A GROUP DEFINABLE IN AN O-MINIMAL STRUCTURE WHICH IS NOT AFFINE

PANTELIS E. ELEFTHERIOU

ABSTRACT. In this short note we provide an example of a group G definable in an o-minimal structure \mathcal{M} which does not admit an affine embedding; in other words, there is no definable isomorphism between topological groups $f: G \to G' \subseteq M^m$, such that the group topology on G' coincides with the subspace topology induced by M^m .

Let \mathcal{M} be an o-minimal structure. By "definable" we mean "definable in \mathcal{M} " possibly with parameters. A group $G = \langle G, \oplus, e_G \rangle$ is said to be definable if both its domain and the graph of its group operation are definable subsets of M^n and M^{3n} , for some n, respectively.

By [Pi], we know that every definable group $G \subseteq M^n$ can be equipped with a unique definable manifold topology that makes it into a topological group. We refer to this topology as the group topology of G. It is shown in [Pi] that the group topology of G coincides with the subspace topology induced by M^n on a large subset V of G (dim $(G \setminus V) < \dim(G)$). We call G affine if the group topology of G coincides with the subspace topology on (the whole of) G.

Question. Is every definable group affine (up to definable isomorphism)?

Remark 0.1. (i) A definable isomorphism between two definable groups is a group isomorphism as well as a topological homeomorphism with respect to their group topologies.

(ii) By [ElSt, Remark 2.2], the Question can be restated as follows: Given a definable group $G \subseteq M^n$, is there a definable injective map $\tau : G \to M^m$, $m \in \mathbb{N}$, such that the topology on $\tau(G)$ induced by the group topology of G via τ coincides with the subspace topology on $\tau(G)$ induced by M^m ? If yes, then such a τ is called an affine embedding of G.

The Question admits an affirmative answer in case \mathcal{M} expands a real closed field, by [BO, Proof of Lemma 10.4] and [vdD, Chapter 10, Theorem (1.8)]. In fact, the above references concern affine embeddings of "abstract definable-manifolds", and the work in [BO] also yields affine embeddings which are moreover diffeomorphisms. The original proof of embedding semi-algebraic manifolds was given in [Ro].

We present here an example of a group definable in a linear o-minimal structure which is not affine. Linear o-minimal structures were studied in [LP], and groups definable in them were studied in [ElSt] and [El]. The main example of a linear

Key words and phrases. O-minimal structures, PL-embeddings.

Research supported by European Commission's Research Training Network MRTN-CT-2004-512234 (MODNET).

Date: March 30, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 03C64, 57Q35.

o-minimal structure is that of an ordered vector space $\mathcal{M} = \langle M, +, <, 0, \{d\}_{d \in D} \rangle$ over an ordered division ring D. The main property of such an \mathcal{M} that we use below is that every definable function $f : A \subseteq M^n \to M^m$ is piecewise linear, that is, there is a partition of A into finitely many definable sets $A_i, i = 1, \ldots, k$, such that for each $i = 1, \ldots, k$, the following holds: there is an $n \times m$ matrix λ with entries from D, and an element $a \in M^m$, such that for every $x \in A_i, f(x) = \lambda x + a$.

For $x, y \in M$, we define:

$$x \prec_D y \Leftrightarrow \forall d \in D, dx < y.$$

Example 0.2. Let $\mathcal{M} = \langle M, +, <, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D with the following property: there are a, b, c > 0 in M such that $b \prec_D c \prec_D a$. In particular, there is no definable function from [0, b) onto [0, c), and $\forall n \in \mathbb{N}, nc < a$.

Let $S = [0, a) \times [0, b)$ and $L = \mathbb{Z}(a, 0) + \mathbb{Z}(a - c, b)$ be the lattice in M^2 generated by the elements (a, 0) and (a - c, b). Define $G = \langle S, \oplus, 0 \rangle$, where

$$x \oplus y = z \Leftrightarrow x + y - z \in L.$$

By [ElSt, Claim 2.7(ii)], G is definable.

Notation. By \lim^{G} we denote a limit with respect to the group topology of G. A path is always a continuous map, and a G-path is a path which is continuous with respect to the group topology of G.

Claim. There is no definable injective map $\tau : G \to M^m$, $m \in \mathbb{N}$, such that the induced topology on $\tau(G)$ coincides with the subspace topology.

Proof. Assume, towards a contradiction, that there is such a τ . For every element $t \in [0, a)$, consider the one-to-one *G*-path

$$\phi_t : [0, b) \to \{t\} \times [0, b)$$
, with $\phi_t(x) = (t, x)$.

By definition of G, we see that for every $t \in [0, a - c]$, $\lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$. Therefore, for every $t \in [0, a - c]$, $\tau(\phi_t)$ is a path in M^m with the property:

$$\lim_{x \to b} \tau \big(\phi_t(x) \big) = \tau \big((t+c,0) \big).$$

Consider now the image $\tau ([0, a - c] \times \{0\})$. It contains an infinite number of elements of the form $\tau((nc, 0))$, $n \in \mathbb{N}$. Since τ is piecewise linear, there must exist some $n \in \mathbb{N}$ such that τ is linear on $[nc, (n+1)c) \times \{0\}$. Hence the image $\tau([nc, (n+1)c) \times \{0\})$ is in bijection with an interval $J \subseteq M$ via some projection onto one of the *m* coordinates. Since $\tau(\phi_{nc}) : [0, b) \to M^m$ is a path with

$$\tau(\phi_{nc}(0)) = \tau((nc,0)) \text{ and } \lim_{x \to b} \tau(\phi_{nc}(x)) = \tau(((n+1)c,0)),$$

it is easy to see that there is a definable map from $\tau(\phi_{nc}([0,b)))$ onto J, and, therefore, there is a definable map from [0,b) onto J. It follows that there is a definable map from [0,b) onto [nc,(n+1)c), a contradiction.

A NON-AFFINE O-MINIMAL GROUP

References

- [BO] A. Berarducci and M. Otero, Intersection theory for o-minimal manifolds, Annals of Pure and Applied Logic 107 (2001), 87-119.
- [vdD] L. van den Dries, TAME TOPOLOGY AND O-MINIMAL STRUCTURES, Cambridge University Press, Cambridge, 1998.
- [EI] P. Eleftheriou, *Groups definable in linear o-minimal structures*. Preprint, October 2006.
- [EISt] P. Eleftheriou and S. Starchenko, Groups definable in ordered vector spaces over ordered division rings, Journal of Symbolic Logic 72 (2007), 1108-1140.
- [LP] J. Loveys and Y. Peterzil, *Linear o-minimal structures*, Israel Journal of Mathematics 81 (1993), 1-30.
- [Pi] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
- [Ro] R. Robson, Embedding semialgebraic spaces, Math. Z. 184 (1983), 365-370.

Institut de Matemàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

E-mail address: pelefthe@gmail.com