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Abstract. We study expansions of an algebraically closed field K or a real
closed field R with a linearly independent subgroup G of the multiplicative
group of the field or the unit circle group S(R), satisfying a density/codensity
condition (in the sense of geometric theories). Since the set G is neither al-
gebraically closed nor algebraically independent, the expansion can be viewed
as "intermediate" between the two other types of dense/codense expansions
of geometric theories: lovely pairs and H-structures. We show that in both
the ACF and RCF cases, the resulting theory is near model complete and the
expansion preserves many nice model theoretic conditions related to the com-
plexity of definable sets such as stability and NIP. We also analyze the groups
definable in the expansion.

1. Introduction

This paper brings together the expansions of geometric structures with dense-
codense independent subsets introduced in [10] (in the o-minimal setting) and [6]
(in the geometric case) and the study of algebraically closed and real closed fields
with a multiplicative subgroup satisfying the Mann property [12], [14], [1]. Our
main motivation has been to further explore the general notion of a dense-codense
expansion to find, in some sense, a "middle ground" between the lovely pair con-
struction [4] and the expansion with a dense-codense independent subset.

Recall that a (complete) theory is called geometric if in all of its models acl
satisfies the exchange property (thus inducing a pregeometry) and the theory elim-
inates the ∃∞ quantifier. Models of such theories are called geometric structures.
We call a subset P (M) of a geometric structure M dense-codense if any infinite
subset of M definable over a set A has a non-empty intersection with P (M) and
acl(A ∪ P (M)) = scl(A) (the small closure of A).

If one further imposes the requirement that P (M) is an algebraically closed, we
get a lovely pair of models [4], a common generalization of the notion of a beau-
tiful pair in the strongly minimal case [19] and dense pair in the o-minimal case
[11]. A somewhat opposite requirement we can impose would be for the set P (M)
to be algebraically independent. In this case we get the notion of an H-structure
(using symbol H for the predicate), originally introduced in the o-minimal con-
text by Dolich, Miller and Steinhorn [10], and then generalized to the geometric
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setting in [6]. Both lovely pair and H-structure expansions allow a good descrip-
tion of definable sets (they are near model complete) and preserve many important
stability/simplicity-theoretic and combinatorial conditions (e.g. superstability, su-
persimplicity, NIP), and in the SU-rank 1 case, one gets a reasonable description
of forking in the expanded language. In the case of H-structure expansion of an
SU-rank 1 theory, one also gets a clear description of canonical bases in terms of
those in the old language (and as a consequence, geometric elimination of imagi-
naries down to old ones) [6]. The situation is much less clear in the lovely pairs
case, and in fact, one always gets new imaginaries in the expansion provided there
is a definable group (the converse is also true in the stable case, see [18]). A major
tool that enabled us to describe canonical bases in H-structure was the existence
of a "projection" of a tuple ~a over the predicate H, namely a unique minimal tuple
~h in H(M) such that is ~a is independent from H(M) ∪ B over ~h ∪ B. Such a tool
is not available in the case of lovely pairs.

To summarize, both constructions allow one to control the new definable sets,
but the control is much tighter in the case of H-structures due to independence of
H(M) (and, as a consequence, triviality of its geometry). The two expansions are
related in a strong way, taking the algebraic closure of H(M) in an H-structure,
one gets a lovely pair.

When working in the context of a "geometric field" K (e.g. a model of ACF0 or
RCF ), a reasonable trade-off between algebraic independence of the subset and it
being algebraically closed is to consider a multiplicative subgroup G(K) generated
by H(K). The result is a dense-codense subset of K "intermediate" between H(K)
and P (K) = acl(H(K)). Thus, we expect the expanded structure (K,G(K)), a
so-called G-structure, to behave in a way that resembles both lovely pairs and H-
structures. On the other hand, an immediate consequence of this construction is
the linear independence of G(K), and as a result, the fact that it satisfies the Mann
property. This brings us in the context of [12] (in the cases of ACF0 and RCF )
and [14] (in the case of ACF0). The multiplicative subgroup generated by H(K)
has infinite rank, as opposed to the cases considered in [12], [1] where the groups
have finite rank.

The main goal of this paper is to study this intermediate expansion, show that
the theory obtained is near model complete and characterize the definable sets in
the expansion. As with the other expansions, we show these new pairs preserve nice
combinatorial conditions related to the complexity of definable sets such a stability
and NIP. This paper is organized as follows:

In section 2 we introduce G-structures and prove some basic properties.
In section 3 we deal with the case where the base field is algebraically closed.

We introduce the notion of G-bases which plays a role similar to the one that H-
bases did for H-structures. We prove the resulting expansion is strictly stable and
we use the notion of G-bases to characterize forking in the expansion. Forking in
expansions by Mann groups was also studied by Göral in his Ph.D. thesis (see [14]).

In section 4 we study expansions of a real closed field together with the group
generated by a dense independent subset of R>0. In section 5 we study the pair
coming from a model of RCF together with the group generated by a dense inde-
pendent subset of the unit circle S(R) in R. In section 6 we show these two resulting
theories are NIP and that the structure induced in G is weakly 1-based.
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In section 7 we start an analysis of definable groups in pairs (R,G), where R is a
real closed field and G has the Mann property and is either a subgroup of R>0 or a
subgroup of S(R). We consider the case where G is of finite rank and also the case
where it is generated by a collection of independent dense-codense elements. Our
results deal mostly with subgroups definable in the pair of 1-dimensional groups
definable in the pure field language. We show, under this 1-dimensional assumption,
that such groups are either small or definable in the pure field language. We also
consider the group G seen as a definable subset of the pair (R,G). We prove that
the definable subgroups of G in the pair can be defined directly in G and we describe
G00. In each of the expansions under consideration, we identify the compact group
arising as a quotient G/G00 and construct explicitly a strong f -generic type for G.

2. G-structures: definition and first properties

Let (K,+, ·, 0, 1, H) be a sufficiently saturated H-structure of ACF or RCF (see
[6]). We can also add symbols for multiplicative inverse and order (in the case of
RCF). Let G(K) be the subgroup of (K×, ·) generated by H(K).

Let TG = Th(K,+, ·, 0, 1, G), where G is the new unary predicate symbol inter-
preted by G(K).

Lemma 2.1. G(K) is linearly independent over Q.

Proof. Suppose
Σni=1αih

ki,1
1 . . . hki,mm = 0,

where αi ∈ Q, hj ∈ H(K), ki,j ∈ Z, hj are distinct, and

(ki,1, . . . , ki,m) 6= (kl,1, . . . , kl,m)

for i 6= l. Multiplying by a product of positive powers of hi if needed, we may
assume that all ki,j ≥ 0 for all i, j. Since hi are algebraically independent, we have
αi = 0 for all i.

�

Lemma 2.2. G(K) is dense-codense in (K,+, ·, 0, 1) (in the sense of geometric
structures).

Proof. Follows from H(K) ⊂ G(K) ⊂ acl(H(K)). �

Note that (G(K), ·) is a free abelian group. We will now look at the algebraic
closure restricted to G.

Lemma 2.3. Suppose a, g1, . . . , gk ∈ G(K) and a ∈ acl(g1, . . . , gk), witnessed by a
polynomial equation

p(x, y1, . . . , yk) = 0

with integer coefficients, of degree n ≥ 1 in variable x. Let m be the maximal degree
in which any of yi appears in the polynomial p. Then for some 0 < r ≤ n, and
s1, . . . , sk ∈ Z such that |si| ≤ 2m, we have

ar = gs11 . . . gskk .

Proof. Suppose

p(a, g1, . . . , gk) = Σni=0(qi,1wi,1 + . . . qi,liwi,li)a
i =

n∑
i=0

li∑
j=0

qi,jwi,ja
i
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where qi,j ∈ Z and wi,j is a product of g1, . . . , gk each raised to a (nonnegative)
integer power. Since G(K) is linearly independent and n ≥ 1, at least two of the
terms wi,jai must cancel each other. We may assume that for each fixed i, all the
wi,j are distinct. Thus, for some 0 ≤ i1 < i2 ≤ n and some j1 ≤ li1 and j2 ≤ li2 , we
have wi1,j1ai1 − wi2,j2ai2 = 0. Then ai2−i1 = wi1,j1(wi2,j2)−1, and the statement
follows.

�

Lemma 2.4. Let (K∗,+, ·, 0, 1, G) be a sufficiently saturated model of the theory
TG = Th(K,+, ·, 0, 1, G). Then

(1) G(K∗) is dense-codense and linearly independent
(2) if a, g1, . . . , gk ∈ G(K∗) and a ∈ acl(g1, . . . , gk), then for some r ≥ 1, and

s1, . . . , sk ∈ Z we have ar = gs11 . . . gskk .

Proof. (1) Clear.
(2) By Lemma 2.3, the statement holds in (K,+, ·, 0, 1, G), and is first-order ax-
iomatizable. �

We denote by tpG the type in the G-structure (K,+, ·, 0, 1, G) (similarly for
aclG). For a tuple ~g of elements of G, let tpgr(~g) be the type of ~g in the sense of
the theory T gr of free abelian groups with infinite basis. Similarly, aclgr refers to
algebraic closure in T gr and dclgr refers to definable closure in T gr.

Lemma 2.5. Let (K,G) be a model of TG, and n > 1. Then any element g 6= 1
in G(K) has no more than one nth root.

Proof. If an = bn, and a, b ∈ G(K), then (ab−1)n = 1. Since free abelian groups are
torsion free, and this is a first order property, we conclude that ab−1 = 1, hence,
a = b. �

Remark 2.6. Note that by Lemma 2.4, in any model of TG, acl restricted to G is
obtained by first closing under multiplication and inverses, and then applying the
nth roots (when they exist). By Lemma 2.5, it also follows that acl(~g)∩G ⊂ dclgr(~g)
for any ~g ∈ G.

On the other hand, the algebraic (equivalently, definable) closure operator in any
model of the theory of free abelian groups (T gr) is given by closing under multipli-
cation, inverses and nth roots (when they exist). Thus, acl restricted to G coincides
with aclgr = dclgr.

Next, we show that in our construction, G has the Mann Property.

Lemma 2.7. The subgroup G = G(K) of K× has the Mann Property. Same is
true in any model of TG.

Proof. Let a1, . . . , an ∈ Q be nonzero, n ≥ 2. Let g1, . . . , gn ∈ G be such that

a1g1 + . . .+ angn = 1,

and Σi∈Iaigi 6= 0 for any nonempty subset I of {1, . . . , n}. Since elements of G are
linearly independent (over Q), and 1 ∈ G, we must have

g1 = g2 = . . . = gn = 1.

Thus, each equation as above, either has a unique solution (when a1 + . . .+an = 1),
or no solution at all. Same is true in any model of TG, since linear independence
of G is a first order property. �
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Definition 2.8. Let X ⊂ Kn. We say that X is large if for some m ≥ 1 and a
field definable function f : Knm → K, f(Xm) = K.

Remark 2.9. Note that codensity condition (extension property) implies that G is
small in all models of TG.

Let G[n] denote the subgroup of G = G(K) consisting of nth powers of elements
of G.

Lemma 2.10. For each n, G[n] has an infinite index in G. Same is true in any
model of TG.

Proof. Let m,n ≥ 2, and let a1, . . . , am be distinct elements of H(K). Then
a1, . . . , am ∈ G, and we claim that aiG[n] 6= ajG

[n] for i 6= j. Otherwise, aia−1
j ∈

G[n], and thus,
aia
−1
j = hk1n

1 · . . . · hklnl ,

for some distinct h1, . . . , hl ∈ H(K), and k1, . . . , kl ∈ Z. SinceH(K) is algebraically
independent, both ai and aj must be among h1, . . . , hl. We may assume that
h1 = ai, h2 = aj . It follows that k1n = 1 and k2n = −1, a contradiction since
n ≥ 2 and k1, k2 ∈ Z. Thus, a1, . . . , am are in different G[n]-cosets. Since m was
arbitrary, the statement follows. Clearly, same is true in any model of TG.

�

3. The case of ACF

We start by recalling the notions of Mann axioms and Γ-family from [12]. We
assume that G is a multiplicative subgroup of K× satisfying the Mann property.

Let Γ be a subgroup of G = G(K). We say that (K,G) satisfies Mann axioms
of Γ, if for any

a1, . . . , an ∈ Q×

and n ≥ 2, the equation
a1g1 + . . .+ angn = 1

has a finite number of nondegenarate solutions in G (meaning Σi∈Iaigi 6= 0 for all
nonempty I ⊂ {1, . . . , n}), all of which are in Γ and we list them as:

γ1 = (γ11, . . . , γ1n), . . . , γk = (γk1, . . . , γkn).

The corresponding first order sentence in the language LG,(γ′)γ∈Γ
of K expanded

with unary predicate G(−) and constants for elements of Γ is called a Mann axiom
of Γ.

In the case when G is the group generated by an independent dense codense
subset H, we can take Γ = {1}, since (1, 1, . . . , 1) is the only possible nondegenerate
solution of the above equation.

Suppose now that K is an algebraically closed field. The theory ACF (Γ) of a
Γ-family [12] is axiomatized by the sentences expressing the following properties in
the language LG,(γ′)γ∈Γ

:
(1) K is an algebraically closed field (of a fixed characteristic);
(2) G is subgroup of K×;
(3) γ → γ′ : Γ→ G is a group homomorphism;
(4) (K,G, (γ′)γ∈Γ) satisfies the Mann axioms of Γ.
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Fact 3.1. ([12], Theorem 6.8) Let (K,G, (γ)) and (K ′, G′, (γ)) be two models of
ACF (Γ). Then

(K,G, (γ)) ≡ (K ′, G′, (γ)) ⇐⇒ (G, (γ)) ≡ (G′, (γ)),

as groups with distinguished elements.

Since, in the case when G is generated by a dense-codense independent set H,
Γ = 1, TG is axiomatized by saying :

(1) K is an algebraically closed field (of fixed characteristic);
(2) G is a multiplicative subgroup of K;
(3) G is linearly independent and satisfies the theory of free abelian groups.
Note that the axioms imply that G is dense in K (infinite dimensional) since it

satisfies the axioms of free abelian groups and codense in K (infinite codimension)
when the model is saturated since G is linearly independent.

Lemma 3.2. Let (K,G) and (K ′, G′) be sufficiently saturated models of TG and
let g1, . . . , gn ∈ G, g′1, . . . , g′n ∈ G′ be such that (G,~g) ≡ (G′, ~g′) (i.e. ~g and ~g′ have
the same type in the theory of free abelian groups). Then tpG(~g) = tpG(~g′).

Proof. Let Γ and Γ′ be subgroups of G and G′ generated by ~g and ~g′, respectively.
The rest follows by Fact 3.1. �

Thus, there is no new structure induced on G in TG (by formulas over ∅).
Note that by Corollary 6.2 of [12], TG is stable. Since the theory of free abelian

groups is not superstable, neither is TG. One can see this directly, since the chain
of groups {G[2n] : n ∈ N} is strictly descending. By contrast, both the theory of
lovely (beautiful) pairs and the theory of H-structures of T are ω-stable of U -rank
ω.

We expand the language of G-structures with new unary operational symbols
{fn(−) : n ≥ 2}, interpreted as follows: if a ∈ G(K)[n] then fn(a) = b ∈ G(K)
where b is such that bn = a (such b is unique by Lemma 2.5). Otherwise, fn(a) = 1.
Let TG+ be the resulting expansion of TG. We will denote by tpG+ and qftpG+ the
complete type and the quantifier free type, respectively, in the expanded language.

Note that for any subset A of G(K), closing A under products and inverses,
and then under single applications of the functions {fn(−) : n ≥ 2}, results in a
subgroup of G(K) closed under operations fn(−), n ≥ 2. Indeed, if a ∈ G(K)[m]

and b ∈ G(K)[n], then fm(a)fn(b) = fmn(anbm). Also, note that by Lemma 2.4,
this closure operator coincides with (field theoretic) acl restricted to G(K). By
Remark 2.6, it also coincides with dclgr (equivalently, aclgr). By and the fact that
T gr has q.e. relative to pp-formulas, T gr has q.e. in the group language expanded
by operations fn.

Proposition 3.3. Let (K,G)+ and (K ′, G)+ be two sufficiently saturated models
of TG+ and let ~a ∈ K, ~a′ ∈ K ′ be G-independent tuples, such that

qftpG+(~a) = qftpG+(~a′).

Then tpG+(~a) = tpG+(~a′).

Proof. Let c ∈ K be any element. We need to find ~b ∈ K, ~b′ ∈ K ′ and c′ ∈ K ′ such
that ~a~bc and ~a′~b′c′ are both G-independent, and qftpG+(~a~bc) = qftpG+(~a′~b′c′). We
proceed by cases:
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Case 1: c 6∈ acl(~aG(K)). Take any c′ ∈ K ′ such that c′ 6∈ acl(~a′G(K ′)). Then
clearly both ~ac and ~a′c′ are G-independent. We also claim that qftpG+(~ac) =
qftpG+(~a′c′). To show this, it suffices to note that if d ∈ acl(~ac)\ acl(~a), then
d 6∈ G(K), and the same is true for any d′ ∈ acl(~a′c′)\ acl(~a′).

Case 2: c ∈ G(K)\ acl(~a). Then c is non-algebraic over G(~a) in the sense of
T gr, and G(~a) and G(~a′) have the same type in the sense of T gr (group type). Let
c′ ∈ G(K ′) be such G(~a)c and G(~a′)c′ have the same group type. Since c′ ∈ G(K)
and c′ 6∈ acl(G(~a′)), from ~a′ |̂

G(~a′)
c′, we get c′ 6∈ acl(~a′). Then ~ac and ~a′c′ have

the same field-theoretic type. Also, whenever d ∈ acl(~ac)\ acl(G(~a)c), we have
d 6∈ G(K), and same is true for ~a′, c′ and d′. This shows that qftpG+(~ac) =
qftpG+(~a′c′). Clearly, ~ac and ~a′c′ are G-independent.

Case 3: c ∈ acl(~a). Note that G(acl(~a)) = acl(G(~a)) ∩ G(K), and the same
is true of ~a′. Thus, by Lemma 2.4, G(acl(~a)) is obtained by closing G(~a) under
multiplication and operations fn (and same is true of ~a′). Then since qftpG+(~a) =
qftpG+(~a′), we can extend a partial field isomorphism from ~a to ~a′, to a partial
field isomorphism from ~aG(acl(~a)) to ~aG(acl(~a′)), and then to one from acl(~a) to
acl(~a′), as needed. Also, clearly, acl(~a) and acl(~a′) are both G-independent.

�

Corollary 3.4. The theory TG is near model complete. That is, if (K,G) |= TG,
every LG-formula ψ(~y) is equivalent to a boolean combinations of formulas of the
form ∃x1 ∈ G . . .∃xn ∈ Gφ(~x, ~y), where φ is an L-formula.

Proof. Given a sufficiently saturated model (K,G) of TG and two tuples ~a1 and ~a2

in K satisfying the same formulas of the form ∃x1 ∈ G . . .∃xn ∈ Gφ(~x, ~y), where φ
is an L-formula (call such formulas G-existential), we can extend both tuples to ~a′1
and ~a′2 which are G-independent and still satisfy the same G-existential formulas.
Then qftpG+(~a′1) = qftpG+(~a′2). The rest follows by Proposition 3.3.

�

In the setting ofH-structures one of the main tools is the existence of anH-basis.
We will now see that a similar construction works for our setting.

Proposition 3.5. Let (K∗,+, ·, 0, 1, G) be a sufficiently saturated model of the
theory TG = Th(K,+, ·, 0, 1, G) and let ~a = (a1, . . . , an), ~b = (b1, . . . , bm) ∈ G.
Then as elements in the field (K,+, ·, 0, 1), we have ~a |̂

dclgr(~a)∩dclgr(~b)
~b.

Proof. Assume there is an i ≤ m such that bi ∈ acl(a1, . . . , an, b1, . . . , bi−1). Then
by Lemma 2.4 there exists integers s1, . . . , sk, r1, . . . , ri with ri 6= 0 such that brii =

as11 · · · arnn · b
r1
1 · · · b

ri−1

i−1 . Let d = as11 · · · arnn = b−r11 · · · b−ri−1

i−1 brii , then d ∈ dclgr(~a) ∩
dclgr(~b) and bi ∈ acl(d, b1, . . . , bi−1) as we wanted. �

In particular, if C ⊂ G and ~a,~b ∈ G, we get ~a |̂
dclgr(C~a)∩dclgr(C~b)

~bC

The elements in G need not have all positive roots, but the behave similar to
modules over Q, in the sense that we can assign to them a good notion of dimension:

Lemma 3.6. Let (K∗,+, ·, 0, 1, G) be a model of the theory TG = Th(K,+, ·, 0, 1, G)
and let a1, . . . , an ∈ G, C ⊂ G be such that C = dclgr(C). Then whenever
b1, . . . , bn+1 ∈ dclgr(a1, . . . , an, C) (so for each i, bi ∈ G), we have that for some
1 ≤ i ≤ n+ 1, bi ∈ dcl(b1, . . . , bi−1, bi+1, . . . , bn+1C).
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Proof. By Lemma 2.4 for each j there exists cj ∈ C integers s1
j , . . . , s

n
j , rj with rj 6=

0 such that cjb
rj
j = a

s1j
1 · · · a

snj
n , We call ~vj = (s1

j/rj , . . . , s
n
j /rj) a set of coordinates

of bj with respect to the set {a1, . . . , an} over C. Then the set of coordinates
~v1, . . . , ~vn+1 is a linearly dependent set of vectors in the vector space Qn and thus
we can write one of them as a linear combination in terms of the other ones. Assume
that

~vn+1 = (p1/q1)~v1 + . . . ,+(pn/qn)~vn

which can be rewritten as
(q1 · · · qn)(s1

n+1, . . . , s
n
n+1) =

(p1rn+1q2 · · · qn)(s1
1/r1, . . . , s

n
1/r1) + · · · + pnrn+1q1 · · · qn−1(s1

n/rn, . . . , s
n
n/rn) and

finally (a
s1n+1

1 · · · as
n
n+1
n c−1

n+1)q1···qn = b
q1···qnṙn+1

n+1 ∈ dcl(b1, . . . , bn, C). �

Observation 3.7. Let (K∗,+, ·, 0, 1, G) be a model of the theory TG = Th(K,+, ·, 0, 1, G),
let g1, . . . , gn ∈ G and C ⊂ G be such that C = aclgr(C). Then whenever
B ≤ dclgr(g1, . . . , gn, C), C ⊂ B, is a definably closed subset, then there is a
finite set {b1, . . . , bk} ⊂ B of size ≤ n that generates B over C. Furthermore, if the
minimal size of a set of generators for B over C is n, then B = dclgr(b1, . . . , bn, C).

Proof. The proof is very similar to the one of Lemma 3.6. Assume first that the
elements in {g1, . . . , gn} are independent in the group sense over C. For each
b ∈ B there exists integers s1

b , . . . , s
n
b , rb with rb 6= 0 and cb ∈ C such that brbcb =

g
s1b
1 · · · g

snb
n and write ~vb = (s1

b/rb, . . . , s
n
b /rb) for a set of coordinates of b with respect

to the set (g1, . . . , gn) over C. The family {~vb : b ∈ B} generates a finite dimensional
subspace of Qn and thus it has a finite basis. As before, from the basis it is easy
to extract the desired set {b1, . . . , bk} ⊂ B of size ≤ n that generates B.

For the furthermore part, if the minimal set of generators is of size n, then the
space generated by the family {~vb : b ∈ B} over C coincides with Qn and thus
B = dclgr(g1, . . . , gn, C). �

Proposition 3.8. Let (K∗,+, ·, 0, 1, G) be a sufficiently saturated model of the
theory TG = Th(K,+, ·, 0, 1, G), let ~a ∈ K and C ⊂ K be G-independent. Let
~g,~h ∈ G(K) be tuples of minimal length such that ~a |̂

C~g
G(K) and ~a |̂

C~h
G(K).

Then dclgr(~g G(C)) = dclgr(~h G(C)).

Proof. Let n be the length of the tuples ~g and ~h.
Write ~a = ~a0~a1 where ~a0 is a tuple acl-independent over G(K)C and ~a1 ∈

acl(~a0GC). If ~a1 = ∅ there is nothing to prove, so we may assume that ~a1 6= ∅.
By Lemma 3.5

~g |̂
dclgr(~gG(C))∩dclgr(~hG(C))

~h

Let ~k be a basis (with respect to dclgr) of dclgr(~gG(C)) ∩ dclgr(~hG(C)) over
G(C). By Observation 3.7, |~k| ≤ |~g|.

Case 1. Assume |~k| = |~g|. By Observation 3.7 we get that dclgr(~g G(C)) =

dclgr(~kG(C)) = dclgr(~hG(C)) as we wanted.
Case 2. Assume that |~k| < |~g|. By the definition of ~k we get ~g |̂

dclgr(~kG(C))
~h.

Since C is G-independent we get ~g |̂
C dclgr(~kG(C))

~h. Since ~a0 is acl-independent
8



over G(K)C, ~g |̂
~a0C dclgr(~kG(C))

~h. Since ~a1 ∈ acl(~a0~gC) and ~a1 ∈ acl(~a0
~hC) we

get ~a1 ∈ acl(~a0
~kC), contradicting the minimality of |~g|.

�

Definition 3.9. Let (K∗,+, ·, 0, 1, G) be a sufficiently saturated model of the the-
ory TG = Th(K,+, ·, 0, 1, G), let ~a ∈ K and let C ⊂ G be G-independent. Let
~g ∈ G be a tuple of minimal length such that ~a |̂

~gC
G. Then we call the tuple

~g a G-basis of ~a with respect to C. By Proposition 3.8 all such possible choices
for subtuples are interdefinable over G(C). We will use the notation GB(~a/C) for
dclgr(~gC), and will often view it as an infinite tuple (so that we can talk about its
type). For an arbitrary set A, we let GB(A/C) be the union of GB(~a/C) for all
finite tuples ~a of elements of A. When we take C = ∅ (so aclgr(G(C)) = {1}) we
simply write GB(~a).

Remark 3.10. Let C ⊂ K. Then aclG(C) = acl(C ∪GB(C)).

We are now ready to describe (non-)forking in TG+. We will denote by |̂ G

independence in the sense of TG (or TG+). We use |̂ for independence in the
sense of ACF and |̂ gr for independence in the sense of T gr.

Lemma 3.11. (working in a sufficiently saturated model (K,G)+ of TG+)
Suppose C ⊂ B ⊂ K and ~a |̂ G

C
B. Then

~a |̂
C G(K)

B G(K)

and
GB(~aC)

gr

|̂
GB(C)

GB(B).

Proof. Suppose first that ~a 6 |̂
C G(K)

B G(K). We may assume that ~a = a0~a
′,

C = ~c, B = ~b~c, where each of ~a′ and ~c~b is a tuple independent over G(K), and
a0 ∈ acl(~a′~b~cG(K)) and a0 6∈ acl(~a′~cG(K)). Take an independent sequence I = (~bi :

i ∈ ω) in K, where ~b0 = ~b, ~bi have the same length as ~b, and
⋃~bi is independent

over G(K)~a′~c. Then, by Proposition 3.2, I is indiscernible (in the sense of TG+)
over ~c. Let p(~x, ~y~z) = tpG+(~a,~b~c). Then

⋃
p(~x,~bi~c) is inconsistent, a contradiction

with ~a |̂ G
~c
~b.

Now, suppose GB(~aC) 6 |̂ gr
GB(C)

GB(B). Let B′ = GB(B), A′ = GB(~aC),
C ′ = GB(C). Let (B′i : i ∈ κ) be a sufficiently long indiscernible sequence in
tpgr(B

′/C ′) such that there is no A′′ such that tpgr(A
′′, B′i, C

′) = tpgr(A
′, B′, C ′)

for all i. Note that C |̂
C′
G(K), and (B′i : i ∈ κ) is indiscernible over C ′ in the

sense of T . Then there exists C∗ ⊂ K such that tp(C∗, B′i, C
′) = tp(C,B′, C ′) for

all i. Taking conjugates over C ′, we may assume that C∗ = C. By Erdos-Rado,
we get a sequence (B′i : i ∈ ω) in G(K), indiscernible over C in the sense of T and
indiscernible over C ′ in the sense of T gr, with tp(B′i, C) = tp(B′, C), tpgr(B

′
i, C
′) =

tpgr(B
′, C ′) such that there is no A′′ such that tpgr(A

′′, B′i, C
′) = tpgr(A

′, B′, C ′)

for all i. Note that (B′i : i ∈ ω) is indiscernible over C in the sense of TG, and
there is no A′′ such that tpG(A′′, B′i, C

′) = tpG(A′, B′, C ′) for all i. This shows
that A′ 6 |̂ G

C
B′. Since A′ ⊂ dclG(~aC) and B′ ⊂ dcl(B), this contradicts ~a |̂ G

C
B.

�
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Lemma 3.12. Let B,C ⊂ K. Then GB(BC) = GB(B) ∪GB(C/ aclG(B))

Proof. First see the G-basis as tuples and write ~gC = GB(C/ aclG(B)), ~gB =
GB(B). Then we have by definition B |̂

~gB
G and C |̂

aclG(B)~gC
G. By Re-

mark 3.10 we get that aclG(B) = acl(B ∪ ~gB), so C |̂
B~gB~gC

G. By transitivity
BC |̂

~gB~gC
G and thus GB(BC) ⊂ GB(B) ∪GB(C/ aclG(B)).

Now let ~gBC = GB(BC) seen as a tuple. Then we have by definitionBC |̂
~gBC

G

and we get B |̂
~gBC

G, so GB(B) ⊂ dcl(~gBC). We also get C |̂
~gBCB

G and
thus C |̂

~gBC~gBB
G and thus by Lemma 3.10 we obtain C |̂

~gBC aclG(B)
G and so

GB(C/ aclG(B)) ⊂ ~gBC .
�

Lemma 3.13. (working in a sufficiently saturated model (K,G)+ of TG+)
Let C ⊂ D ⊂ K be such that C, D are G-independent. If ~a |̂

C G(K)
D G(K)

and GB(~aC) |̂ gr
GB(C)

GB(D) then ~a |̂ G
C
B.

Proof. We may write ~a = (~a1,~a2) ∈ K so that ~a1 is an independent tuple over
CG(K), and ~a2 ∈ acl(G(K)C~a1). Since ~a |̂

C G(K)
D G(K), ~a1 is an independent

tuple over DG(K).
Claim tpG(~a/D) does not divide over C.
Let p(~x,D) = tp(~a1, D). Let {Di : i ∈ ω} be an LG-indiscernible sequence over

C, with D0 = D. Since ~a1 is independent over D, tp(~a1, D) does not divide over C
and ∪i∈ωp(~x,Di) is consistent. We can find ~a′1 |= ∪i∈ωp(~x,Di) such that {~a′1Di : i ∈
ω} is indiscernible and ~a′1 is independent over ∪i∈ωDi. By the generalized extension
property, we may assume that ~a′1 is independent over ∪i∈ωDiG(K). Note that ~a1D
is G-independent and ~a′1Di is also G-independent for any i ∈ ω. So by Proposition
3.3 tpG(~a1D) = tpG(~a′1Di) for any i ∈ ω.

Now let ~g = GB(~a/C) (viewed as a tuple) and let q(~y,G(D)) = tpgr(~g,G(D)).
Note that ~g is an independent tuple over ~a1D (as well as an independent tuple over
~a1C). Since {G(Di) : i ∈ ω} is an LG-indiscernible sequence, then {G(Di) : i ∈ ω}
is also an Lgr-indiscernible sequence. By GB(~aC) |̂ gr

GB(C)
GB(D) and Lemma

3.12 we get GB(~a/C) |̂ gr
GB(C)

GB(D) so there is ~g′ |= ∪i∈ωq(~y,G(Di)). In partic-
ular, for each i, ~g′ is an L-independent tuple over G(Di). Since Di |̂ G(Di)

G(K),
the tuple ~g′ is L-independent tuple over Di.

Since ~a′1 is an independent tuple over GDi for each i, we get that ~a′1 |̂ G(K)Di,
so ~a′1 |̂ ~g′ Di and thus ~a′1~g′ is an independent tuple over Di. In particular, for each
i we get

tp(~a′1~g
′Di) = tp(~a1~gD)

Since Di is G-independent, we have Di |̂ G(Di)
G(K), so

Di |̂
~g′G(Di)

G(K)

and

Di~g
′ |̂
~g′G(Di)

G(K).

10



On the other hand ~a′1 |̂ G(K)Di implies ~a′1Di~g
′ |̂

~g′G(Di)
G(K). Thus ~a′1Di~g

′ is
G-independent for each i ∈ ω and

tpgr(~g
′G(Di)) = tpgr(~gG(D))

This last equation together with tp(~g,~a1, D) = tp(~g′,~a′1, Di) and Proposition 3.3
imply that tpG(~g,~a1, D) = tpG(~g′,~a′1, Di) for each i ∈ ω. This shows that tpG(~a1, ~g/D)
does not divide over C and since ~a ∈ acl(~a1, ~gC) we get that tp(~a/D) does not divide
over C. �

Puting all the results together we get:

Theorem 3.14. Let C ⊂ D ⊂ K be such that C, D are G-independent and ~a ∈ Kn.
Then ~a |̂ G

C
D if and only if ~a |̂

C G(K)
D G(K) and GB(~aC) |̂ gr

GB(C)
GB(D).

Corollary 3.15. The definable subset G(K) is 1-based. One can see this using the
fact that forking independence restricted to G is modular (see Proposition 3.5 and
Theorem 3.14). We can also see this directly, by Lemma 3.2 the definable subsets
of G are definable directly from the group structure.

Finally, we compare our characterization of independence with the one obtained
by Göral in [14]. The setting used in [14] includes a larger class of examples than
the ones studied in this paper. For example, some of the Mann groups studied in
[14] are not linearly independent.

Corollary 3.16. (Theorem 2.12 [14]) Let A,B,C be such that A = aclG(A),
B = aclG(B), C = aclG(C) and A ∩ B = C. Then A |̂ G

C
B if and only if

AG(K) |̂
C G(K)

BG(K).

Proof. Let A,B,C be as in the statement. By Theorem 3.14, if A |̂ G
C
B, then

AG(K) |̂
C G(K)

BG(K). Assume then that AG(K) |̂
C G(K)

BG(K). It remains
to show:

Claim GB(A) |̂ gr
GB(C)

GB(B).
We know from Proposition 3.5 that GB(A) |̂ gr

dclgr(GB(A))∩dclgr(GB(B))
GB(B).

Since A = aclG(A), GB(A) is interdefinable with G(A). Similarly GB(B) is in-
terdefinable with G(B), so dclgr(GB(A)) ∩ dclgr(GB(B)) is interdefinable with
G(A) ∩G(B). We get then that GB(A) |̂ gr

G(A)∩G(B)
GB(B).

On the other hand, A∩B = C, so G(C) ⊂ G(A)∩G(B). And if d ∈ G(A)∩G(B),
then d ∈ A ∩ B = C, so d ∈ G(C). We get then G(A) ∩G(B) = G(C). Note that
as before, GB(C) is interdefinable with G(C). Thus GB(A) |̂ gr

G(C)
GB(B) and

GB(A) |̂ gr
GB(C)

GB(B).
�

As opposed to the work of Göral, our approach puts an emphasis on G-bases
and independence at the level of G, this part is absent in the description above
since G is 1-based. The notion of G-bases is a natural generalization of the H-bases
that appear in [6] and our description of forking can also be seen as a natural
generalization of the characterizations that work for H-structures and lovely pairs.

Finally, we would like to point out that Göral also includes a description of
definable groups in this expansion.
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4. The case of RCF

Here K is assumed to be an RCF, and we may also assume that H ⊂ K>0 (so
H is dense in K>0 only). Then also G ⊂ K>0. As before, G satisfies the Mann
axioms for Γ = {1}. As in [12], if Γ is any subgroup of K>0 satisfying the Mann
property, we can define RCF (Γ) to be the theory axiomatized by the sentences
expressing the following properties in the language LG,(γ′)γ∈Γ

:

(1) K is a real closed ordered field and G is a dense subgroup of K>0;
(2) γ → γ′ : Γ→ G is a group homomorphism;
(3) (K, (γ′)γ∈Γ) satisfies the ordering axioms of Γ, i.e. the inequalities of the

form
k1γ1 + . . .+ knγn > 0

or
k1γ1 + . . .+ knγn ≤ 0

that hold in K (where ki ∈ Z and γi ∈ Γ);
(4) (K,G, (γ′)γ∈Γ) satisfies the Mann axioms of Γ.
Note that since in our case Γ = {1}, (2) and (3) are trivial, and (4) follows from

G being linearly independent over Q.

Fact 4.1. ([12], Theorem 7.1) Let (K,G, (γ)) and (K ′, G′, (γ)) be two models of
RCF (Γ). Then (K,G, (γ)) ≡ (K ′, G′, (γ)) if and only if [p]G = [p]G′ (indexes of
subgroups of p-powers) for every prime number p, and for each γ ∈ Γ and each
n > 0,

γ ∈ G[n] ⇐⇒ γ ∈ G′[n].

Thus, in our case, TG (with the restriction of G to K>0) is axiomatized by
saying:

(1) K is a real closed field;
(2) G is a multiplicative subgroup of K>0;
(3) G is dense in K;
(4) for any n > 1, G[n] has infinite index in G;
(5) G is linearly independent.
Note that codensity (extension property) is not an explicit part of this axiom-

atization. However, by Lemma 2.4, any saturated model of TG will satisfy the
codensity property.

We will now extract some more information from the proof of [12] to show that
G-independent types are easy to characterize. We will need, the following fact:
since G is dense in R>0, so is Gn = {gn : g ∈ G} so G as an ordered group is
regularly dense ordered abelian group. A discussion of these groups is carried in
Section 7 of [12]. In particular, we will need:

Fact 4.2. Let (G, ·,≤) be a regularly dense ordered abelian group and let (g1, . . . , gk),
(g′1, . . . , g

′
k) ∈ G. Write tpgr(g1, . . . , gk) for the type in the language of ordered

groups. Then tpgr(g1, . . . , gk) = tpgr(g
′
1, . . . , g

′
k) if and only if

(1) gn1
1 · · · g

nk
k < 1 if and only if g′n1

1 · · · g′nkk < 1 for all n1, . . . , nk ∈ Z.
(2) gn1

1 · · · g
nk
k ∈ Gm if and only if g′n1

1 · · · g′nkk ∈ Gm for all n1, . . . , nk ∈ Z,
m ≥ 2.
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Theorem 4.3. (see [12], Theorem 7.1) Let (K,G) and (K ′, G′) be two models of
TG. Then whenever ~a = ~b~g ∈ K, ~a′ = ~b′~g′ ∈ G′ are two G-independent tuples such
that ~g = G(~a), ~g′ = G(~a′), and

(1) (G,~g) ≡ (G′, ~g′) (the types of ~g and ~g′ agree in the sense of ordered groups)
(2) tpRCF (~a) = tpRCF (~a′) (their types agree in the sense of real closed fields)

Then tpG(~a) = tpG(~a′).

Proof. We may assume that both structures are ℵ1-saturated. We will build a back
and forth system between the two structures, i.e. we will prove that if c ∈ K

then there is c′ ∈ K ′ and ~d ∈ G, ~d′ ∈ G′, such that ~a~dc and ~a′~dc′ are again
G-independent, c ∈ G if and only if c′ ∈ G′, and (1,2) above hold for these new
tuples.

Case 1: c 6∈ dclRCF (~aG). By the extension (codensity) property, we can find
c′ ∈ K ′ such that c′ 6∈ dclRCF (~a′G′ and tpRCF (c/~a) = tpRCF (c′/~a′) (i.e. c and c′
realize the corresponding cuts over dclRCF (~a) and dclRCF (~a′), respectively). Then
clearly both ~ac and ~a′c′ are G-independent, and (1,2) hold for the new tuples. In
this case, ~d and ~d′ are both empty tuples.

Case 2: c ∈ dclRCF (~a). Take c′ ∈ K ′ such that tpRCF (c′,~a′) = tpRCF (c,~a). If
c ∈ G, then c ∈ dclRCF (~g), hence also c ∈ dclgr(~g) (in the sense of the group G).
Let ψ(x, ~y) be a formula in the language of ordered groups witnessing it (essentially,
it says that x is the (positive) nth root of a product of elements of ~y and/or their
inverses). The same formula, viewed as a formula in the language of rings, is also
witnessing x ∈ dclRCF (~y). Then clearly, c′ ∈ G′, since c′ is the unique element of
K ′ satisfying ψ(x,~g′) in K ′, and ψ(x,~g′) does have a solution in G′. Similarly, if
c′ ∈ G′, then c ∈ G. Clearly, both ~ac and ~a′c′ are G-independent, and (1,2) hold
for the new tuples. In this case again, ~d and ~d′ are both empty tuples.

Case 3: c ∈ G\ dclRCF (~a).
We need to find c′ ∈ G′ such that tpRCF (c′/~a′) = tpRCF (c/~a) and tpgr(c

′/~g′) =
tpgr(c/~g).

First, by ℵ1-saturation of G′, we can find c′′ ∈ G′ be such that tpgr(c
′′/~g′) =

tpgr(c/~g). Next, as in [12] we need to refine the way we choose g′1 in order to make
it compatible with the field structure.

Let h : dclRCF (~a)→ dclRCF (~a′) be a partial ordered field isomorphism specified
by h(~a) = ~a′.

Let
p(x, dclRCF (~a′)) = h(tpRCF (c/ dclRCF (~a))).

Then, by o-minimality, p(x,dclRCF (~a′)) is determined by a cut together with the
fact that x is transcendental over ~a′. By saturation we can find an interval (q, r)
inside this cut and by using the density of G′ we may assume the interval has
endpoints in G′.

Recall that both G and G′ are regularly dense. Furthermore, since the structures
are saturated, the set of divisible elements in G is also dense in K and the set of
divisible elements in G′ is also dense in K ′. By choosing t ∈ G′ divisible such that
t ∈ (q/c′′, r/c′′) then tc′′ ∈ (q, r), and therefore, tpRCF (c,~a) = tpRCF (tc′′,~a′))

Claim tpgr(c
′′, ~g′) = tpgr(tc

′′, ~g′) in the sense of regularly dense ordered abelian
groups.

Here we use Fact 4.2. We know that for any element z ∈ dclgr(~g
′), zc′′ has

an n-th root in G′ if and only if zc′′t has an n-th root in G′ and that the cut
13



determined by dclgr(~g
′) in the sense of ordered groups is determined by the cut

defined by dclRCF (~a′) in the sense of ordered fields. The claim follows easily from
these observations.

Since, tpgr(c,~g) = tpgr(c
′′, ~g′), we get tpgr(c,~g) = tpgr(tc

′′, ~g′)).
Thus, we can take c′ = c′′t. The new tuples are still G-independent (since we

are adding elements of G(K) or G(K ′)) and (1, 2) hold as well. Here again ~d and
~d′ are empty.

Case 4: c ∈ dclRCF (~aG). Let ~d ∈ G be such that c ∈ dclRCF (~a~d. We may
assume that ~d is a minimal such tuple. By iterating case 3, we can find ~d′ ∈ G′
such that tpRCF (~a~d) = tpRCF (~a′ ~d′) and tpgr(~g

~d) = tpgr(~g
′ ~d′). Now, apply case 2

to find the required c′.
�

As in the previous section, we derive near model completeness of TG from the
above proposition.

Corollary 4.4. The theory TG is near model complete. That is, if (R,G) |= TG,
every LG-formula is equivalent to a boolean combinations of G-existential formulas.

Proof. Given a sufficiently saturated model (R,G) of TG and two tuples ~a1 and ~a2

in R satisfying the same G-existential formulas, we can extend both tuples to ~a′1
and ~a′2 which are G-independent and still satisfy the same G-existential formulas.
By Fact 4.2, equality of group types of G(~a′1) and G(~a′2) follows from equality of
their G-existential types. The rest follows by Proposition 4.3.

�

Lemma 4.5. Let (K,G) and (K ′, G′) be sufficiently saturated models of TG and
let g1, . . . , gn ∈ G, g′1, . . . , g′n ∈ G′ be such that:

(1) gn1
1 · . . . ·g

nk
k ∈ Gm if and only if g′n1

1 · . . . ·g′nkk ∈ Gm for all n1, . . . , nk ∈ Z,
m ≥ 2.

(2) For any semialgebraic set V definable over ∅, ~g ∈ V if and only if ~g′ ∈ V .
Then tpG(~g) = tpG(~g′). Moreover, if ~b ∈ K is such that ~g~b, ~g′~b are G-independent,
G(~g~b) = ~g, G(~g~b) = ~g′ and for any semialgebraic set V definable over ~b, ~g ∈ V if
and only if ~g′ ∈ V then tpG(~g/~b) = tpG(~g′/~b).

Proof. Note that gn1
1 · . . . · g

nk
k = 1 can be expressed as g1, . . . , gn belonging to an

algebraic set definable over ∅. The result follows from Fact 4.2 and Theorem 4.3.
�

This shows that the only new structure induced on G without parameters is
given by polynomial (in fact, linear) inequalities with integer coefficients. With
outside parameters, the induced new structure is given by traces of semialgebraic
sets.

Finally, we prove a technical result relating LG-definable sets in one variable
to LG-definable sets up to small sets. An analogous result appears as Proposition
3.12 in [6] and was used as an essential ingredient to understand imaginaries and
to study the preservation of NTP2 and NTP1 [3] in dense-codense expansions of
geometric structures.

Proposition 4.6. Let (R,G) be a G-structure and let Y ⊂ R be LG-definable.
Then there is X ⊂M L-definable such that Y4X is small.
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Proof. If Y is small or cosmall, the result is clear, so we may assume that both
Y and M \ Y are large. Assume that Y is definable over ~a and that ~a is G-
independent. Let b ∈ Y be such that b 6∈ scl(~a) and let c ∈ M \ Y be such that
c 6∈ scl(~a). Then b~a, c~a are G-independent, while tpG(b~a) 6= tpG(c~a). Then by
Lemma 4.3, tpRCF (b~a) 6= tpRCF (c~a), so there is Xbc a semialgebraic set such that
b ∈ Xbc and c 6∈ Xbc. By compactness, we may first assume that Xbc only depends
on tpRCF (b/~a) and applying compactness again we may assume that Xbc does not
depend on tpRCF (b/~a) and we will call it simply X. Thus for b′ ∈ Y and c′ ∈M \Y
not in the small closure of ~a, we have b′ ∈ X and c′ ∈ M \ X. This shows that
Y4X is small. �

Since definable subsets of R in o-minimal theories are finite unions of points and
intervals, we get:

Corollary 4.7. Let Y ⊂ R be definable in LG. Then there is a finite partition
−∞ = a0 < a1 < · · · < am = ∞ of R such that Y is either small or cosmall
in (ai−1, ai) for i = 1, . . . ,m. Furthermore, if Y is definable from ~d, where ~d is
G-independent, so is the partition −∞ = a0 < a1 < · · · < am =∞.

Since 1-dimensional cells are definably homeomorphic to an open interval, we
also get:

Corollary 4.8. Let X ⊂ Rn be L-definable and 1-dimensional and let Y ⊂ X be
LG-definable. Then there is a finite partition of X into cells {Ci : i ≤ m} such that
each Ci is either a point or a 1-dimensional cell and Ci ∩ Y is small or cosmall
in Ci ∩ X for i = 1, . . . ,m. Furthermore, if Y is definable from ~d, where ~d is
G-independent, so is the partition {Ci : i ≤ m}.

5. Adding a subgroup of S

In this section we consider a version of our construction of a G-structure, where
we add a subgroup G of the unit circle S, generated by an algebraically independent
dense set. Here S is viewed as a definable subgroup of the multiplicative group
(C×, ·). The resulting theory has a lot in common with the expansion studied by
Belegradek and Zil’ber in [1]. The difference in our setting is that the resulting
group is of infinite rank, is torsion free and linearly independent.

The field of complex numbers is defined in the usual way in (R,+,×, 0, 1). Thus,
C = R2, with operations

(x, y) + (x′, y′) = (x+ x′, y + y′), (x, y) · (x′, y′) = (xx′ − yy′, xy′ + x′y).

For A ⊂ C let Are = {x : (x, y) ∈ A for some y}.
Similarly, for any real closed field K define C(K) = K2 with the corresponding

addition and multiplication. Define S(K) = {(x, y)|x, y ∈ K,x2 + y2 = 1} as
a subgroup of the multiplicative group C(K)×. As noted in [1], for z = (x, y)
in S(K), we have z2 − 2xz + 1 = 0 and (z − x)2 + y2 = 0. This implies that
when restricted to S(K), algebraic closure in the sense of C(K) coincides with the
algebraic closure in the sense of K.

Choose an algebraically independent countable dense subset H0 of the interval
(−1, 1) of R. Then let

H = {(h,
√

1− h2) : h ∈ H0}.
Note that H ⊂ S (in fact, just the upper semicircle) and Hre = H0.
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Lemma 5.1. H is an algebraically independent subset of the field of complex num-
ber C.

Proof. Since for any z = x + yi ∈ S we have z + 1
z = 2x (in C), z and (x, 0)

are interalgebraic in C. Since Hre is algebraically independent (in R), so is H (in
C). �

Let G be the multiplicative subgroup of S generated by H. Note that G is a free
abelian group (hence, torsion free).

Lemma 5.2. G is linearly independent in C over Q.

Proof. The proof is identical to that of Lemma 2.1. �

Next lemma shows that there is no new structure imposed by algebraic equations
(in the sense of C) on G.

Lemma 5.3. For any polynomial f(z1, . . . , zn) with integer coefficients there is a
quantifier free formula θf (~z) in the multiplicative group language such that for any
~g ∈ G we have f(~g) = 0 if and only if (G, ·) |= θf (~g).

Proof. Let f(~z) = ΣNi=1kiz
r1,i
1 . . . zrn,in , where all ki 6= 0 and all the monomials are

distinct. Since G is linearly independent, for any ~g ∈ G, if f(~g) = 0, then there is
a partition of the set {1, 2, . . . , n} into disjoint subsets I1, . . . , Im such that for any
l ≤ m we have

Σi∈Ilki = 0

and
gr1,i1 . . . grn,in = gr1,j1 . . . grn,jn

for all i, j ∈ Il. Taking disjunction over all such partitions we get the desired
quantifier free formula.

�

Note that the formula θf does not need parameters from G.

Lemma 5.4. (1) For any n, G[n] is dense in S in the following sense: for any
−1 < a < b < 0 or 0 < a < b < 1 there exist (g1, g2), (g′1, g

′
2) ∈ G[n] such

that a < g1, g
′
1 < b, g2 is between

√
1− a2 and

√
1− b2, and g′2 is between

−
√

1− a2 and −
√

1− b2.
(2) For any (g1, g2) ∈ G, the coset (g1, g2)G[n] is dense in S and

(
(g1, g2)G[n]

)
re

is dense in [−1, 1].

Proof. (1) First, note that since G[n] is closed under complex conjugation (in S, 1
z =

z̄), it suffices to show only the existence of (g1, g2). We can write (a,
√

1− a2) = eiθ1

and (b,
√

1− a2) = eiθ2 where 0 < θi < π. Choose h = cos θ0 ∈ H0 such that
θ1
n < θ0 <

θ2
n (it exists by the density of H0 in (−1, 1)). Then (g1, g2) = einθ0 is

the required element of G[n].
(2) By (1), {θ|eiθ ∈ G[n]} is dense in [0, 2π]. Clearly, for any θ′ ∈ [0, 2π], so is

{θ + θ′|eiθ ∈ G[n], θ + θ′ < 2π} ∪ {θ + θ′ − 2π|eiθ ∈ G[n], θ + θ′ ≥ 2π}. It follows
that for any eiθ ∈ G the coset eiθG[n] is dense in S. The rest is clear.

�

Note also that the analogue of Lemma 2.3 holds in present setting as well. More-
over, we also have:
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Lemma 5.5. Let (K,+, ·, 0, 1, G) be a sufficiently saturated model of the theory
TG = Th(R,+, ·, 0, 1, G). Then

(1) G(K) is linearly independent
(2) if a, g1, . . . , gk ∈ G(K) and a ∈ acl(g1, . . . , gk) (in the sense of K or C(K)),

then for some r ≥ 1, and s1, . . . , sk ∈ Z we have ar = gs11 . . . gskk .

Proof. The proof of (1) and (2) is identical to that of Lemma 2.4. �

If we want to emphasize that G is the subgroup of C generated by H as defined
above, we will use the notation G = G(R).

We will now introduce a variant of the axioms (0-7) from Proposition 3.1 of
[1], formulated for a structure K in the language of ordered rings, with a binary
predicate G.

(1) K is a real closed field;
(2) G(K) is a subgroup of S(K);
(3) G(K) is elementarily equivalent to G(R) (as an abelian group);
(4) For any g ∈ G(K) and any n > 1, the coset gG(K)[n] is dense in S(K);
(5) For any g ∈ G(K) and any n > 1, the set

(
gG(K)[n]

)
re

is dense in [−1, 1];
(6) For any finite set of polynomials over Z

{fi(x, y1, y
′
1, . . . , yn, y

′
n, z1, . . . , zm)|i ≤ k}

of positive degree, and for any ~c ∈ Km, the intersection F1 ∩ . . . ∩ Fk is dense in
K, where

Fi = {a ∈ K|fi(a,~b,~c) 6= 0 for all~b ∈ G(K)n, such that for some d ∈ K fi(d,~b,~c) 6= 0}.
(7) For every polynomial f(~z) over Z, for any tuple ~z in G(K) f(~z) = 0 holds in

C(K) exactly when θf (~z) holds in the group G(K).

Lemma 5.6. The axioms (1-7) hold in (R,+, ·, 0, 1, G).

Proof. Axioms (1-3) hold trivially.
Axioms (4,5) follow by Lemma 5.5. Axiom (6) holds since any interval in R is

uncountable. Axiom (7) holds by Lemma 5.3. �

Note that (7) implies that G(K) is linearly independent over Q. Note also that
(4) and (5) can easily be shown to be equivalent for any subgroup of S. We include
both of them for convenience.

Note that Gre is a subset of the interval (−1, 1]. Since G is closed under complex
conjugates (complex reciprocals), for each a ∈ Gre both a+ = (a,

√
1− a2) and

a− = (a,−
√

1− a2) belong to G. For a tuple ~e = (e1, . . . , en) of elements of Gre
let ~e+ = (e+

1 , . . . , e
+
n ) be the corresponding tuple of elements of G. We will also use

the notation are for the first coordinate of any a ∈ S(K). Given a structure (K,G)
as above, for any set A ⊂ K, we say that A is Gre-independent if A is independent
from Gre over A ∩Gre. Clearly, dcl(Gre) = dcl(G) in K (in the ring language).

The next result is a modification of Theorem 4.3 for the new setting.

Theorem 5.7. Let (K,G) and (K ′, G) be two models of axioms (1-6). Then
whenever ~a = ~b~g ∈ K, ~a′ = ~b′~g′ ∈ K ′ are two Gre-independent tuples such that
~g = Gre(~a), ~g′ = Gre(~a

′), and (writing G for G(K) and G′ for G′(K))
(1) (G,~g+) ≡ (G′, ~g′+) (the types of ~g+ and ~g′+ agree in the sense of multi-

plicative groups)
17



(2) tpRCF (~a) = tpRCF (~a′) (their types agree in the sense of real closed fields)
Then tpG(~a) = tpG(~a′).

Proof. We may assume that both structures are ℵ1-saturated. We will build a back
and forth system between the two structures, i.e. we will prove that if c ∈ K then
there is c′ ∈ K ′ and ~d ∈ Gre, ~d′ ∈ G′re, such that ~a~dc and ~a′~dc′ are again Gre-
independent, c ∈ Gre if and only if c′ ∈ G′re, and properties (1) and (2) above hold
for these new tuples.

Case 1: c 6∈ dclRCF (~aG). By axiom (6) and saturation, we can find c′ ∈ K ′

such that c′ 6∈ dclRCF (~a′G′) and tpRCF (c/~a) = tpRCF (c′/~a′) (i.e. c and c′ realize
the corresponding cuts over dclRCF (~a) and dclRCF (~a′), respectively). Then clearly
both ~ac and ~a′c′ are G-independent, and properties (1) and (2) hold for the new
tuples. In this case, ~d and ~d′ are both empty tuples.

Case 2: c ∈ dclRCF (~a). Take c′ ∈ K ′ such that tpRCF (c′,~a′) = tpRCF (c,~a).
If c ∈ Gre, then c+ belongs to G ∩ dclRCF (~g). By Lemma 5.5 part (2), there is
a formula ψ(x, ~y) in the language of groups witnessing c+ ∈ dclgr(~g

+) which says
that x is the (positive) nth root of a product of elements of ~y and/or their inverses.
The same formula, viewed as a formula in the language of rings, is also witnessing
(x,
√

1− x2) ∈ dclRCF (~y). Then clearly, c′+ ∈ G′, since c′+ is the unique element
of K ′ satisfying ψ(x,~g′+) in K ′, and ψ(x,~g′+) does have a solution in G′. Then
c′ ∈ G′re. Similarly, if c′ ∈ G′re, then c ∈ Gre. Clearly, both ~ac and ~a′c′ are Gre-
independent, and (1,2) hold for the new tuples. In this case again, ~d and ~d′ are
both empty tuples.

Case 3: c ∈ Gre\ dclRCF (~a).
We need to find c′ ∈ G′re such that tpRCF (c′/~a′) = tpRCF (c/~a) and tpgr(c

′+/~g′+) =

tpgr(c
+/~g+).

First, by ℵ1-saturation of G′, we can find d ∈ G′ be such that tpgr(d/~g
′+) =

tpgr(c
+/~g+). Next, as in [12] we need to refine the way we choose d in order to

make it compatible with the field structure.
Let h : dclRCF (~a)→ dclRCF (~a′) be a partial ordered field isomorphism specified

by h(~a) = ~a′.
Let

p(x,dclRCF (~a′)) = h(tpRCF (c/dclRCF (~a))).

Then, by o-minimality, p(x,dclRCF (~a′)) is determined by a cut (inside [−1, 1])
together with the fact that x is transcendental over ~a′. By saturation we can find
an interval (q, r) inside this cut and by using the density of G′re in [−1, 1] (special
case of axiom (5)) we may assume q, r ∈ G′re.

Note that by saturation and axiom (5), for any h ∈ G′, the set
(
h(G′)div

)
re

is
dense in [−1, 1]. Thus, we can find t ∈ G′ divisible, such that (td)re ∈ (q, r) and td
belongs to the upper semicircle.

Thus, tpRCF (c,~a) = tpRCF ((td)re,~a
′))

Claim tpgr(d,~g
′+) = tpgr(td,~g

′+) in the sense of free abelian groups.
We know that for any element z ∈ dclgr(~g

′+), zd has an n-th root in G′ if and
only if zdt has an n-th root in G′ . The claim follows easily from this observation.

Since, tpgr(c
+, ~g+) = tpgr(d,~g

′+), we get tpgr(c
+, ~g+) = tpgr(td,~g

′+)).
Thus, we can take c′ = (td)re. The new tuples are still G-independent (since we

are adding elements of G(K) or G(K ′)) and properties (1) and (2) hold as well.
Here again ~d and ~d′ are empty.
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Case 4: c ∈ dclRCF (~aGre). Let ~d ∈ Gre be such that c ∈ dclRCF (~a~d). We may
assume that ~d is a minimal such tuple. By iterating case 3, we can find ~d′ ∈ G′
such that tpRCF (~a~d) = tpRCF (~a′~d′) and tpgr(~g

+~d+) = tpgr(~g
′+~d′+). Now, apply

case 2 to find the required c′. �

Corollary 5.8. The theory TGS = Th(R,+, ·, 0, 1, G) is axiomatized by (1-6).

Remark 5.9. Using the approach of Gunaydin from [15], Section 8.2 (with the
corresponding notion of density for oriented abelian groups and the fact that in our
setting Γ = {1}) one can give an alternative axiomatization of TGC :

(1) K is a real closed ordered field;
(2) G is a dense subgroup of S(K);
(3) G is linearly independent in C(K);
(4) G is torsion free;
(5) for any n > 1, G[n] has infinite index in G.

Corollary 5.10. The theory TGS is near model complete in the following sense: if
(K,G) |= TGS, every LG-formula is equivalent to a boolean combinations of Gre-
existential formulas over the language L expanded with the unary operation symbol
for the positive square root function f(x) =

√
max(x, 0).

Proof. Given a sufficiently saturated model (K,G) of TGS and two tuples ~a1 and
~a2 in R satisfying the same Gre-existential formulas, we can extend both tuples
to ~a′1 and ~a′2 which are Gre-independent and still satisfy the same Gre-existential
formulas. Since G(R) is a model of the theory of free abelian groups, equality of
group types of Gre(~a′1)+ and Gre(~a′2)+ follows from equality of their G-existential
types. Since for any g ∈ Gre we have g+ = (g,

√
1− g2), any quantifier free formula

in the group language involving ~g+ (where ~g is a tuple in Gre) can be replaced with
a Gre-existential formula over the language L expanded with f(x) =

√
max(x, 0).

The rest follows by Proposition 5.7.
�

Finally we obtain a description of definable sets up to small sets that will be
useful to describe definable groups.

Proposition 5.11. Let (K,G) be a models of axioms (1-6). Y ⊂ K be LG-
definable. Then there is X ⊂ K L-definable such that Y4X is small.

Proof. If Y is small or cosmall, the result is clear, so we may assume that both Y and
K \ Y are large. Assume that Y is definable over ~a and that ~a is G-independent.
Let b ∈ Y be such that b 6∈ scl(~a) and let c ∈ K \ Y be such that c 6∈ scl(~a).
Then b~a, c~a are G-independent, while tpG(b~a) 6= tpG(c~a). Then by Theorem 5.7,
tpRCF (b~a) 6= tpRCF (c~a), so there is Xbc a semialgebraic set such that b ∈ Xbc and
c 6∈ Xbc. Now proceed by compactness just as in Proposition 4.6 to obtain the
desired X. �

Since definable subsets of R in o-minimal theories are finite unions of points and
intervals, we get:

Corollary 5.12. Let Y ⊂ K be definable in LG. Then there is a finite partition
−∞ = a0 < a1 < · · · < am = ∞ of R such that Y is either small or cosmall
in (ai−1, ai) for i = 1, . . . ,m. Furthermore, if Y is definable from ~d, where ~d is
G-independent, so is the partition −∞ = a0 < a1 < · · · < am =∞.
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Since 1-dimensional cells are definably homeomorphic to an open interval, we
also get:

Corollary 5.13. Let X ⊂ Kn be L-definable and 1-dimensional and let Y ⊂ X be
LG-definable. Then there is a finite partition of X into cells {Ci : i ≤ m} such that
each Ci is either a point or a 1-dimensional cell and Ci ∩ Y is small or cosmall
in Ci ∩ X for i = 1, . . . ,m. Furthermore, if Y is definable over ~d, where ~d is
G-independent, so is the partition {Ci : i ≤ m}.

6. NIP and weak 1-basedness of G

In this section we will study the expansions of R that were introduced in sections
4 and 5; in particular we will show that in both cases, Th(R, G) has NIP. We will
also show, under both frameworks, that G with the induced structure is geometric
and weakly 1-based (linear in the sense of geometric structures).

6.1. NIP. There are several results about the preservation of NIP in expansions
of geometric theories, among them in lovely pairs, H-structures [6, 2, 7] and tame
expansions of real closed fields [16, 7]. More importantly to us, Günaydin and
Hieronymi showed in [16] that NIP holds in expansions of real closed fields with a
dense group with the Mann property whose n-th powers have finite index in the
group [16]. All these results fall into the more general framework of Chernikov and
Simon on adding predicates to an NIP theory [8].

The proof presented in [16] uses the fact that every definable subset of Gn is
a boolean combination of the trace of a semialgebraic set in Gn with cosets of
subgroups of Gn. We will use this same idea in our setting. On the other hand,
the subgroups considered in [16] had finite index in G and once G is added to
the language, the cosets of those groups are definable over ∅. This last part does
not hold in our setting, for example, for the expansion considered in section 4, the
subgroups G[m] = {g ∈ G : ∃h ∈ G g = hm} have infinite index in G form > 1, they
have unboundedly many cosets in G and those cosets in general are not definable
over ∅. Instead we will combine the description of definable sets from [16] and then
use the criterion from [8].

We will start by considering the expansion Th(K,G), where G is a dense sub-
group of K>0 as introduced in section 4, later we will describe the changes we need
to apply to our arguments to include the case of a subgroup of S studied in section
5. We start with some definitions.

Definition 6.1. For m ≥ 1, let G[m] = {g ∈ G : ∃h ∈ G g = hm}.
Let ~k = (k1, . . . , kn) ∈ Zn and for each m ≥ 1 define Gm,~k := {(g1, ..., gn) ∈ Gn :

gk1
1 · . . . · gknn ∈ G[m]} and G~k := {(g1, ..., gn) ∈ Gn : gk1

1 · . . . · gknn = 1}
For each n ≥ 1, let D(n) be the collection of finite intersections of the groups

Gm,~k and G~k where ~k ∈ Zn.

Theorem 6.2. Th(K,G) has NIP.

Proof. We apply the criterion from [8, Thm 2.4].
We begin by showing that every LG-formula φ(~x, ~y) has NIP over G(~x). Assume

otherwise, so there is an LG-formula φ(~x, ~y), I = (~bi : i ∈ ω) an indiscernible
sequence of elements in G(K) and a G-independent tuple ~a ∈ K such that φ(~bi,~a)
holds iff i is even. Then by Lemma 4.5 we have that there is a finite collection of
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L-formulas ψi(~x, ~z) and Lgr-formulas θi(~x, ~w) and a pair of tuples ~d,~c such that
φ(~x,~a) ∧ G(~x) holds if and only if [∨iψi(~x, ~d) ∧ θi(~x,~c)] ∧ G(~x) holds. Then one
of the conjuctions ψi(~x, ~d) ∧ θi(~x,~c) has the IP. To simplify the notiation we will
remove the subindex i from the formulas.

Thus either the L-formula ψ(~x, ~y) has the IP or θ(~x, ~w) has IP. Since ψ(~x, ~y)
defines a semialgebraic set, it is NIP. On the other hand, consider the subgroup
H ∈ D(n) which is definable over ∅, where n = |~x|. If all elements in I = (~bi : i ∈ ω)
are in the same coset of H, then any formula defining a boolean combination of
cosets of H that holds for ~b0 holds for the whole sequence. On the other hand,
assume the elements in I = (~bi : i ∈ ω) are in different cosets of H. Then any
formula defining a single coset of H holds for at most one element in the sequence
and a formula defining the complement of a single coset of H holds for cofinitely
many elements in the sequence. Thus the formula θ(~x,~c) does not have the IP.

Finally, by Theorem 4.3 every formula in (K,G) is equivalent to a boolean com-
bination of existential formulas over G. This fact together with Theorem 2.4 [8]
shows that Th(M,G) also has NIP. �

Proposition 6.3. The theory Th(K,G) is not strongly dependent.

Proof. We will use cosets of the subgroups G[p], where p is a prime, to witness the
failure of strong dependence. Let {hi,j : i, j ∈ ω} be different elements in the set
of generators of G. Consider the formula ϕi(x, hi,j) = x ∈ hi,jG[pi] where pi is the
i− th prime and construct the array {ϕi(x, hi,j) : i, j ∈ ω}.

Note that whenever j, k are different, hi,j/hi,k 6∈ G[pi], so the cosets hi,jG[p],
hi,kG

[p] are disjoint and thus the formulas {ϕi(x, bi,j) : j < ω} are 2-inconsistent.
This proves that the formulas in each row of the array are 2-inconsistent.

On the other hand, fix different primes p1, . . . , ps and consider the intersection
C = h1,1G

[p1] ∩ h2,1G
[p2] ∩ · · · ∩ hs,1G[ps]. We want to show that the intersection

is non-empty. Assume that g = hx1
1,1h

x2
2,1 . . . h

xs
s,1. Then if g ∈ C, we must have that

x1 ≡ 1 mod p1, x1 ≡ 0 mod p2, . . . , x1 ≡ 0 mod ps, similarly, x2 ≡ 0 mod p1,
x2 ≡ 1 mod p2,. . . ,x2 ≡ 0 mod ps, etc. Now apply the Chinese remainder theorem
to get the desired exponents x1, . . . , xs. This shows that C is non-empty (in fact it
has infinitely many solutions). This proves that the paths down on the array are
consistent.

�

Theorem 6.4. Assume G ≤ S is a dense subgroup of S as studied in section 5.
Then Th(K,G) has NIP.

Proof. By Theorem 5.7 the description of definable sets is the same as in the pre-
vious case, so the same proof will work. �

It is shown in [5] that when G is divisible, then G with the induced structure
from R is weakly 1-based. We will now show that the same result holds when G
is the group generated by a collection of dense-codense algebraically independent
elements.

Let (R0, G0) be a model of TG and let (R,G) � (R0, G0) be |R0|+-saturated.
Let T ∗ be the theory of the ordered multiplicative group G expanded with the

traces of semialgebraic sets over R0. We will denote the expanded structure by G∗.
Let acl∗ denote the algebraic closure operator in G∗. Note that T ∗ is a reduct of
the expansion of TG with constants from R0.
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Proposition 6.5. The theory T ∗ of the group G with the induced structure from
R0 is geometric. Moreover, acl∗(−) = dclgr(− ∪G0).

Proof. First, we will show that T ∗ eliminates ∃∞. Consider a formula φ(x, ~y) in
the language of T ∗. It suffices to show that the property "φ(x,~a) has finitely many
solutions" (in G) is definable in T ∗. We may assume that φ(x, ~y) is a disjunction of
the formulas of the formG(x~y)∧ψ(x, ~y, ~r0)∧θ(x, ~y,~g0), where ψ(x, ~y, ~r0) is a formula
in the language of real closed fields and θ(x, ~y,~g0) is a formula in the language of
multiplicative groups defining a boolean combination of cosets of groups in D(n+1)
(where n is the length of ~y) and ~g0 are parameters from G0. Clearly, it suffices to
assume that φ(x, ~y) is a single such conjunction, and that θ(x, ~y,~g0) represents a
single coset of a group in D(n+1) or its complement.Then for any ~a ∈ G, θ(G,~a,~g0)
is either a coset of a group in D(1) or its complement, hence either a singleton, or
an empty set or an infinite dense set. Thus to say that φ(x,~a) has finitely many
solutions, we need to express that ψ(R, ~y, ~r0) has no interior (in R) or θ(G, ~y,~g0)
has no more than one element. The former can be expressed in R by

χ(~y, r0) = ∀x1∀x2(x1 < x2 → ∃z(x1 < z ∧ z < x2 ∧ ¬ψ(z, ~y, ~r0))),

which, when restricted to G, becomes a formula in T ∗, and saying that θ(G, ~y,~g0)
has no more than one element is also a formula in T ∗.

Now, suppose a,~b ∈ G, and a ∈ acl∗(~b). Then for some formulas ψ(x, ~y, ~r0) and
θ(x, ~y,~g0) as above, a satisfies ψ(x,~b, ~r0) ∧ θ(x,~b,~g0), and this formula has finitely
many solutions (in G).

Case 1: The formula ψ(x,~b, ~r0) defines a finite set (in R). Then a ∈ dclRCF (~b~r0).
Since R0 is G-independent, we have a ∈ dclRCF (~bG0), and thus, a ∈ dclgr(~bG0)
(since dclRCF restricted to G is dclgr).

Case 2. The formula ψ(x,~b, ~r0) defines an infinite set so it must have interior.
Then θ(x,~b,~g0) must define a finite set and so a belongs to dclgr(~b~g0).

This shows that acl∗ = dclgr(−∪G0). Since dclgr satisfies the exchange property,
so does acl∗.

�

Proposition 6.6. The theory T ∗ is weakly one-based. Moreover, the pregeometry
induced by acl∗ is modular, and its associated geometry is a projective geometry
over Q.

Proof. To show weak one-basedness it suffices to show modularity (projectivity) of
acl∗. Thus, suppose a, b, c1, . . . , cn ∈ G and a ∈ acl∗(b~c). By the description of acl∗,
for some integer r, s, t1, . . . , tn we have

ar = btct11 . . . ctnn d,

where d ∈ G0. Let c0 = ct11 . . . ctnn . Then clearly c0 ∈ acl∗(~c) and a ∈ acl∗(b, c0).
Taking the divisible hull of G and viewing it as an additive group, we can also see

that acl∗ is induced by the linear span with the elements of G0 added as constants.
Since each element of the divisible hull is a rational multiple of an element of G,
the associated geometry of acl∗ is a projective geometry over Q.

�

Remark 6.7. Since the acl∗-dimension in G∗ is witnessed by positive Boolean
combinations of cosets of definable subgroups, the structure G∗ is weakly abelian
(see [5]). This gives another proof of weak one-basedness of T ∗.
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Next, we will look at the structure induced on a dense subgroup G of S, as
studied in section 5. Let (R0, G0) be a model of TGS , (so, G0 ⊂ S(R0) ⊂ R2

0) and
let (R,G) � (R0, G0) be |R0|+-saturated.

Let T ∗ be the theory of the multiplicative group G ⊂ S(R) expanded with
the traces of semialgebraic sets over R0. As before, we will denote the expanded
structure by G∗, and acl∗ will denote the algebraic closure operator in G∗. By
Theorem 5.7, the type of a tuple ((a1, a

′
1), . . . , (an, a

′
n)) ∈ G(R)n over R0 in the

sense of the theory TGS is determined by

tpRCF (a1, a
′
1 . . . , an, a

′
n/R0)

and
tpgr((a1, |a′1|), . . . , (an, |a′n|)/G0).

Since tpRCF (a1, a
′
1 . . . , an, a

′
n/R0) specifies the signs of a′1, . . . , a′n, we can drop the

absolute values.
As before, we get the following result.

Proposition 6.8. The theory T ∗ of the group G with the induced structure from
R0 is geometric. Moreover, acl∗(−) = dclgr(− ∪G0).

Proof. First, we will show that T ∗ eliminates ∃∞. Consider a formula

φ((x, x′), (y1, y
′
1), . . . , (yn, y

′
n))

in the language of T ∗.
It suffices to show that the property "φ((x, x′), (a1, a

′
1), . . . , (an, a

′
n)) has finitely

many solutions" (in G) is definable in T ∗. We may assume that φ is a disjunction
of the formulas of the form

G(x, x′)∧
∧
G(yi, y

′
i)∧ψ(x, x′, y1, y

′
1, . . . , yn, y

′
n, ~r0)∧θ((x, x′), (y1, y

′
1), . . . , (yn, y

′
n), ~r0)~g0),

where ψ is a formula in the language of real closed fields and θ is a formula in
the language of multiplicative groups defining a boolean combination of cosets of
groups in D(n + 1) (where n is the length of ~y) and ~g0 are parameters from G0.
Clearly, it suffices to assume that φ(x, ~y) is a single such conjunction, and that
θ(x, ~y,~g0) represents a single coset of a group in D(n+ 1) or its complement.Then
for any ~a ∈ G, θ(G,~a,~g0) is either a coset of a group in D(1) or its complement,
hence either a singleton, or an empty set or an infinite dense subset of G. Thus,
to say that φ(x,~a) has finitely many solutions, we need to express that ψ(R2, ~y, ~r0)
intersected with S(R) has no interior in S(R), or θ(G, ~y,~g0) has no more than one
element. It is clear that the last statement is first order and is expressed by a
formula in T ∗. The former statement can be expressed in R by saying that for any
−1 < a < b < 0 or 0 < a < b < 1 there exist (s, s′), (t, t′) ∈ ψ(R2, ~y, ~r0) such that
a < s, t < b, s′ is between

√
1− a2 and

√
1− b2, and t′ is between −

√
1− a2 and

−
√

1− b2. When restricted to G, this statement becomes a formula in T ∗.
Claim acl∗(−) = dclgr(− ∪G0)
Suppose (a, a′), (b1, b

′
1), . . . , (bn, b

′
n) ∈ G, and

(a, a′) ∈ acl∗((b1, b
′
1), . . . , (bn, b

′
n)).

Then for some formulas

ψ(x, x′, y1, y
′
1, . . . , yn, y

′
n, ~r0)

and
θ((x, x′), (y1, y

′
1), . . . , (yn, y

′
n), ~r0)
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as above, (a, a′) satisfies

ψ(x, x′, b1, b
′
1, . . . , bn, b

′
n), ~r0) ∧ θ((x, x′), (b1, b′1), . . . , (bn, b

′
n), ~g0),

and this formula has finitely many solutions (in G).
Case 1: The formula ψ(x, x′, b1, b

′
1, . . . , bn, b

′
n), ~r0) ∧ x2 + x′2 = 1 defines a finite

set (in R2). Then a ∈ dclRCF (b1, . . . , bn, ~r0). Since R0 is Gre-independent, we have
a ∈ dclRCF (b1, . . . , bn, (G0)re). Thus, there is a non-constant polynomial p(x, ~y,~t)
with rational coefficients such that a ∈ dclRCF (~b,~g0) is witnessed by p(a,~b,~g0) = 0,
for some ~g0 ∈ (G0)re. We may assume that ~b~g0 is an algebraically independent
tuple (in the sense of RCF).

Replacing each variable v in p(x, ~y,~t) with 1
2 (v + 1

v ) and passing to a common
denominator, we get a complex polynomial q(z, ~u, ~w), with z appearing with positive
degree, such that

q((a, a′), (b1, b
′
1), . . . , (bn, b

′
n), (g1, g

′
1), . . . , (gk, g

′
k)) = 0.

Since ~b~g0 is algebraically independent in R, so is the tuple

(y1, y
′
1), . . . , (yn, y

′
n), (t1, t

′
1), . . . , (tk, t

′
k)

(in the sense of the field C(R)), and thus,

q((x, x′), (b1, b
′
1), . . . , (bn, b

′
n), (g1, g

′
1), . . . , (gk, g

′
k)) = 0

has finitely many solutions in G(R).
By Lemma 5.3, there exists a formula

θq((x, x
′), (y1, y

′
1), . . . , (yn, y

′
n), (t1, t

′
1), . . . , (tk, t

′
k))

in the language of multiplicative groups, such that θd(G1+n+k) is the zero set of q
on G1+n+k. Then θq witnesses (a, a′) ∈ dclgr((b1, b

′
1), . . . , (bn, b

′
n), G0).

Case 2. The formula ψ(x, x′, b1, b
′
1, . . . , bn, b

′
n), ~r0)∧x2+x′2 = 1 defines an infinite

set, so it must have interior (in S(R)). Then θ((x, x′), (b1, b′1), . . . , (bn, b
′
n), ~g0) must

define a finite set (otherwise it is dense) and so a belongs to dclgr(~b~g0).
This shows that acl∗ = dclgr(−∪G0). Since dclgr satisfies the exchange property,

so does acl∗.
�

7. Definable groups in (R,G)

We begin this section with the study of definable groups in pairs of the form
(R,P ), where R is a real closed field and P is a new predicate where P stands
for a small subset of R or of a power of R. We use the usual notation, L stands
for the language of real closed fields and LP for L ∪ {P}. Some properties of
groups definable in expansions similar to the ones we are considering were studied
by Eleftheriou, Günaydin and Hieronymi in [13]. In particular, they conjectured:

Let (F, ∗) be a LP -definable group. Then there is a short exact sequence
0→ B → U → K → 0 and a map τ : U → H where

• U is ∨-definable.

• B is ∨-definable in L with dim(B) = ldim(F ).
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• K is definable and small.

• τ : U → F is a surjective group homomorphism and

• all maps involved are ∨-definable.
While the conjecture remains open in our setting, in this section, we present

some positive results when F is the subgroup of an L-definable one dimensional
group. Of course, we will need some assumptions on the expansion:

Partition Assumption. Let Y ⊂ R be definable in LP . Then there is a finite
partition −∞ = a0 < a1 < · · · < am = ∞ of R such that Y is either small or
cosmall in (ai−1, ai) for i = 1, . . . ,m.

Generalized Partition Assumption. Let X ⊂ Rn be L-definable and 1-
dimensional and let Y ⊂ X be LG-definable. Then there is a finite partition of X
into cells {Ci : i ≤ m} such that each Ci is either a point or a 1-dimensional cell
and Ci ∩ Y is small or cosmall in Ci ∩X for i = 1, . . . ,m.

Note that these assumptions hold when G is as in section 4 (see Corollary 4.7
and Corollary 4.8) and also as in section 5 (see Corollary 5.12 and Corollary 5.13).
There are many other expansion that also satisfy this assumptions, for example
dense pairs, H-stuctures, and expansions with groups satisfying the Mann propertry
of finite index inside R>0 (the work of Günaydin and van den Dries [12]) and inside
S (the work of Belegradek and Zil’ber [1]).

We will start with torsion free groups, where the argument is more transparent:

Lemma 7.1. Assume F ≤ (R,+) is LP -definable and the Partition Assumption
holds. Then either F is small or F = (R,+).

Proof. Assume F ≤ (R,+) is LP -definable. If F is small there is nothing to prove.
Assume otherwise. Then by the Partition Assumption there is a partition −∞ =
a0 < a1 < · · · < am = ∞ of R and an interval (ai, ai+1) such that F is cosmall
in (ai, ai+1). Now let f ∈ F ∩ (ai, ai+1), then (F ∩ (ai, ai+1)) − f is cosmall in
(ai, ai+1)− f and contains 0. Thus, after possibly going to a different partition, we
may assume that (ai, ai+1) contains 0.

Claim F ∩ (ai, ai+1) = (ai, ai+1)
Assume otherwise and let c ∈ (ai, ai+1) \ F . Then the coset c+ F is cosmall in

(c+ai, c+ai+1). Since (ai, ai+1) is an open set containing 0, (ai, ai+1)∩ (c+ai, c+
ai+1) is an open interval and both F and c+F are cosmall in the interval, so they
must intersect, a contradiction.

Thus F ∩ (ai, ai+1) = (ai, ai+1), in particular the elements ai/2, ai+1/2 belong
to F and thus both elements ai, ai+1 belong to F .

Now consider (ai, ai+1) + (ai, ai+1) = (2ai, 2ai+1) which is a subset of F . Since
F ∩ (ai+1, ai+2) ⊃ (ai+1, 2ai+1) ∩ (ai+1, ai+2), the set F must be cosmall in the
interval (ai+1, ai+2). Similarly, it is easy to show that F must be cosmall in the
interval and (ai−1, ai). It follows as in the claim that F ∩(ai+1, ai+2) = (ai+1, ai+2)
and F ∩ (ai−1, ai) = (ai−1, ai). Proceeding inductively we get that F = R. �

A similar argument applies to multiplicative groups:

Lemma 7.2. Assume F ≤ (R>0, ·) is LP -definable and assumption 1 holds. Then
either F is small or F = (R>0, ·).
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Proof. We just change, in the proof above, + for ·, 0 for 1, multiplication by 2 for
squaring and dividing by 2 for taking a square root. �

Finally, we prove the argument even works for general 1-dimensional groups:

Lemma 7.3. Assume that (T, ·) is a 1-dimensional L-definable group and let F ≤
(T, ·) be LP -definable. Also assume that the Generalized Partition Assumption
holds. Then either F is small or F is L-definable.

Proof. Let F ≤ (T, ·) be LG-definable of dimension 1. If F is small there is nothing
to prove. Assume otherwise. Since we need to see (T, ·) as topological group, we
give (T, ·) the t-topology [17]. Then we can write T = U1 ∪ · · · ∪ Ur where the sets
Ui are definable and there is a definable bijection between Ui and some open subset
Vi in R.

Then by the generalized partition assumption, there is a partition of Uj into cells
{Cji : i ≤ mj} such that each Cji is either a point or a 1-dimensional cell and Cji ∩F
is small or cosmall in Ci for i = 1, . . . ,m. Then for some pair of indexes i, j, the
cell Cji is 1-dimensional and Cji ∩ F is cosmall.

Let f ∈ Cji ∩F and apply to T the left translation by f−1, which is a continuous
bijection in T . Then the set DF = f−1 · (Cji ∩ F ) is 1-dimensional, contains the
identity and is cosmall in the t-open set D = f−1 · Cji .

Claim F ∩D = D. Assume otherwise and let d ∈ D \ F . Then the coset dF is
cosmall in d ·D. Since D is a 1-dimensional t-open set containing e, d ·D is also a
t-open set and they intersect in a t-open set where both F and d · F are cosmall, a
contradiction.

Thus F contains an open set around the identity in the t-topology. Since trans-
lation is a homeomorphism, we get that F is t-open.

Assume now that that Ckl is another 1-dimensional t-open set such that F ∩Ckl 6=
∅. Then the intersection is t-open non-empty and thus not small. It follows as in
the claim that the intersection must agree with Ckl . We get that F is the union of
the 1-dimensional t-open sets Ckl that it intersects and maybe some extra points
and so it must be L-definable. �

Now we will study the definable subgroups of G inside pairs of the form (R,G),
where R is a real closed field and G is either a dense subgroup of R>0 with the
Mann property (of infinite rank as in as in section 4 or of finite rank as studied by
Günaydin and van den Dries) or G is a dense subgroup of S(R) with the Mann prop-
erty (of infinite rank as in as in section 5 or of finite rank as studied by Belegradek
and Zil’ber [1]).

Recall that the definable subsets of Gn in the pair (R,G) are finite unions of
intersections of semialgebraic sets with realizations of group-formulas θ(~x,~c), where
θ(~x,~c) defines a finite boolean combination of cosets of subgroups of the form F ∈
D(n), where n = |~x|. In particular, all groups F ∈ D(n) are definable. We will try
to simplify the picture:

Lemma 7.4. Whenever (n, k) = 1, Gn,k = G[n].

Proof. We may work in the model (R,G) where G is generated by the independent
set H. Assume first that g ∈ G[n], so there is g1 ∈ G such that g = gn1 . Then
gk = (gk1 )n so g ∈ Gn,k. On the other hand, assume that g = hs11 . . . hsll where hi
stand for generators of G which are algebraically independent and we may assume
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that all hi are different and thus algebraically independent. If g ∈ Gn,k, then
gk ∈ G[n], so gk = hks11 . . . hksll has an n-th root. Since (n, k) = 1 each of s1, . . . , sl
is divisible by n and thus g ∈ G[n]. �

Lemma 7.5. Whenever (n, k) = 1, G[n] ∩G[k] = G[nk].

Proof. We may work in the model (R,G) where G is generated by the independent
set H. Clearly G[nk] ⊂ G[n] ∩G[k]. Assume that g = hs11 . . . hsll where hi stand for
generators of G which are algebraically independent and we may assume that all
hi are different and thus algebraically independent. If g ∈ G[n] ∩G[k] then each of
(s1, . . . , sl) is divisible by n and by k, so they are also divisible by nk. �

We now deal with the expansion (R,G), where G ≤ R>0 is dense and has the
Mann property. This includes the case studied in 4 and in [12]

Lemma 7.6. Let S ≤ G be LG-definable. Then S ∈ D(1).

Proof. Let S ≤ G be LG-definable, then by Lemma 4.5 we can write S = ((a1, a2)∩
B1)∪((a2, a3)∩B2)∪· · ·∪((an, an+1)∩Bl)∪F where eachBi is a boolean combination
of cosets of groups in D(1), all ai > 0, the intervals (ai, ai+1) are disjoint and F is
a finite set of points.

Assume that R is the standard real field and S ≤ R>0 is a subgroup. Then
either S is just the identity, infinite cyclic or dense. Assume that S 6= {e} so it
must be infinite and thus for some i, (ai, ai+1) ∩Bi is infinite. Since the non-finite
boolean combination of cosets of groups in D(1) are dense, Bi ∩ (ai, ai+1) is dense
in (ai, ai+1) and thus S must be dense in R>0. Note that being dense is a first
order property and thus this property is true in all models of the theory.

Let c ∈ (a1, a2) ∩ B1, then after multiplying by c−1 we may assume that 1 ∈
(a1, a2) ∩ B1. Since S is dense in R>0, then for every l, Sl is dense in R>0 and in
a saturated model Sdiv, the group consisting of the divisible elements of S, is also
dense in R>0. Since being dense is a first order property, this is also true in all
models of the theory.

Claim B1 and B2 differ by a finite set.
Let t ∈ (a2, a3) ∩ B2 be divisible. First observe that t−1G[n] = G[n] and that

for every coset dG[n], we also get t−1dG[n] = dG[n], so t−1B2 differs from B2 by at
most a finite set. Then t−1 · (a2, a3) ∩ B2 = (a2/t, a3/t) ∩ t−1B2 also contains the
identity and (a2/t, a3/t) is an open set around the identity. Let c1 = max(a1, a2/t),
c2 = min(a2, a3/t). Then on the open set (c1, c2), we have S ∩ (c1, c2) = (c1, c2) ∩
B1 = (c1, c2) ∩ t−1B2, so B1 and t−1B2 agree on an open interval and thus they
differ by at most a finite set. The claim follows from this result.

Thus after modifying the finite set F , and using the density of S, we may assume
all the sets Bi are the same and write S = ([(b1, b2) ∩ B] \ F1) ∪ F2, where F1, F2

are finite sets. Again using the density of S in R>0, we get that b1 = 0, b2 = ∞
and thus S = B ∪ F which is clearly an element in D(1)

�

Finally we see how to modify the arguments in the previous proof to deal with
the expansion (R,G), where G ≤ S(R) is dense and has the Mann property. This
includes the case studied in section 5 and in [1].

Lemma 7.7. Let U ≤ G be LG-definable. Then U ∈ D(1) or U is finite.
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Proof. Let U ≤ G be LG-definable, then by Corollary 5.13, we can write U =
(C1 ∩B1)∪ (C2 ∩B2)∪ · · · ∪ (Cn ∩Bn)∪F where each Bi is a boolean combination
of cosets of groups in D(1), the collection Ci is a family of 1-dimensional cells that
are disjoint and F is a finite set of points. Assume first that R is the standard real
field and U ≤ S(R) is a subgroup. It is well known that the subgroups of S(R) are
either finite or dense, since this is a first order property the same results holds in all
models of the theory. If U if finite we get the desired result. If U is infinite, then it
is dense and we proceed in a similar way as in the previous proof by showing that
all Bi differ by at most a finite set and that the Ci form a partition of S(R) up to
a finite set. �

7.1. Dynamics. In this section we study some dynamical properties of G inside
the expansion (R,G), where G is a dense codense subgroup of R>0 (respectively a
subgroup of S(R)) and has the Mann property. We follow the presentation from [9].
First note that in all settings under consideration G is abelian, so it is definably
amenable. Our goals are to find explicit invariant measures and strong f -generic
types, characterize G00 and the quotient G/G00.

7.1.1. Dynamics: the infinite index case. Assume first that G ≤ R>0 and (R,G) |=
TG are as in section 4. In particular G is dense, has the Mann property and the
groups G[n] have infinite index in G.

Lemma 7.8. Let (K,G) be an ℵ1-saturated model model of TG and consider the
type p(x) = x ∈ G ∪ {x > g : g ∈ G} ∪ {x 6∈ gW : g ∈ G,W ∈ D(1)}. Let µp
be the measure centered in p. Then µp is G-invariant. Furthermore G00 = G and
Stab(p) = G.

Proof. For any a ∈ K, the formula ϕ(x) = (x > a) ∧ (x ∈ G) has µp-measure
1. If g ∈ G, then the translate gϕ(x) = (g−1x > a) ∧ (g−1x ∈ G) = (x >
ag) ∧ (x ∈ G) also has µp-measure 1. Similarly for a ∈ G and W ∈ D(1), the
formula ϕ(x) = (x 6∈ aW )∧ (x ∈ G) has µp-measure 1. If g ∈ G, then the translate
gϕ(x) = (g−1x 6∈ aW ) ∧ (g−1x ∈ G) = (x 6∈ gaW ) ∧ (x ∈ G) also has measure
1. By the description of definable subsets of G from Lemma 4.5 we get that µp is
G-invariant.

Thus the group G is definably amenable. Also note that since each of the groups
Gn,k has infinite index in G, we get that G00 = G. Since for any g ∈ G, g · p = p,
the orbit of p under the action of G is a singleton, Stab(p) = G00 = G and p(x) is
strongly f-generic. �

For any n ≥ 2, the map that sends g ∈ G to gn ∈ G[n] is a definable group
isomorphism, so the group G[n] is also definable amenable, G[n]00

= G[n] and has
strong f-generics. Thus the the lemma also holds for all W ∈ D(1) and by Lemma
7.7 for all definable subgroups of G.

Question 7.9. Is the lemma above true for W ∈ D(1) just assuming that G has
the Mann property and that all groups Gn,k have infinite index in G?

7.1.2. Dynamics: the finite index case. We now assume that we are in the setting
studied in [12]. So G has the Mann property and that all groups G[n] have finite
index in G. There are several examples of Mann-multiplicative subgroups with this
property, for example 2Q3Z, 2Q3Z5Z, etc. In this setting, as opposed to the previous
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case, all Gn,k have finite index in G and thus G00 is the subgroup of divisible
elements.

Lemma 7.10. Let (K,G) be an ℵ1-saturated model model of TG and consider the
type p(x) = x ∈ G ∪ {x > g : g ∈ G} ∪ {x ∈ G[n] : n ≥ 2}. Let µp be the measure
centered in p. Then µp is G00-invariant.

Proof. For any a ∈ K, the formula ϕ(x) = (x > a) ∧ (x ∈ G) has µp-measure 1. If
g ∈ G, then the translate gϕ(x) = (g−1x > a) ∧ (g−1x ∈ G) = (x > ag) ∧ (x ∈ G)
also has µp-measure 1. Similarly the formula ϕ(x) = (x ∈ G[n]) has µp-measure 1.
If g ∈ G00, then the translate gϕ(x) = (g−1x ∈ aG[n]) = (x ∈ gG[n]) = (x ∈ G[n])
also has µp-measure 1. By the description of definable subsets of G we get that µp
is G00-invariant. �

Thus the group G is definable ameanable. Note that it follows from the previous
proof for any g ∈ G00, g · p = p and that the orbit of p under the action of G has
cardinality at most 2ℵ0 , namely the orbit is determined by choosing a coset of each
G[n] (and there are finitely many such cosets) for every n.

The quotient group G/G00 is a profinite group. For every positive pair of integers
n,m such that n divides m, we get a natural map fnm : G/G[n] → G/G[m] defined
by fnm(aG[n]) = aG[m]. The group G/G00 is the inverse limit of this system. Note
that the quotients G/G[n] are finite and thus they are not ordered groups. Similarly
the profinite group G/G00 is not ordered and thus G/G00, even when it is infinite,
is not a model of the theory of G.

Example 7.11. Consider the multiplicative group G = 2Q3Z that is dense in R>0

and has the Mann property (see [12]). Then G/G[n] = Z/nZ and G/G00 is the
infinite compact group of profinite integers.

7.1.3. Dynamics: subgroups of S with the Mann property. Finally we study the
dynamics in two other settings. First we consider the case studied by Belegradek
and Zilber in [1] which deal with dense subgroups of S that have the Mann property
that have finite rank. Under these assumptions, all groups G[n] have finite index
in G and G00 contains the intersection ∩nG[n] as well as the group of infinitesimals
around 1.

Recall that the shortest arc in the circle between e−iπ/4 and eiπ/4 is homeomor-
phic to (−1, 1) through a map that sends (1, 0) to the point 0. Thus we can identify
the elements infinitesimally close to (1, 0) with the elements infinitesimally close to
0 and give the elements infinitesimally close to (1, 0) in S an order compatible with
the group operation. We will use the order below:

Lemma 7.12. Let (K,G) be an ℵ1-saturated model of TG and consider the Haar
measure µ of G that asigns to an arc its length normalized by 2π. Then µ is G-
invariant and the measure of G[n] is one over the index of G[n] inside G. Consider
the type p(x) = x ∈ G∪{x > a : a ∈ G, a infinitesimal }∪{x < 1/n : n ≥ 1}∪{x ∈
G[n] : n ≥ 2}. Let µp be the measure centered in p. Then µp is G00-invariant.

Proof. The first part is clear, as the length of an arc (even if intersected with G) is
preserved under rotations. Also, if the index of Gn on G is k, then the cosets can
be permuted by multiplying by elements in G, so they all have the same measure
and the result follows.
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Now we will check that µp is G00-invariant. If g ∈ G00, then g is infinitesimal
and x is infinitesimal and so is gx, thus gx < 1/n : n ≥ 1. Also if a ∈ G is
infinitesimal, and g is infinitesimal, then g−1 and ag−1 are also infinitesimal and
x > ag−1 implies gx > a. Finally if x ∈ Gn and g ∈ Gn, then xg ∈ Gn, so if
g ∈ G00 and x is divisible, then gx is divisible. �

Example 7.13. Consider the multiplicative group G = U of the roots of unity
interpreted as a subset of R2. It is a divisible group but it has torsion points, for
every n ∈ N, the collection of n torsion points are precisely the n-th roots of unity.
In a saturated model, the interpretation of U includes points without torsion that
are dense inside the torsion points and U00 are those points infinitesimally close to
1. In this setting, U/U00 is the group S.

This is not surprising, as a pure group, U is the interpretation of S in the field Q
and in a saturated model R̃, the quotient U(R̃)/U00(R̃) correponds to the quotient
of S(R̃)/S00(R̃) which is known to be S(R). One can also check directly using the
work of Szmielew [20] that as pure groups, U is elementary equivalent to S.

Now we consider the case studied in section 5 which deals with dense subgroups
of S that have the Mann property that have infinite rank. Now all groups G[n] have
infinite index in G and G00 is the group of infinitesimals around 1.

Lemma 7.14. Let (K,G) be an ℵ1-saturated model model of TG and and consider
the Haar measure µ of G that asigns to an arc its length normalized by 2π. Then
µ is G-invariant and the measure of G[n] is zero. Consider the type p(x) = x ∈
G ∪ {x > a : a ∈ G, a infinitesimal x < 1/n : n ≥ 1} ∪ {x 6∈ aG[n] : n ≥ 2, a ∈ G}.
Let µp be the measure centered in p. Then µp is G00-invariant.

Proof. The proof is very similar to the one of the previous lemma and we leave it
to the reader. �

Question 7.15. Assume F is small, bounded and definable in (R,K) |= TG, where
(R,K) is ℵ1-saturated and G ≤ S has the Mann property (regarless if it has finite
or infinite rank). Does it hold that is F ≡ F/F 00?, i.e. Does a partial version of
Pillay’s conjecture hold in this setting?

8. Questions

There are several questions that arised from this work and its relationship with
other papers. Here we list some:

(1) Do similar results hold for elliptic curves? That is, if we add a dense-
codense family of independent elements inside an elliptic curve defined in
a real closed field R and we call G the group they generate (with the
elliptic curve operation) is the theory of the pair (R,G) NIP and near
model complete?

(2) Assume G ≤ R>0 has the Mann property and F ≤ (R,+) is small. Is
F = {0}?

(3) Are all small groups definable in expansions of R by a multiplicative group
with the Mann property definably amenable?

(4) Is Th(R,G) rosy when G is an in section 4 or in section 5?
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