

(B ∪ {a1, . . . , ai−1}) if η(i) = 0.

2.3. On relations between 1-types. Let A ⊂ C and p, q ∈ S1(A). It follows from
o-minimality that either p(x) ∪ q(y) is a complete type or there is an A-definable
function f such that f maps p(C) onto q(C), and in the latter case the function f
must be either order-preserving on p(C) or order reversing on p(C). We will write
f(p) = q, if f is an A-definable function from p(C) onto q(C).

Claim 2.9 ([2] ). Let A ⊂ C, p, q ∈ S1(C), and f, g A-definable functions such that
f(p) = q and g(p) = q. Then either both f and g are order-preserving on p(C) or
they are both order-reversing.

Corollary 2.10. Let A ⊂ C and p, q ∈ S1(A) with p non-algebraic. Then either
(a) for any B ⊃ A and ai |= pi � B, i = 0, 1, we have dclq(Aa0) < dclq(B) and

dclq(Aa1) > dclq(B); or
(b) for any B ⊃ A and ai |= pi � B, i = 0, 1, we have dclq(Aa0) > dclq(B) and

dclq(Aa1) < dclq(B).

Proof. Easy. �

Corollary 2.11. Let A ⊂ C and a, b ∈ C. Then tp(a/dcl(Ab)) does not split over
A if and only if tp(b/dcl(Aa)) does not split over A.

Proof. Easy �

Remark. Unfortunately the above claim holds only for 1-types.

Claim 2.12. Let M ≺ C and let p ∈ S1(M) be a non-definable type. Then p(x) ∪
∆(y)�M is a complete type over M .

Proof. Let a |= p and δ |= ∆� M It is sufficient to show that ∆� M has unique
extension over M〈a〉, namely ∆�M〈a〉. Let N = M〈a〉. Since p is not definable,
M is co-final in N and δ > N , since δ > M . Thus δ |= ∆�N . �
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Corollary 2.13. Let M ≺ C and let p(x) ∈ S1(M) be a non-definable type. Then,
for any k ∈ N, p(x) ∪∆k(ȳ)�M is a complete type over M .

Proof. Follows, by induction on k, from Claim 2.12 and Corollary 2.6. �

Claim 2.14. Let M ≺ C and r(x) ∈ S1(C) a global 1-type that does not split over
M . If r is not definable then r and ∆ commute over M .

Proof. Let a |= r�M and δ |= ∆�M〈a〉. We need to show that a |= r�M〈δ〉. Let
p(x) = r(x)�M .
Case 1: The type p(x) is not definable. Then, by Claim 2.12, p(x) ∪∆(y)�M
is a complete type, hence a |= r�M〈δ〉.
Case 2: The type p(x) is definable. In this case p(x) has a global extension
r′(x) such that r′(x) is definable and does not split over M . Obviously, r′ 6= r.

Since tp(δ/M〈a〉) does not split over M , by Corollary 2.12, tp(a/M〈δ〉) does not
split over M , and it has a global extension r1(x) ∈ S1(C) such that r1 that does
not split over M . Since every non-algebraic 1-type has exactly two non-splitting
global extensions, it is sufficient to show that r1 6= r′. By Corollary 2.6, the type
tp(a/M〈δ〉) is not definable, hence all its global M〈δ〉-invariant extensions are not
definable. Hence r1 is not definable and r1 6= r′. �

Corollary 2.15. Let M ≺ C and r(x) ∈ S1(C) a global 1-type that does not split
over M . If r is not definable then r and ∆k commute over M for any k ∈ N

Proof. Follows from the previous claim by induction on k. �

3. Proof of Theorem 0.1

In this section we prove Theorem 0.1. At some points during the proof we will
make some choices and assumptions that we will carry on throughout the proof.
We will itemize some of them.
• We fix A, ā, and ϕ(x̄, ȳ) as in Theorem 0.1.
• Taking M0 = dcl(A) if needed we assume A = M0 ≺ C.

By a result of H. Adler (see [1]), since T has NIP, a global type does not fork
over M0 if and only if it does not split over M0. Thus, since ϕ(x̄, ā) does not fork
over M0 if and only if there is a global type p containing ϕ such that p does not
fork over M0, Theorem 0.1 can be restated in the following way.

Theorem 3.1 (Restatement of Theorem 0.1). The following conditions are equiv-
alent.
(1) ϕ(x̄, ā) is good over M0.
(2) Thee is a global M0-invariant type containing ϕ(x̄, ā).

The direction (1) =⇒ (2) is easy: If ϕ(x̄, ā) is good over M0 then there is a global
type p(x̄) containing ϕ(x̄, ā) such that p is strongly definable over M0. Obviously
p(x̄) is M0-invariant.

The direction (2) =⇒ (1) will follow from the following proposition.

Proposition 3.2. If ϕ(x̄, ā) is not good over M0 then there are ā1, . . . , ās all real-
izing the type tp(ā/M0) such that

C |= ¬∃x̄
[
ϕ(x̄, ā)

s∧
i=1

ϕ(x̄, āi)
]
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We prove Proposition 3.2 by induction on the length of x̄.
If the length of x̄ is zero, then the proposition follows from the definition.
The following claim provides the induction step.

Claim 3.3. If ϕ(x1, . . . , xn, xn+1, ā) is not good over M0 then there are ā1, . . . , āk

all realizing the type tp(ā/M0) such that the formula

∃xn+1

[
ϕ(x1, . . . , xn, xn+1, ā)

k∧
i=1

ϕ(x1, . . . , xn, xn+1, ā
i)

]
is not good over M0.

Since ϕ(x̄, ā) is not good over M0, ā 6∈ M0. As the first step, using Corollary
2.8, we can find c̄ = (c1, . . . , cm) such that
• ā and c̄ are interdefinable over M0;
• c1, . . . , cm are independent over M0, and
• tp(ci/M0〈c1, . . . , ci−1〉) is not definable for i = 2, . . . ,m.

• Let r(z̄) = tp(c̄/M0);
• and for each η ∈ 2m we chose c̄η realizing rη�M0〈c̄〉.

Since ā and c̄ are interdefinable over M0,
• there is a formula ψ(x̄, z̄) over M0 such that C |= ϕ(x̄, ā) ↔ ψ(x̄, c̄).
Thus Claim 3.3 follows from the following claim.

Claim 3.4. If ψ(x̄, c̄) is not good over M0, then the formula

∃xn+1

[
ψ(x1, . . . , xn+1, c̄)

∧
η∈2m

ψ(x1, . . . , xn+1, c̄
η)

]
is not good over M0.

We proof Claim 3.4 by a contradiction. We assume that
• ψ(x̄, c̄) is not good over M0;
• but ∃xn+1

[
ψ(x1, . . . , xn+1, c̄)

∧
η∈2m ψ(x1, . . . , xn+1, c̄

η)
]

is good over M0.

• Let C = c̄ ∪η∈2m c̄η. We choose δ̄ = (δ1, . . . , δn) |= ∆n�M0〈C〉,
and let
• M = M0〈δ̄〉.

To proceed as in [4], we will need one more lemma.

Lemma 3.5. Let q(x) ∈ S1(M) be a non-algebraic 1-type. Then there is η ∈ 2m

such that rη(z̄) commutes with ∆n over M0 and one of the following holds.
(A) For any B ⊇M and d̄ |= rη�B, we have dclq(M〈d̄〉) < dclq(B).
(B) For any B ⊇M and d̄ |= rη�B, we have dclq(M〈d̄〉) > dclq(B).

Proof. For j = 1, . . . ,m, let rj(z1, . . . , zj) = tp(c1, . . . , cj/M0), i.e. rj is the restric-
tion of r to the first j variables.

By induction on j = 1, . . . ,m we will construct ηj ∈ 2j such that rηj

j commutes
with ∆n over M0, and either (A) or (B) holds for rηj

j in place of rη.

Case j = 1. Since r1 has exactly two M0-invariant global extensions, and only
one of them can be definable, there is i ∈ {0, 1} such that ri

1 is not definable. By
Corollary 2.15, ri

1 and ∆n commute.
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By Corollary 2.10, applied to A = M , p = ri
1�M , and q, either (A) or (B) holds

for ri
1.

Induction Step: j+1. Assume j > 0 and we have ηj such that rηj

j commutes with
∆n over M0 and either (A) or (B) holds for rηj

j . For simplicity we assume that (A)
holds for rηj

j , i.e. for any B ⊇M and d̄j |= r
ηj

j �B, we have dclq(M〈d̄j〉) < dclq(B).
Let d̄j |= r

ηj

j �M . Since d̄j |= rj we can find e ∈ C such that (d̄j , e) |= rj+1.
Since j > 0, by our choice of c̄ the type tp(e/M0〈d̄j〉) is not definable. Since rηj

j

commutes with ∆n over M0, and d̄j |= r
ηj

j �M0〈δ̄〉, we have δ̄ |= ∆n�M0〈d̄j〉, hence,
by Corollary 2.13, the type p(z) = tp(e/M0〈d̄j〉) is a complete type over M〈d̄j〉.

Let q1(x) = q(x) ∪ {x > a : a ∈ dclq(M〈d̄j〉)}. Obviously, q1 is a complete type
over M〈d̄j〉. Applying Corollary 2.10 to M〈d̄j〉, q1 and p(z), we can find i ∈ {0, 1}
such that for any B ⊇ M〈d̄j〉 and a |= pi�B we have dclq1(M〈d̄ja〉) < dclq1(B).
We take ηj+1 = (ηj , i).

First we show that rηj+1
j+1 commutes with ∆n over M0. Let N �M0, δ̄′ |= ∆n�N ,

and b̄ = (b1, . . . , bj+1) |= r
ηj+1
j+1 �N〈δ̄′〉. Since rηj+1

j+1 is an M0-invariant type, we can
apply an M0-automorphism of C and assume that (b1, . . . , bj) = d̄j , and bj+1 = e.
Since rηj

j commutes with ∆n, we have δ̄′ |= ∆n � N〈d̄j〉. Since tp(e/M0〈d̄j〉) is
not definable every its global M0〈d̄j〉-invariant extension commutes with ∆n over
M0〈d̄′〉, hence δ̄′ |= ∆n�N〈d̄je〉. Thus rηj+1

j+1 commutes with ∆n over M0.
Secondly, let B ⊇ M and d̄j+1 |= r

ηj+1
j+1 �B. We will show that dclq(M〈d̄j+1〉) <

dclq(B). Assume not, then there are b ∈ dclq(B) and u ∈ dclq(M〈d̄j+1〉) such
that b < u. Applying an appropriate automorphism of C if needed we may assume
d̄j+1 = d̄j ê. By the choice of ηj we have b > dclq(M〈d̄j〉), and, since u > b,
u > dclq(M〈d̄j〉). Thus b, u |= q1 with b < u. It contradicts the choice of i.

Lemma 3.5 is proved. �

We continue the proof of Claim 3.4.
Since ∃xn+1

[
ψ(x1, . . . , xn+1, c̄)

∧
η∈2m ψ(x1, . . . , xn+1, c̄

η)
]
is good overM0, there

is
• ξ̄ = (ξ1, . . . , ξn) such that ξi ∈M0〈δ1, . . . , δi〉, for i = 1, . . . , n,
and

(?) C |= ∃xn+1

[
ψ(ξ1, . . . , ξn, xn+1, c̄)

∧
η∈2m

ψ(ξ1, . . . , ξn, xn+1, c̄
η)

]
.

Let δ |= ∆�M . Since ψ(x1, . . . , xn, c̄) is not good over M0, we have that
• the formula θ(xn) = ψ(ξ1, . . . , ξn−1, xn, c̄) has no realization in M〈δ〉.

We follow the proof of [4, Lemma 6.4] almost word by word, replacing their
Proposition 6.3 with Lemma 3.5, so we will be brief.

Let Ic̄ = θ(C). (Notice Ic̄ is definable over M〈c̄〉.) We know that Ic̄ has no
point in M〈δ〉. It is easy to then that the topological closure cl(Ic̄) is disjoint from
M∪{±∞} (for example, if m ∈M∩cl(Ic̄) then either m+1/δ ∈ Ic̄ or m−1/δ ∈ Ic̄).

Thus Ic̄ is a finite union of intervals I1
c̄ < . . . < Ik

c̄ whose endpoints are in M〈c̄〉,
and with each Ii

c̄ contained in qi(C) for some non-algebraic qi(x) ∈ S1(M).
For each i = 1, . . . , k we choose ηi as in Lemma 3.5. We write ri for rηi and c̄i

for c̄ηi
.
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For each i = 1, . . . , k we have that c̄i and c̄ realize the same type over M0. Since
δ̄ |= ∆n�M0〈C〉, we also have that c̄iˆδ̄ and c̄̂ δ̄ realize the same type over M0. Thus
c̄i and c̄ are conjugate over M and we will denote by Ij

c̄i
for the corresponding copy

of Ij
c̄ .

Since ri and ∆n commute over M0, ci |= ri�M0〈c̄〉, and δ̄ |= ∆�M0〈c̄c̄i〉, we have
ci |= ri�M〈c̄〉. Arguing as in [4, Lemma 6.4], and using Claim 3.5 with B = M〈c̄〉,
we obtain that ∩k

i=1Ic̄i = ∅. Contradiction with (?).

4. A restatement of Theorem 0.1

Theorem 4.1. For M ≺ C, a formula ϕ(x1, . . . , xn, ȳ), and ā ∈ C the following
conditions are equivalent.

(1) The formula ϕ(x̄, ā) is good over M .
(2) The formula ϕ(x̄, ā) has a realization in M〈δ̄〉 for any δ̄ |= ∆n�M〈ā〉.
(3) The formula ϕ(x̄, ā) has a realization in M〈δ〉 for any δ |= ∆�M〈ā〉.

Proof. Obviously (1) implies (2), and (3) implies (1).
For (2)=⇒(3), it is sufficient to show the following claim.

Claim 4.2. Let M and ϕ(x̄, ā) be as above, m > 0, and (δ1 . . . , δm+1) |= ∆m+1�
M〈ā〉. If ϕ(x̄, ā) has a realization in M〈δ1, . . . , δm+1〉, then it has a realization in
M〈δ1, . . . , δm〉.

Proof. Let ξ̄(ξ1, . . . , ξn) be a realization of ϕ(x̄, ā) in M〈δ1, . . . , δn+1〉. Thus there
are M -definable functions h1(z1, . . . , zm+1), . . . , hn(z1, . . . , zm+1) such that ξi =
hi(δ1, . . . , δm+1) and

C |= ϕ(h̄(δ1, . . . , δm+1), ā).

Hence ϕ(h̄(δ1, . . . , δm, y, ā)) ∈ ∆(y)�M〈ā, δ1, . . . , δm〉, and there is α ∈M〈ā, δ1, . . . , δm〉
such that C |= ∀y [y > α→ ϕ(h̄(δ1, . . . , δm, y), ā)]. Since, by Corollary 2.5, M〈δm〉
is co-final in M〈ā, δ1, . . . , δm〉, we may assume α ∈M〈δm〉.

Then C |= ϕ(h̄(δ1, . . . , δm, α+1)), hence ϕ(x̄, ā) has a realization inM〈δ1, . . . , δm〉.
�

This proofs Theorem 4.1. �

Corollary 4.3. For M ≺ C, a formula ϕ(x̄, ȳ), and ā ∈ C. The following condi-
tions are equivalent.

(1) ϕ(x̄, ā) does not fork over M .
(2) ϕ(x̄, ā) has a realization in M〈δ〉 for any δ |= ∆�M〈ā〉.

Remark 4.4. Corollary 4.3 implies Theorem 0.2. Indeed, assume ϕ(C, ā) is closed
and bounded. If ϕ(x̄, ā) has a realization inM〈δ〉, for some δ |= ∆�M〈ā〉, then there
is an M -definable map h : C → Cn such that ϕ(h(t), ā) ∈ ϕ(C, ā) for all sufficiently
large t ∈ C. Then limt→+∞ h(t) is a realization of ϕ(x̄, ā) in M .
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