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Abstract

We consider definably complete and Baire expansions of ordered
fields: every definable subset of the domain of the structure has a
supremum and the domain can not be written as the union of a de-
finable increasing family of nowhere dense sets. Every expansion of
the real field is definably complete and Baire. So is every o-minimal
expansion of a field. The converse is clearly not true. However, un-
like the o-minimal case, the structures considered form an elementary
class. In this context we prove a version of Kuratowski-Ulam’s Theo-
rem and some restricted version of Sard’s Lemma.

1 Introduction

We recall that a subset A of a topological space X is said to be meager if
there exists a collection {Yi : i ∈ N} of nowhere dense subsets of X such that
A ⊆

⋃
i∈N Yi. The Baire Category Theorem states that every open subset of

R (with the usual topology) is not meager, i.e. R is a Baire space.
The notion of Baire space is clearly not first order. Here we consider a

similar (definable) notion, which instead is preserved under elementary equiv-
alence, and which coincides with the classical notion over the real numbers
(this is made precise in Section 2).

The (first order) structures we consider are definably complete expansions
of ordered fields. Definable completeness (see Definition 1.3) is a weak version
of Dedekind completeness, which is preserved under elementary equivalence.
The study of definably complete structures, which is mainly due to C. Miller,
follows that of o-minimal structures; the aim is to develop an analogue to the
theory of o-minimality in a more general situation, where the assumptions
have been considerably weakened, but, unlike o-minimality, they are first

1



Def. complete and Baire, v. 4.1 1 Introduction

order. It is shown in [Miller01], [Servi07], [Fratarc06] that, as in the o-
minimal case, (a definable version of) most results of elementary real analysis
can be proved in every definably complete expansion of an ordered field.

However, to obtain less elementary results one would need some more
sophisticated machinery, in the direction of Sard’s Lemma and Fubini’s The-
orem. Both of the quoted classical results refer to a notion of smallness
(having measure zero), which has no natural translation in our context. We
consider instead a topological notion of smallness (being meager), propose
a definable version of this notion and carry out a theory of definably com-
plete and Baire structures. In this context we prove an analogue to Fubini’s
Theorem (the Kuratowski-Ulam Theorem 4.1) and a very restricted form of
an analogue to Sard’s Lemma (Theorem 6.17). Notice that it is not known
whether every definably complete structure is definably Baire.

The main motivation for the study of definably complete and Baire struc-
tures is to generalize the o-minimality results present in [Wilkie99] and
[Kar–Mac99], to the situation where the base field is not necessarily R. In
[Wilkie99], the author proves that, given an expansionR of the real field with
a family of C∞ functions, if there are bounds (uniform in the parameters) on
the number of connected components of quantifier free definable sets, then
R is o-minimal. In particular, thanks to a well known finiteness result in
[Khov91], the structure generated by all real Pfaffian functions is o-minimal.
In [Kar–Mac99], the authors generalize Wilkie’s theorem (by weakening the
smoothness assumption) in a way which allows them to derive the following
result (originally due to Speissegger, see [Speiss99]): the Pfaffian closure of
an o-minimal expansion of the real field is o-minimal.

In a subsequent paper we use the results obtained in this paper to prove
that, given a definably complete and Baire expansion K of an ordered field
with a family of C∞ functions, if there are bounds (uniform in the param-
eters) on the number of connected components of quantifier free definable
sets, then K is o-minimal. By using our restricted version 6.17 of Sard’s
Lemma, we then proceed to prove the analogue to Khovanskii’s finiteness
result in the context of definably complete and Baire structures. We derive
the o-minimality of every definably complete and Baire expansion of an or-
dered field with any family of definable Pfaffian functions. Finally, we prove
that the relative Pfaffian closure of an o-minimal structure K0 into a defin-
ably complete and Baire expansion K of K0 is o-minimal. This latter result,
whose proof is shaped on the one present in [Kar–Mac99], can be compared
with the main result in [Fratarc06], where instead Speissegger’s method was
followed.

This work contributes to the study of ordered structures which satisfy
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properties implied by (but not equivalent to) o-minimality; hence it has a
natural collocation in the framework depicted in [DMS08].

1.1 Preliminaries and notation

Throughout this paper, K is a (first-order) structure expanding an ordered
field. We use the word “definable” as a shorthand for “definable in K with
parameters from K”.

For convenience, on Km instead of the usual Euclidean distance we will
use the equivalent distance

d : (x, y) 7→ max
i=1,...,m

|xi − yi|.

For every δ > 0 and x ∈ Km, we define

Bm(x; δ) := {y ∈ Km : d(x, y) < δ},

the open “ball” of center x and “radius” δ; we will drop the superscript m if
it is clear from the context.

Notation 1.1. Let X ⊆ Y ⊆ Kn, with Y definable. We write clY (X) (or
simply X if Y is clear from the context) for the topological closure of X in Y ,
intY (X) (or simply X̊) for the interior part of X in Y , and bdY (X) := X \ X̊
for the boundary of X (in Y ).

Notation 1.2. We define Πm+n
n : Km+n → Km as the projection onto the

first m coordinates. If A ⊂ Km+n and x ∈ Km, we denote by Ax the fibre of
A over x, i.e. the set {y ∈ Kn : (x, y) ∈ A}.

1.2 Definably complete structures

Definition 1.3. An expansion K of an ordered field is called definably
complete if every definable subset of K has a supremum in K ∪ {±∞}.

Generalities on definably complete structures can be found in [Servi07]
and [Miller01].

Definition 1.4. X ⊆ Km is definably compact (d-compact for short) if it
is definable, closed in Km and bounded.

We order Km lexicographically. We will denote by N a definable subset
of Km which is cofinal in the lexicographic ordering.

3



Def. complete and Baire, v. 4.1 1 Introduction

Lemma 1.5 (Miller). X is definably compact iff for every (Y (y))y∈N defin-
able decreasing family of closed non empty subsets of X, we have

⋂
y Y (y) 6=

∅.

Definition 1.6. Let f : N → Kn be definable. Define accy→∞ f(y) (and
write for simplicity acc f) to be the set of accumulation points of f ; that is,
x ∈ acc f iff

(∀r ∈ Km)(∀ε > 0)(∃y > r) y ∈ N & d(f(y), x) < ε.

Lemma 1.7. If X is definably compact, then for all definable N and for all
f : N → X definable we have acc f 6= ∅.

It is not clear if the converse of the above lemma is true.

Definition 1.8. Let (A(y))y∈N be a definable family of non-empty subsets
of Kn. Define accy→∞A(y) (and write for simplicity accA) to be the set of
accumulation points of A; that is, x ∈ accA iff (∀r ∈ Km) (∀ε > 0) (∃y > r)
y ∈ N and d(A(y), x) < ε.

Note that accA =
⋂
y

(⋃
z≥y A(z)

)
.

Remark 1.9. Let (A(t))0<t∈K be a definable family of subsets of Km, and
G :=

⋃
t>0A(t) × {t}. Then, acct→0A(t) =

(
clKm+1(G)

)
0

:= {x ∈ Km :

(x, 0) ∈ G}.

Lemma 1.10. X is definably compact iff for all A definable family of non-
empty subsets of X we have X ∩ accA 6= ∅.

Proof. First assume that X is d-compact. Let Y (y) :=
(⋃

z≥y A(y)
)
. Then

(X ∩ Y (y)) is a definable decreasing family of closed subsets of X. By
Lemma 1.5,

⋂
y Y (y) 6= ∅, and we are done.

Conversely, assume that X is not d-compact. By Lemma 1.5, there exists
a definable decreasing family Y := (Y (y))y∈Km of closed subsets of X such
that

⋂
y Y (y) = ∅. However, since Y is decreasing, X ∩ accY =

⋂
y Y (y),

and we are done.

Proof of Lemma 1.7. Define A(y) := {f(y)}. By Lemma 1.10, accA is non-
empty. Note that accA = acc f .

Lemma 1.11. Let C ⊂ Kn be a nonempty d-compact set, and let V :=
{V (t) : t ∈ I} be a definable open cover of C. Then, there exists δ0 ∈ K+

(a Lebesgue number for V and C) such that, for every subset X ⊆ C of
diameter smaller than δ0, there exists t ∈ I such that X ⊆ V (t).
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Proof. Suppose for a contradiction that

∀δ > 0 ∃y ∈ C ∀t ∈ I B(y; δ) * V (t).

For every δ > 0, define

Y (δ) := {y ∈ C : ∀t ∈ I B(y; δ) * V (t)}.

Note that
(
Y (δ)

)
δ>0

is a definable family of subsets of C, increasing as δ

decreases. Let y0 be an accumulation point for the family
(
Y (δ)

)
δ>0

, as
δ → 0 (which exists by Lemma 1.10).

Let t0 ∈ I and δ0 > 0 such that B(y0; 2δ0) ⊆ V (t0). Let y ∈ Y (δ0) such
that |y − y0| < δ0. Therefore, B(y; δ0) ⊆ B(y0; 2δ0) ⊆ V (t0), contradicting
the fact that y ∈ Y (δ0).

We will often use without further comment the following result:

Lemma 1.12 (Miller). Let f : Kn → Km be a definable continuous function
and let C ⊂ Kn be d-compact. Then f(C) is d-compact.

Definition 1.13. A n-dimensional definable embedded C∞ K-manifold V ⊆
Kd (which we will simply call n-dimensional K-manifold) is a definable subset
V of Kd, such that for every x ∈ V there exists a definable neighbourhood
U(x) of x (in Kd), and a definable C∞ diffeomorphism fx : U(x) ' Kd, such
that U(x) ∩ V = f−1

x

(
Kn × {0}

)
.

Remark 1.14. Note that a K-manifold V can always be written as the
intersection of a definable closed set and a definable open set. In fact, let δ :
V → K+ be a definable map, such that, for every x ∈ V , B

(
x, δ(x)

)
⊆ U(x).

Let U :=
⋃
x∈V B

(
x, δ(x)

)
; then, V = V ∩ U .

Note moreover that the dimension n of a K-manifold V is uniquely de-
termined by V , because Kn and Kn′ are locally diffeomorphic iff n = n′.

2 Meager sets

Let X ⊆ Y ⊆ Kn, with Y definable.

Definition 2.1. X is nowhere dense (in Y ) if intY (clY (X)) = ∅. X is de-
finably meager (in Y ) if there exists a definable increasing family (A(t))t∈K
of nowhere dense subsets of Y , such that X ⊆

⋃
tA(t). We will call such

a family
(
clY (A(t))

)
t∈K a witness of the fact that X is definably meager.

X is definably residual (in Y ) if Y \X is definably meager. If Y is clear
from the context, we will simply say that X is nowhere dense (resp. definably
meager, definably residual).
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Notice that, if (A(t))t∈K is a witness of the fact that X is meager in Kn,
then also the family (

A(t) ∩ [−|t|, |t|]n
)
t∈K

is a witness, hence we may always assume that each A(t) is d-compact.
Notice also that we do not require that a meager set is definable.
The subsets of Y , with the operations ∆ (symmetric difference) and ∩,

form a commutative ring; the definably meager subsets of Y form an ideal of
this ring.

Definition 2.2. Y is definably Baire if every non-empty open definable
subset of Y is not meager (in Y ).

Note that if K has countable cofinality, then X is definably meager (Baire,
respectively) in Kn if X is meager (Baire, respectively) in the usual topo-
logical sense. In general, the converse is not true: for instance, if K is a
countable o-minimal structure, then it is definably Baire, but not Baire in
the topological sense. If K is the expansion of the real field with a predicate
for every subset of Rn (n ∈ N), then the two notions coincide. From now on,
we will write “meager” for “definably meager”, and “topologically meager”
for the usual topological notion, and similarly for “residual” and “Baire”.

Proposition 2.3. Let Y be definable, and ∅ 6= U ⊆ Y be definable and open.
Then, U is meager in Y iff it is meager in itself.

Proof. Suppose U is meager in Y and let
(
Y (t)

)
t∈K be a witness of this fact.

For every t ∈ K, define X(t) := Y (t) ∩ U . Since U is open, intU(X(t)) =
intY (Y (t)) ∩ U = ∅. Hence,

(
X(t)

)
t∈K is a witness of the fact that U is

meager in itself.
Viceversa, let

(
X(t)

)
t∈K be a witness of the fact that U is meager in itself,

and Y (t) := clY (X(t)). We claim that intY (Y (t)) = ∅. In fact, intY (Y (t)) =
intY ((clY (X(t)) ∩ U)) = intU(Y (t)) = intU(X(t)) = ∅. Hence,

(
Y (t)

)
t∈K is a

witness of the fact that U is meager in Y .

Corollary 2.4. Let Y be definable, and ∅ 6= U ⊆ Y be definable and open.
Then,

1. If U is of not meager in itself, then Y is also not meager in itself.

2. If Y is Baire, then U is also Baire.

Proof. For 1, note that every subset of a meager set is meager, and in par-
ticular U is meager.

Regarding 2, if Y is Baire, let V ⊆ U be non-empty, definable and open
in U . Since U is open in Y , V is also open in V . Hence, by 2.3, V is not

6



Def. complete and Baire, v. 4.1 2 Meager sets

meager in itself, and, again by 2.3, V is not meager in U . Therefore, U is
Baire.

Lemma 2.5. Let Y ⊆ Km be definable. The following are equivalent:

1. Y is Baire;

2. for all X ⊆ Y , if X is meager, then X̊ = ∅;

3. every x ∈ Y has a definable neighbourhood which is Baire;

4. every residual subset of Y is dense;

5. every open definable non-empty subset of Y is not meager in itself;

6. every meager closed definable subset of Y has empty interior.

Proof.

(2⇒ 1) is obvious.

(1⇒ 3) is obvious, because Y itself is a Baire neighbourhood of each point.

(3⇒ 4) Let X ⊆ Y be meager. Suppose, for a contradiction, that U is a non-
empty definable subset of X open in Y , and let x ∈ U . Let V be a
definable Baire neighbourhood of x, and W := V ∩ U . By Proposi-
tion 2.3, W is Baire, and therefore it is not meager in Y (by the same
lemma), which is not possible.

(4⇒ 2) Let X ⊆ Y be meager. Hence, Y \X is dense, and therefore X̊ = ∅.

(1⇔ 5) Use Proposition 2.3.

(1⇒ 6) Let C ⊆ Y be definable, closed and meager. If C̊ 6= ∅, then C̊ is not
meager, and thus C is not meager.

(6⇒ 1) Let U ⊆ Y be open, definable and meager in Y . Then, U is also
meager, because U = U tbdU , and bdU is nowhere dense. Therefore,
U has empty interior, and therefore U is empty.

Remark 2.6. Kn is Baire iff it is not meager in itself.

Proof. One implication is obvious.
For the other implication, assume that Kn is not meager in itself, and let

U ⊆ Kn be an open definable subset. If, for a contradiction, U were meager in
itself, then we could find an open non empty box B ⊆ U . By Proposition 2.3,
B is also meager in itself. However, B is definably homeomorphic to Kn,
because K expands a field, contradicting the hypothesis.
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The following result is not trivial and will be proved in Section 4.

Proposition 2.7. If K is Baire, then for every m ≥ 1, Km is Baire.

3 Fσ-sets

We now consider a class of sets for which it is easy to determine whether
they are meager or not.

Definition 3.1. Let X ⊆ Y ⊆ Kn, with Y definable. X is in Fσ (in Y ) if X
is the union of a definable increasing family of closed subsets of Y , indexed
by K. X is in Gδ if its complement is an Fσ.

Lemma 3.2. Let A be either the family of Fσ or the family of Gδ subsets of
some Kn, for n ∈ N. Then, each A ∈ A is definable. Moreover, A is closed
under finite unions, finite intersections, Cartesian products, and preimages
under definable continuous functions. Besides, the following are in A

1. definable closed subsets of Kn;

2. definable open subsets of Kn;

3. finite boolean combinations of definable open subsets of Kn.

The family of Fσ subsets is also closed under images under definable contin-
uous functions.

Proof. Let A and B be in Fσ. The fact that A ∪ B and A × B are also in
Fσ is obvious.

Let A =
⋃
tA(t) and B =

⋃
tB(t), where (A(t))t∈K and (B(t))t∈K are

two definable increasing families of closed (and, we may assume, d-compact)
sets.

Then, A ∩ B =
⋃
t(A(t) ∩ B(t)), because (A(t))t∈K and (B(t))t∈K are

increasing families. Hence, A ∩B is also in Fσ.
If f : Kn → Kn′ is continuous, then f(A) =

⋃
t f(A(t)). For every t ∈ K,

f(A(t)) is d-compact, because A(t) is d-compact, and therefore f(A) is in Fσ.
A similar proof works for preimages.

Let U ⊆ Kn be open and definable, and C := K \ U . For every r ∈ K+,
define U(r) := {x ∈ Kn : d(x,C) ≥ r}. Note that each U(r) is closed. Since
U is open, U =

⋃
r>0 U(r), and therefore U is in Fσ.

If D is a finite boolean combination of open definable subsets of Kn, then
it is a finite union of sets of the form Ci ∩ Ui, for some definable sets Ci and
Ui, such that each Ci is closed and each Ui is open. Hence, D is in Fσ.

The corresponding results for Gδ follow immediately by considering the
complements.
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If Y ⊆ Kn is definable, X ⊆ Y is an Fσ-subset of Y , and f : Y → Y
is definable and continuous, it might not be true that f(X) is an Fσ. The
point where the above proof breaks down for Y 6= Kn is the fact that it is
not necessarily true that every Fσ set X is an increasing definable union of
d-compact sets.

Notice that, by Remark 1.14, every K-manifold is an Fσ-set.

Remark 3.3. If X ⊆ Kn is meager, then there exists a meager Fσ-set
containing X.

Lemma 3.4. Let Y be definable and Baire, and D ⊆ Y . Assume that D is
in Fσ. Then, D is meager iff D̊ = ∅.1

Proof. If D̊ 6= ∅, then, since Y is Baire, D cannot be meager. Conversely,
assume that D is not meager. If D is in Fσ, then D =

⋃
tD(t), for some

definable increasing family of closed subsets. Since D is not meager, at least
one of the D(t), say D(t0), is not meager. Hence, ˚D(t0) 6= ∅ (otherwise,
D(t0) would be nowhere dense), and therefore D̊ 6= ∅.

Note that if X ⊆ Rn is in Fσ and of measure zero, then X is meager, but
the converse is not true.

Remark 3.5. Let X ⊆ Kn. X is an Fσ iff X is of the form Πn+m
n (Z) for

some Z ⊆ Kn+m closed and definable.

Proof. The “if” direction follows from Lemma 3.2. For the other direction,
let
(
X(t)

)
t∈K be a definable increasing family of closed subsets of Kn, such

that X =
⋃
t∈KX(t). Define Z :=

⊔
t∈K
(
X(t)× {t}

)
.

Notice that, if K is o-minimal, then every X definable subset of K is
a finite Boolean combination of definable closed sets (because X is a finite
union of cells), and therefore X is an Fσ.

We now give a local condition which is sufficient to prove that the image
of an Fσ-set under a continuous definable function is meager.

Proposition 3.6. Let C ⊆ Km ×Kn be in Fσ, f : C → Kd be definable and
continuous. Assume that for every y ∈ Πm+n

m (C) there exists a neighbourhood
Vy ⊆ Km of y, such that f

(
(Vy×Kn)∩C

)
is meager. Then, f(C) is meager.

1This is not true for Gδ sets: for instance, the set of irrational numbers in R is a Gδ

which is not meager (it is even residual), but has empty interior.
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Proof. If K is meager in itself, then by Proposition 2.7 there is nothing to
prove. Hence, we may assume that K is Baire.

We proceed by induction on m. The case m = 0 is clear, because if
m = 0, then V0 = K0.

Assume that we have already proved the conclusion for m − 1 (and ev-
ery n). We want to prove it for m. First, we consider the case when C is
d-compact. W.l.o.g., 0 ∈ C. For every r > 0 and y ∈ Km, let Tm(y; r) ⊂ Km

be the closed hypercube of side 2r and center y, and Sm(y; r) be its boundary.
Moreover, define D(r) := f

(
C ∩ (Tm(0; r)×Kn)

)
.

Note that f(C) =
⋃
rD(r), and that each D(r) is d-compact. Therefore,

to prove that f(C) is meager, it suffices to prove that each D(r) has empty
interior. Suppose, for a contradiction, that f(C) is not meager, and let

r0 := inf{r > 0 : int(D(r)) 6= ∅}.

Since the D(r) are closed, r0 = inf{r > 0 : D(r) is not meager}. We have
that 0 < r0 by hypothesis, and r0 < +∞ because f(C) is not meager.

Let P := Πn+m
m (C). Since P is d-compact, if K = R, we could find

y1, . . . , yk ∈ P such that P ⊆ Vy1 ∪ · · · ∪ Vyk . In the general situation, we
need another argument. Let 5δ0 be a Lebesgue number for the open cover
{Vy : y ∈ P} of P (we may assume that δ0 is small in comparison with r0);
δ0 > 0 exists by Lemma 1.11.

Note that

Tm(0; r0 + δ0/2) ⊆ Tm(0; r0 − δ0/2) ∪
⋃

y∈Sm(0;r0)

Tm(y; δ0),

hence

D(r0 + δ0/2) ⊆ D(r0 − δ0/2) ∪
⋃

y∈Sm(0;r0)

f
(
C ∩ (Tm(y; δ0)×Kn)

)
.

By definition of r0, we know that D(r0 + δ0/2) is not meager, while D(r0 −
δ0/2) is meager. Hence, to obtain a contradiction, it suffices to show that⋃
y∈Sm(0;r0) f

(
C ∩ (Tm(y; δ0) ∩Kn)

)
is meager.

Note that Sm(0; r0) is the finite union of the faces of the closed hypercube
Tm(0; r0): hence, we only need to show that for each face S of Sm(0; r0) the
set D :=

⋃
y∈S f

(
C ∩ (Tm(y; δ0) × Kn)

)
is meager. W.l.o.g., we can assume

that S is the “top” face {y ∈ Tm(0; r0) : ym = r0} and we may identify S
with Tm−1(0; r0)× {r0}.

Define
C ′ := C ∩

⋃
y∈S

(
Tm(y; δ0)×Kn

)
,

f ′ := f � C ′.
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Claim. C ′ and f ′ satisfy the hypothesis of the proposition, with n′ = n+ 1,
m′ = m− 1, and V ′z = B(z; δ0).

C ′ is d-compact, and therefore it is in Fσ. Let P ′ ⊆ Km−1 be the projec-
tion of C ′ onto Km−1; note that P ′ is d-compact. Fix z ∈ P ′; by definition,
there exists t ∈ [r0 − δ0, r0 + δ0] such that y := (z, t) ∈ P . Notice that

C ′∩(V ′z×K×Kn) ⊆ C∩(V ′z× [r0−δ0, r0 +δ0]×Kn) ⊆ C∩(Tm(y; 2δ0)×Kn).

Since 5δ0 is a Lebesgue number for the cover {Vy : y ∈ P} of P , it follows
that there exists y′ ∈ P such that Tm(y; 2δ0) ⊂ Vy′ . Putting everything
together, we have that C ′ ∩ (V ′z ×Kn+1) ⊂ C ∩ (Vy′ ×Kn) and thus f ′

(
C ′ ∩

(V ′z ×Kn+1)
)

is meager, which proves the claim.
Therefore, by inductive hypothesis, f ′(C ′) is meager. However, D ⊆

f ′(C ′), and we reached a contradiction.
We now treat the general case when C is in Fσ. Note that C is an

increasing union of d-compact sets C(t). For each t ∈ K, define D(t) :=
f(C(t)): note that each D(t) is d-compact. By the d-compact case, we
can conclude that each D(t) is meager, and therefore nowhere dense. Thus,
D =

⋃
tD(t) is meager.

Corollary 3.7. Let C ⊆ Km be in Fσ, and f : C → Kd be definable and
continuous. Assume that for every x ∈ C there exists Vx ⊆ C neighbourhood
of x, such that f

(
C ∩ Vx

)
is meager. Then, f(C) is meager.

Proof. Apply the proposition to the case n = 0.

Corollary 3.8. Let W ⊆ Km be a definable K-manifold, C ⊆ W be an Fσ-
set (in W ), and f : C → Kd be definable and continuous. Assume that for
every x ∈ C there exists Vx ⊆ C neighbourhood of x (in C), such that f

(
Vx
)

is meager. Then, f(C) is meager.

Proof. Since W is a K-manifold, it is in Fσ. Since C is an Fσ-set in W , it is
also an Fσ-set in Km. Apply the previous corollary.

Corollary 3.9. Let C ⊆ Km be an Fσ. If every x ∈ C has a neighbourhood
Vx such that C ∩ Vx is meager, then C is meager.

Let R̃ be the structure on the reals numbers, with a predicate for every
subset of Rn. Proposition 3.6 and the following corollaries are trivial for
K = R̃, because an Fσ-subset C of R̃n has a countable basis of open sets; for
instance, the hypothesis in Proposition 3.6 on f and C imply that f(C) is a
countable union of meager sets, and hence meager.

11
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4 The Kuratowski-Ulam Theorem

The main result of this section is the following theorem.

Theorem 4.1. Let D ⊆ Km+n. For every x ∈ Km, let Dx := {y ∈ Kn :
(x, y) ∈ D} be the corresponding section of D. Let T := Tm(D) := {x ∈
Km : Dx is meager in Kn}.

If D is meager (in Km+n), then T is residual.

This is a definable version of Kuratowski-Ulam’s Theorem [Oxtoby80,
Thm. 15.1], which in turn is an analogue of Fubini’s Theorem: they both
imply that if D is negligible, then Dy is negligible for almost every y; in
Kuratowski-Ulam’s Theorem negligible means “meager”, while in Fubini’s
Theorem negligible means “of measure zero”.

It is not clear whether in the above theorem D definable implies that T
is definable. Note that if K is o-minimal and D is definable, then T is also
definable.

As a corollary, we obtain Proposition 2.7.

Proof of Proposition 2.7. By induction on m. The case m = 1 is our as-
sumption on K. Assume that we already proved that Km is Baire: we want
to prove that Km+1 is Baire. Suppose not; then Km+1 is meager in itself. If
we apply Theorem 4.1 with n = 1, we obtain that either Km or K is meager
in itself, a contradiction.

Definition 4.2. A definable function f : Y → K is lower semi-continuous
if, for every x ∈ Y , either x is an isolated point of Y , or

lim inf
x′→x
x′∈Y

f(x′) ≥ f(x).

Remark 4.3. Let C ⊆ Kn+1 be d-compact. For every x ∈ D := Πn+1
n (C),

let f(x) := minDx. Then, f : D → K is lower semi-continuous.

Lemma 4.4. Let Y ⊆ Kn be definable, f : Y → K be lower semi-continuous
and definable, and ∆ ⊆ Y be the set of points of discontinuity of f . Then,
∆ is meager (in Y ).

Proof. By a change of variable in the co-domain, w.l.o.g. we can assume that
f is bounded. For every ε > 0, let

∆(ε) := {x ∈ Y : x is not isolated in Y & lim sup
x′→x

f(x′) ≥ f(x) + ε}.

12
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Since f is lower semi-continuous, we have that ∆ =
⋃
ε>0 ∆(ε). Hence, to

prove the lemma it suffices to show that each ∆(ε) is nowhere dense. Fix
ε > 0.
Claim 1. ∆(ε) is closed.

In fact, let x0 ∈ ∆(ε). We have to prove that x0 ∈ ∆(ε). Assume not. It
is clear that x0 is not an isolated point of Y . Let

s := lim sup
x→x0

f(x),

i := lim inf
x→x0

f(x).

Note that s and i are in K, because K is definably complete. Since x0 /∈ ∆(ε),
we have that s− ε < f(x0). Hence, since f is lower semi-continuous,

f(x0) ≤ i ≤ s < f(x0) + ε ≤ i+ ε;

let ρ := i+ ε− s > 0.
Therefore, if x and x′ are sufficiently near x0, then f(x) < s+ρ/2 (because

s is the lim sup), and f(x) > s− ε+ ρ/2 (because i = s− ε+ ρ and i is the
lim inf), and similarly for x′. Thus,

|f(x)− f(x′)| < (s+ ρ/2)− (s− ε+ ρ/2) = ε. (1)

On the other hand, since x0 ∈ ∆(ε), we have that there exist x ∈ ∆(ε) near
x0. By definition of ∆(ε), there exists x′ near x (and therefore near x0) such
that f(x′) ≥ f(x) + ε, contradicting (1).
Claim 2. int(∆(ε)) = ∅.

Assume, for a contradiction that ∆(ε) contains a nonempty open subset
U of Y . Let m := supx∈U f(x). Note that m ∈ K, because f is bounded.

Let x ∈ U be such that f(x) > m − ε/4. Since x ∈ ∆(ε), there exists
x′ ∈ Y near x (and therefore in U) such that f(x′) > f(x) + ε/2. Hence,
f(x′) > m+ ε/4 > m, contradicting the definition of m.

The two claims imply that ∆(ε) is nowhere dense, and we are done.

In the above lemma, if Y = K = R, we can not conclude that ∆ has
measure zero. In fact, let C ⊆ R be closed, with empty interior, and of
positive measure, and f be the characteristic function of R\C. Then, ∆ = C,
and therefore it is of positive measure.

On the other hand, it is always true that if f : Km → K is definable, then
∆ is in Fσ. In fact, for every ε > 0 define

Λ(ε) := {x ∈ Km : ∀δ > 0 ∃y ∈ B(x; δ) |f(y)− f(x)| ≥ ε}.

13
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Note that ∆ =
⋃
ε>0 Λ(ε). While Λ(ε) might not be closed, we have that

Λ(ε) ⊆ Λ(ε/2). Therefore, ∆ =
⋃
ε>0 Λ(ε).

Proof of Theorem 4.1. If Km is meager in itself, then the conclusion is triv-
ially true, because then every subset of Km is meager. Hence, we can assume
that Km is Baire.

Case 1: n = 1 and D is d-compact.
Hence, D has empty interior, and each Dx is also d-compact. Therefore, by
Lemma 3.4, T = {x ∈ Km : D̊x = ∅}. Let E := Km \ T . We have to prove
that E is meager.

For every ε > 0 let

X(ε) := {(x, y) ∈ Km ×K : B1(y; ε) ⊆ Dx}.

Let

E(ε) := π(X(ε)) = {x ∈ Km : Dx contains a ball of radius ε}.

Note that X(ε) is d-compact, since its complement is the projection of an
open set, therefore so is E(ε). Note that E =

⋃
ε>0E(ε); hence, to prove

that E is meager, it suffices to prove that each E(ε) is nowhere dense. Since
each E(ε) is d-compact, it suffices to prove the following claim.
Claim 1. For every ε > 0, int(E(ε)) = ∅.

Assume, for a contradiction, that there exists a nonempty open box U ⊆
E(ε). Define

f : U → K
x 7→ min{y ∈ K : (x, y) ∈ X(ε)}.

Note that f is lower semi-continuous and definable. By Lemma 4.4, f is
continuous outside a meager set ∆ ⊆ U . Since Km is Baire, ∆ 6= U , and
therefore there exists x0 ∈ U such that f is continuous at x0. It is now easy
to show that a neighbourhood of (x0, f(x0)) is contained in D, contradicting
the fact that D̊ = ∅.

Case 2: n = 1 and D arbitrary meager subset of Km.
Let

(
D(p)

)
p∈K be an increasing definable family of d-compact subsets of

Km+1 with empty interior, such that D ⊆
⋃
pD(p). For each p ∈ K, let

E(p) := {x ∈ Km : D(p)x is not meager in K}. By what we have seen above,
E(p) =

⋃
ε>0E(p, ε), where (E(p, ε))ε∈K+

p∈K
is a definable family of subsets

of K, increasing in p and decreasing in ε, such that each E(p, ε) is closed and
nowhere dense. Let

E ′ :=
⋃
ε,p

E(p, ε) =
⋃
p

E(p).

14
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Claim 2. Km \ T ⊆ E ′.
In fact, let x /∈ T . Thus, Dx is not meager. However, Dx ⊆

⋃
pD(p)x.

Since
(
D(p)x

)
p∈K is an increasing definable family of closed subsets of K, we

obtain that there exists p0 such that D(p0)x has non-empty interior. Thus,
x ∈ E(p0) ⊆ E ′.

Therefore, it suffices to prove that E ′ is meager to obtain that T is resid-
ual. However, E ′ =

⋃
p>0E(p, 1/p), and we are done.

Case 3: n > 1 and D arbitrary meager subset of Km. We argue by
induction on n.
Suppose that we have already proved the conclusion for n (and for every m).
We want to prove the conclusion for n + 1. First, we will assume that
D is in Fσ. We want to prove that the set T := Tm(D) := {x ∈ Km :
Dx is meager} is residual. Define

S := Km+1 \ Tm+1(D) := {(x, yn+1) ∈ Km ×K : D(x,yn+1) is not meager},
R := Tm(S) = {x ∈ Km : Sx is meager}.

By Lemma 3.4, D(x,yn+1) is meager iff its interior is empty, and therefore
S = {(x, yn+1) ∈ Km × K : int(D(x,yn+1)) 6= ∅} (and in particular S is
definable).
Claim 3. S is meager.

By inductive hypothesis.
Claim 4. R is residual.

By the case n = 1 and the previous claim.
Claim 5. R ⊆ T .

Fix x ∈ Km. Assume that x /∈ T . We have to prove that x /∈ R. Define
F := Dx ⊆ Kn+1. Note that F is in Fσ: therefore, since x /∈ T , F̊ 6= ∅. Let
U := U1 × U2 be a non-empty open box contained in F , U1 ⊆ K, U2 ⊆ Km.
For every yn+1 ∈ U1, D(x,yn+1) = Fyn+1 ⊇ U2, and therefore (x, yn+1) ∈ S.
Thus, U1 ⊆ Sx, and x /∈ R.

Hence, T contains a residual set, and therefore it is residual.
For D arbitrary, let D′ ⊆ Km+n be a meager Fσ containing D. By the

previous case, the corresponding set T ′ := Tm(D′) is residual. Since T ′ ⊆ T ,
we are done.

5 Almost open sets

In this section we will assume that K is definably complete and Baire.
Let Y ⊆ Km be definable. We have seen that the family of meager subsets

of Y is an ideal, hence it defines an equivalence relation on the family of
subsets of Y , given by X ∼ X ′ iff X ∆X ′ is meager.

15
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Remark 5.1. X ∼ X ′ iff there exists Z meager such that X ∆Z = X ′

Proof. Set Z := X ∆X ′.

Definition 5.2. X ⊆ Y is almost open, or a.o. for short, if X is equivalent
to a definable open set.2

Lemma 5.3. Let Y ⊆ Km be definable, and A and B be a.o. subsets of Y .
Then, A ∩ B, A ∪ B and Y \ A are also a.o.. Moreover, Fσ and Gδ subsets
of Y are a.o..

Finally, if Y1 and Y2 are definable, and Ai ⊆ Yi are a.o. for i = 1, 2, then
A1 × A2 is a.o. in Y1 × Y2.

Proof. It is trivial to see that A ∩B, A ∪B and A1 × A2 are a.o..
Let A = U ∆E, where U is open and definable, and E is meager. Then,

Y \ A = (Y \ U) ∆E. Hence, to prove that Y \ A is a.o. it suffices to prove
that C := Y \ U is a.o.. However, C = C̊ ∪ bd(C). Since C is closed, bd(C)
is nowhere dense, and a fortiori meager, and we are done.

Let (D(t))t∈K be a definable increasing sequence of closed subsets of Y .
We have to prove that D :=

⋃
tD(t) is a.o.. Let U := D̊ and E := D \ U .

It is enough to prove that E is meager. For every t, let E(t) := E ∩ D(t).

Note that D̊(t) ⊆ U ; therefore, E(t) ⊆ bd(D(t)) is nowhere dense, and we
are done.

Consequently, X ⊆ Y is a.o. iff it is equivalent to a definable closed subset
of Y .

Remark 5.4. Every meager set is a.o., being equivalent to the empty set.
By Lemma 5.3, every residual set is a.o..

Corollary 5.5. Let A ⊆ Y . The following are equivalent:

1. A is a.o.;

2. A is of the form E∆F , for some meager set E and some set F in Fσ;

3. A is of the form G t E, for some G in Gδ and E meager.

Proof. Cf.[Oxtoby80, Thm. 4.4]. (1 ⇔ 2) and (3 ⇒ 1) are obvious. For
(1⇒ 3), let A = U ∆E for some U open and E meager. Let Q be a meager
set in Fσ containing E, and G := U \Q. Note that G is in Gδ, and

U ∆E = [(U \Q) ∆(U ∩Q)] ∆(E ∩Q) = G∆[(U ∆E) ∩Q] = G t E ′,

where E ′ := (U ∆E) ∩Q is meager.

2Almost open sets are called sets with the “property of Baire” in [Oxtoby80].
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The following is a partial converse of Theorem 4.1. Here it is important
that K be Baire.

Lemma 5.6. Let D be an a.o. subset of Km+n, and T (D) := {x ∈ Km :
Dx is meager}. Then, D is meager iff T (D) is residual.

Proof. The “only if” direction is Theorem 4.1. For the other direction, let U
be an open set such that E := D∆U is meager. By Theorem 4.1, T (E) is
residual. Moreover, since Ux = Dx ∆Ex, we have T (U) ⊇ T (D) ∩ T (E),
and therefore T (U) is also residual. However, U is open and Kn is Baire:
therefore, T (U) is the complement of the projection of U on Km. Since U
is open, T (U) is closed. Therefore, T (U) is closed and residual; since Km is
Baire, T (U) = Km. Thus, U is empty, and we are done.

The hypothesis that D is a.o. in the above lemma is necessary: [Oxtoby80,
Thm. 15.5] gives an example of a set E ⊆ R2 that is not meager, such that
no three points of E are collinear.

Note that, if D ⊆ Km+n is in Fσ, then D is meager iff Km \ Tm(D) has
non-empty interior.

6 Further results and open problems

Remark 6.1. It follows from Remark 2.6 that the fact that K is Baire can
be expressed by a recursive set of first-order sentences: that is, every K′
elementary equivalent to K also satisfies the hypothesis.

Notice that an ultra-product of definably complete (resp. Baire) struc-
tures is also definably complete (resp. Baire); the same cannot be said for
“o-minimal” instead of “definably complete”.

Examples 6.2. • Every expansion of R is definably Baire (because R is
topologically Baire).

• Every o-minimal expansion of a field is definably Baire (the union of
a definable increasing family of nowhere dense sets is finite, and hence
can not coincide with the whole structure).

• Let B be an o-minimal expansion of a field, let A 4 B be a dense
substructure. Then the structure BA, generated by adding a unary
predicate symbol for A, is definably Baire. This follows from the fact
that if X ⊆ B is BA-definable, then its topological closure X is B-
definable (see [vdDries98, Theorem 4]). Hence, as above, the union of
a definable increasing family of closed nowhere dense sets is finite.
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Notice that the structures considered in all of the above examples are also
definably complete.

Open problem 6.3. It is not known to the authors if there exists a definably
complete structure which is not Baire.

Assume that K is definably complete and Baire.

Open problem 6.4. Let
(
Y (t)

)
t∈K be a definable increasing family of meager

subsets of Km, and let Y :=
⋃
t Yt. Is Y necessarily meager? In particular,

is it necessarily Y 6= Km?

Notice that, if the Y (t) are closed, then Y is meager, whereas the same
conclusion does not necessarily hold if the Y (t) are in Fσ (actually, since
every meager set is contained in a meager Fσ-set, it is enough to reduce to
this situation).

Moreover, the above question has positive answer if K is o-minimal, be-
cause then each Yt has (o-minimal) dimension less than m, and therefore
Y has dimension less than m. In fact, if K is o-minimal, and Y ⊆ Km

is definable, then Y is meager iff dimY < m; moreover, if
(
Y (t)

)
0<t∈K is

a definable family, decreasing in t, then
⋃
t Y (t) ⊆ acct→0 Y (t). Thus, the

following lemma proves what we want.

Lemma 6.5. Let K be an o-minimal structure, n ≤ m ∈ N, and
(
Y (t)

)
t>0

be a definable family of subsets of Km, and Z := acct→0 Y (t). If, for every
t > 0, dim

(
Y (t)

)
≤ n, then dim(Z) ≤ n.

Proof. Define W :=
⋃
t>0 Y (t)× {t} ⊆ Km+1. Note that Z = (W )0 := {x ∈

Km : (x, 0) ∈ W}. Moreover, since dimY (t) ≤ n, we have dimW ≤ n + 1.
Since Z × {0} ⊆ ∂W := W \W , we have dimZ < dimW ≤ n+ 1.

The following is a partial result for the case of a.o. sets.

Lemma 6.6. Let Y ⊆ Kn be definable and Baire, D ⊆ Y be a.o. (in Y ), and
(Y (t))t∈K be a definable increasing family of closed subsets of Y , such that
Y =

⋃
t Y (t). Then, D is meager in Y iff each D ∩ Y (t) is meager (in Y ).

Proof. The “only if” direction is clear.
For the other direction, let C ⊆ Y be closed, such that E := C ∆D is

meager. It suffices to prove that C is meager. For every t ∈ K, define

C(t) := C ∩ Y (t),

D(t) := D ∩ Y (t).

Then, D(t) ∆C(t) ⊆ E. Therefore, since D(t) and E are meager, C(t) is
meager and closed. Since Y is Baire, C(t) is nowhere dense, and thus C is
meager.

18



Def. complete and Baire, v. 4.1 6 Further results and open problems

Let C ⊆ Kn be meager, and f : Kn → Kn be definable and C1. We want
to investigate in which circumstances f(C) is meager. When K = R, Sard’s
Lemma implies that f(C) is meager. This suggests the following definition.

Definition 6.7. Fix d, r,m ∈ N. Let V ⊆ Kd be a K-manifold of dimen-
sion n. Let f : V → Km be a definable Cr function and ∆f be the set of
singular points of f . If Σf := f(∆f ) is meager in Km, then we say that f
has the Sard property.

Open problem 6.8. Does every Cr definable function f : V → Km as above
(with r > max{0, n−m}) have the Sard property?

Remark 6.9. If K is o-minimal, then every C1 definable function f : V →
Km has the Sard property [Ber–Ot01, Thm. 3.5].

Lemma 6.10. If K = R and f : V → Km is as in the above definition, with
r > max{0, n−m}, then f has the Sard property.

Proof. By Sard’s Lemma, Σf has Lebesgue measure zero, and therefore it
has empty interior. Since Σf is in Fσ, it is also meager.

Proposition 6.11. Suppose f : Kn → Km has the Sard property, and let
C ⊂ Kn be meager. Then f(C) is meager.

Proof. We may assume that C ∈ Fσ, since C is contained in a meager Fσ-set.
Let Λ := Kn \∆f be the set of regular points of f . Note that Λ is open.

By the Sard property, f(C ∩ ∆f ) is meager. Hence, it suffices to show
that f(C ∩ Λ) is meager. Let x ∈ C ∩ Λ. Since x is a regular point for f ,
by the Implicit Function Theorem there exists a neighbourhood V of x such
that f is a diffeomorphism on V ; therefore, f(C ∩ V ) is meager, and, by
Corollary 3.7, f(C ∩ Λ) is meager.

The following lemma is an analogue of the Co-area Formula.

Lemma 6.12. Let f : Kn → K be a C∞ definable function with the Sard
property. Let Λ be the set of the regular points of f , and C ⊆ Kn be in Fσ.
For every t ∈ K, let Ft := f−1(t), Ct := Ft ∩ C, and T := {t ∈ K :
Ct is meager in Ft}. Then, T is residual iff C ∩ Λ is meager.

Proof. If n = 0 we have a tautology. Assume that n ≥ 1.
Let x ∈ C ∩ Λ. Since x is a regular point for f , there exists V open

neighbourhood of x such that, up to a change of coordinates, f is the projec-
tion on the last coordinate xn. For every xn ∈ T , the set Cxn ∩ V is meager
in Kn−1 × {xn}.
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Hence, if T is residual, then, by Kuratowski-Ulam’s Theorem 4.1, C ∩ V
is meager; therefore, by Corollary 3.7, C ∩ Λ is meager.

Conversely, assume that C∩Λ is meager; we must prove that T is residual.
Since f(∆f ) is meager, it suffices to prove that T (C∩Λ) is residual. Therefore,
w.l.o.g. we can assume that C ⊆ Λ. Again by Kuratowski-Ulam’s Theorem,
the set T (V ∩ C) := {xn ∈ K : Cxn ∩ V is meager in Kn−1} is residual.
Therefore, T is residual.

In the following subsection we produce examples of classes of functions
in definably complete and Baire structures, which have the Sard property.

6.1 The Sard property and Noetherian Differential Rings

Notation 6.13. Fix n ∈ N \ {0} and a definably connected definable open
set U ⊆ Kn. Let C∞(U,K) be the ring of definable C∞ functions from U to
K.

Definition 6.14. A ring M with the following properties

• M ⊆ C∞(U,K);

• M is noetherian;

• M is closed under partial differentiation;

• M ⊇ Z[x1, . . . , xn].

is called a Noetherian differential ring.
If G := (g1, . . . , gk) ∈Mk, we denote by V (G) the set of zeroes of G, and

by V reg(G) the set of regular zeroes of G.

Generalities on Noetherian differential rings of functions over definably
complete structures can be found in [Servi07]. In particular, we will need the
following result, which states that in a Noetherian differential ring there are
no flat functions.

Proposition 6.15. Let M ⊆ C∞(U,K) be a Noetherian differential ring and
let 0 6≡ g ∈ M . Then for every x ∈ U such that g(x) = 0, there exist k ∈ N
and a derivative θ of order k such that θg(x) 6= 0.

Fix a Noetherian differential ring M ⊆ C∞(U,K).
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Remark 6.16. For g1, . . . , gk ∈M , the set V := V reg(g1, . . . , gk) is in Fσ; in
fact consider the following closed definable subset of U ×K:

C :=
⋃
E(x)

{(x, y) ∈ U ×K :
k∧
i=1

gi(x) = 0 ∧ det(E(x))y − 1 = 0},

where E(x) ranges over all maximal rank minors of the Jacobian matrix of
(g1, . . . , gk) in x. Now, V = Πn+1

n (C); since C is an Fσ of Kn+1 and Πn+1
n is

continuous, V is also an Fσ.

In this subsection we prove the following version of Sard’s Lemma:

Theorem 6.17. Fix k,m ∈ N, k ≤ n. Let

• H = (h1, . . . , hn−k) ∈Mn−k and V := V reg(H) 6= ∅;

• F = (F1, . . . , Fm) ∈Mm and f := F � V : V → Km;

• ∆f ⊆ V be the set of singular points of f , and Σf := f(∆f ) be the set
of singular values of f .

Then, Σf is a meager set (in Km).

Proof. We proceed by induction on dimV and m. If m = 0, there are no
singular points. If dimV = 0, then V is discrete. In particular, for every
a ∈ ∆f there exists Ua neighbourhood of a such that ∆f ∩ Ua = {a}. Hence
we can apply Corollary 3.7 and we are done.

Consider now the general case.
Claim 1. We can restrict to the case V = Kk. By Corollary 3.7, it suffice to
prove that for every a ∈ ∆f there exists a neighbourhood Ua of a such that
f(Ua ∩ ∆f ) is meager. Fix a ∈ ∆f . Using the Implicit Function Theorem,
it is easy to check that there is a neighbourhood Ua of a and a definable
diffeomorphism Φ : Kk → V ∩ Ua such that H ◦ Φ ≡ 0 and each Fi ◦ Φ
belong to a Noetherian differential ring M ′ ⊆ C∞(Kk,K) (see [Servi07] for
the details). Hence Claim 1 is proved and we may assume that f : Kk → Km,
and f ∈M ⊆ C∞(Kk,K).

Let X0 := {a ∈ ∆f : Df(a) 6= 0}, where Df is the Jacobian matrix of f .
We first prove that f(X0) is meager.

Again by Corollary 3.7, it suffice to prove that for every a ∈ X0 there
exists a neighbourhood Ua of a such that f(Ua ∩X0) is meager.

Fix a ∈ X0.
Claim 2. We may assume that f(x) = (x1, f2(x), . . . , fm(x)). In fact, since
Df(a) 6= 0, w.l.o.g. we can assume that ∂f1(a)/∂x1 6= 0 and a = 0.

21



Def. complete and Baire, v. 4.1 References

Consider definable neighbourhoods O and Õ ⊂ Kk of 0, where the follow-
ing map is a diffeomorphism:

G : O → Õ
x 7→ (f1(x), x2, . . . , xk).

The ring M̃ := {g ◦G−1| g ∈ M} ⊂ C∞(Õ,K) is clearly Noetherian and
differentially closed and f̃ := f ◦ G−1 ∈ M̃ . Since G is a diffeomorphism, it
is enough to prove the statement for M̃ and f̃ , and Claim 2 is proved.

For every t ∈ K, consider the Noetherian differential ring

Nt := {gt := g(t, x2, . . . , xk)| g ∈M} ⊂ C∞(Õ ∩Kk−1,K).

Let ft : Kk−1 → Km−1 be the map ((f2)t, . . . , (fm)t). By inductive hypothesis,
the set Σft is meager in Km−1. Moreover, f(X0∩Õ)∩({t}×Km−1) ⊆ {t}×Σft .
Hence f(X0 ∩ Õ) ⊆ D := {(t, y) ∈ K × Kk−1| y ∈ Σft}. By what we have
just observed, T (D) := {t ∈ K : Dt is meager} is residual, because Dt = Σft ,
hence by Lemma 5.6, D is meager. It follows by Corollary 3.7 that f(X0) is
meager.

Now, let a ∈ ∆f such that Df(a) = 0, and let P be the least natural
number such that there exists i ≤ m and a derivative θ of order P such
that, if gθ := θfi, then gθ(a) = 0 and Dgθ(a) 6= 0. Such a P exists by
Proposition 6.15. Let Wθ := V reg(gθ) ⊂ Kk (notice that the inclusion is
strict, hence dimWθ < k). Then there is a definable open neighbourhood O
of a such that

∆f ∩O ⊆
⋃

ord(θ)≤P

Wθ.

Hence it is enough to prove that f(∆f ∩Wθ) is meager. Let hθ := f � Wθ.
By inductive hypothesis, Σhθ is meager. Note that if x ∈ Wθ is a singular
point for f , then x is also a singular point for hθ; that is, ∆f ∩Wθ ⊆ ∆hθ ,
and we are done.
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