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Abstract

We prove a triangulation theorem for semi-algebraic sets over a
p-adically closed field, quite similar to its real counterpart. We derive
from it several applications like the existence of flexible retractions and
splitting for semi-algebraic sets.
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1 Introduction

Our knowledge of geometric objects in affine spaces over p-adic fields, that is the
field Qp of p-adic numbers or a finite extension of it, has grown up intensively
in the past decades. Several remarkable analogies have emerged with real
geometry, in spite of the striking differences between the real and the p-adic
metrics. The present paper raises a new such analogy: we prove a triangula-
tion theorem over p-adically closed fields, quite similar to its real counterpart.
Let us first recall the classical results in p-adic geometry which will be used here.

Semi-algebraic sets over a field K are the finite unions of set defined by
finitely many conditions “f(x) = 0” or “f has a non-zero N -th root in K”,
where f(x) is a polynomial function with m variables. Of course we can restrict
to N = 2 if K is real closed (and to N = 1 if it is algebraically closed). Macintyre
has proved in [Mac76] that semi-algebraic sets over Qp are stable by boolean
combinations and projection (from Qm

p to Qm−1
p , for every m). This is a p-adic

version of Tarski’s theorem for real closed fields (and of Chevalley’s theorem for
algebraically closed fields). Prestel and Roquette (see [PR84]) have generalized
it to arbitrary p-adically closed fields (a p-adic version of real closed fields).
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Denef has proved in [Den84] a cell decomposition theorem for p-adic semi-
algebraic sets very similar to its real counterpart, and derived from it the ra-
tionality of Poincarré series. Another important application of the cell decom-
position is that it provides a good dimension theory for semi-algebraic sets (see
[SvdD88]). All this material has been later widely generalized, first to arbi-
trary p-adically closed fields and then to richer structures on these fields (see
[DvdD88] and [Clu04] for subanalytic sets, [HM97], [CKL16], [CKDL15] and
[DH15] for definable sets in P -minimal and p-optimal structures).

By means of Denef’s cell decomposition, Cluckers has proved in [Clu01] that
for every two semi-algebraic sets A, B over a p-adically closed field, there is a
semi-algebraic bijection from A to B if and only if A, B have the same dimension
and the same number of isolated points. This has been latter generalized to sub-
analytic sets [Clu04] and p-optimal sets [DH15]. Note that these semi-algebraic
bijections are not continuous in general (for example Clucker’s theorem applies
to the valuation ring Zp, which is compact, and to Zp \ {0}, which is not).

We present here a p-adic triangulation theorem quite similar to the real one.
We prove it for semi-algebraic1 sets and maps over an arbitrary p-adically closed
field K, which is fixed throughout all this paper. Since it requires numerous
prerequisites, we state it here as a foretaste and refer the reader to Section 2
for precise definitions.

Theorem (Triangulation Tm). Given a finite family (θi : Ai ⊆ Km → K)i∈I
of semi-algebraic functions and integers n,N ≥ 1, for some integers e,M which
can be made arbitrarily large2, there exists a simplicial complex T of index M
and a semi-algebraic homeomorphism ϕ :

⊎
T →

⋃
i∈I Ai such that for every i

in I:

1. {ϕ(T ) : T ∈ T and ϕ(T ) ⊆ Ai} is a partition of Ai.

2. ∀T ∈ T such that ϕ(T ) ⊆ Ai, θi ◦ ϕ|T is N -monomial mod Ue,n.

We call the pair (T , ϕ) given by Tm a triangulation of the θi’s with pa-
rameters (n,N, e,M). When a finite family (Ai)i∈I of semi-algebraic sets is
given, the result of the application of Tm to the indicator functions of the Ai’s
is called a triangulation of (Ai)i∈I .

Remark 1.1. The elements of the simplicial complex appearing in the con-
clusion of Tm are not contained in Km but in finitely many copies of Kq for
various q, usually much larger thanm. This is the main, but harmless, structural
difference with the triangulation in the real case.

In section 3 we derive from Tm the next four applications.

Theorem (Lifting). For every semi-algebraic function f : X ⊆ Km → K such
that |f | is continuous, there is a continuous semi-algebraic function h : X → K
such that |f | = |h|.

The real counterpart of the above result is quite obvious. At the contrary,
the two next results do not hold true in real geometry. In the same vein as

1For possible generalizations to subanalytic sets and maps, see Section 9.
2The exact meaning of “e, M can be made arbitrarily large” is a bit special here: it says

that for any given integers e∗ ≥ 1 and M∗ ≥ 1, the integers e, M can be chosen so that e∗
divides e and M∗ ≤M .
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Clucker’s result on classification of semi-algebraic sets up to semi-algebraic
bijection [Clu01], they confirm the intuition that the lack of connectedness and
of “holes” (in the sense of algebraic topology, see below) makes semi-algebraic
sets over p-adically closed fields much more flexible than over real closed fields.

Recall that a retraction of a topological space X onto a subspace Y is a
continuous map σ : X → Y such that σ(y) = y for every y ∈ Y . When such a
retraction exists on a Hausdorff space X, then necessarily Y is closed in X.

Over the reals, the main obstruction for the existence of retractions is the
existence of “holes” which are detected by homotopy. This does not work over
p-adic fields. Indeed, given a non-empty semi-algebraic set X ⊆ Km and a point
a ∈ X, the semi-algebraic function H : X × R → X defined by H(x, s) = x if
s ∈ R× and H(x, s) = a if s ∈ πR is obviously continuous. In that sense, with
the unit ball R replacing in K the unit interval [0, 1] in the reals, the identity
function on X is homotopic to a constant function, that is X is “contractile”.
But it is another story to prove that retractions actually exist.

Theorem (Retraction). For every non-empty semi-algebraic sets Y ⊆ X ⊆
Km, there is a semi-algebraic retraction of X onto Y if and only if Y is closed
in X.

It is worth mentioning that it is the next Splitting Theorem, already conjec-
tured in [Dar06], which has motivated all the present paper. Here ∂X denotes
the topological frontier of X, see Section 2.

Theorem (Splitting). Let X be a relatively open non-empty semi-algebraic sub-
set of Km without isolated points, and Y1, · · · , Ys a collection of closed semi-
algebraic subsets of ∂X such that3 Y1 ∪ · · · ∪Ys = ∂X. Then there is a partition
of X in non-empty4 semi-algebraic sets X1, . . . , Xs such that ∂Xi = Yi for
1 ≤ i ≤ s.

The trivial remark that every ball B ⊆ Km is disconnected can be seen
as a very special case of the above Splitting Property (applied to X = B
with Y1 = Y2 = ∅). This property is actually (in a sense which can be made
precise, see [Dar06]) the strongest possible form of disconnectedness that can
be observed in a finite dimensional topological space whose points are closed.
It is a versatile property which we encountered in different contexts with minor
changes (see [Dar06], [DJ10]). In the present paper, it plays a key role in the
induction step.

A limit value for a function f : X ⊆ Km → K at a point x adherent to X,
is a value l ∈ K such that (x, l) is adherent to the graph of f . Of course f tends
to l at x if and only if l is the unique limit value of f at x. Let us say that f is
largely continuous on a subset A of X if the restriction of f to A has a unique
limit value at every point adherent to A, that is if f extends to a continuous
function on the topological closure of A. If A is not mentioned it simply means

3Note that Y1, . . . , Ys are not assumed to be disjoint. All of them can be equal to ∂X, for
example.

4A partition of a set X is for us a family of two-by-two disjoint subsets of X covering
X. We do not assume that the pieces must be non-empty. So when it happens by exception,
like here, that this property is required and does not follow from the context, we explicitly
mention it.
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that f is largely continuous on its domain X. Finally f is piecewise largely
continuous if there exists a finite partition of X in semi-algebraic pieces on
which f is largely continuous. Of course in that case f has finitely many limit
values at every point adherent to X.

Theorem (Largely Continuous Splitting). Let f : X ⊆ Km → K be a semi-
algebraic bounded function with bounded5 domain. If f has finitely many limit
values at every point adherent to X then f is piecewise largely continuous.

The real counterpart of this result is easily seen to be true, by means of a
triangulation and the trivial remark that every real simplex is connected (see
Section 3). This last argument is no longer valid in the p-adic case but, as
we will see, the existence of retractions allows us to bypass this problem and
recover the full result in the p-adic context.

This paper is a continuation of [Dar16], where p-adic simplexes were intro-
duced and studied. However all the results of [Dar16] used here are recalled
in Section 2, as well as all the classical prerequisites needed. The above appli-
cations are then derived from Tm in Section 3. In Section 4 we derive from
Denef’s cell decomposition and Tm a “largely continuous cell decomposition up
to a small deformation” for semi-algebraic functions in m + 1 variables (The-
orem 4.6). Sections 5 to 7 are then devoted to our main constructions, which
are summarized in Lemma 6.1 and Lemma 7.10. In Section 8, we finally de-
rive Tm+1 from Tm by means of these two technical lemmas. This finishes the
proof of our p-adic triangulation theorem for every m. Section 9 lists some open
problems on related topics.

Acknowledgement. The idea of the proof of the Good Direction Lemma 4.4
was given to me by my colleague Daniel Naie (Univ. Angers, France).

2 Prerequisites and notation

We let N denote the set of positive integers and N∗ = N \ {0}. For every
integers k, l we let [[k, l]] be the set of integers i such that k ≤ i ≤ l (hence an
empty set if k > l).

A Z-group is a linearly ordered group Z such that, with additive notation, Z
has a least strictly positive element 1 and Z/nZ has exactly n elements for every
integer n ≥ 1. A p-adically closed field (see [PR84]) is a Henselian valued
field of characteristic zero whose residue field is a finite field with characteristic
p and whose value group is a Z-group. The most prominent examples of such
fields, which are the p-adic counterpart of real closed fields, are obviously the
field Qp of p-adic numbers and all its finite extensions. But there are other
natural examples such as the algebraic closure of Q inside Qp (which is not
complete), the t-adic completion of the field

⋃
n≥1 Q((t1/n)) of Puiseux series

over Qp (whose value group is not Z, but Z × Q lexicographically ordered),
and many others (every ultraproduct of p-adically closed fields is still p-adically
closed).

5These boundedness assumptions could easily be removed if we add to K a point at infinity
and require that f has finitely limit values in K̂ = K ∪ {∞} at every point of the closure of

X in K̂m, using the same construction as in the preparation of the proof of Lemma 3.3.
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Throughout all this paper we consider a p-adically closed field K fixed once
for all. We let v denote its (unique) p-adic valuation, R its valuation ring, R×

the multiplicative group of invertible elements of R, and π a fixed generator of
the maximal ideal of R.

Remark 2.1. From now on the letter p will usually denote various integers
unrelated to the characteristic of the residue field of v. The only exception is
when it appears in expressions such as “the field Qp”, “a p-adically closed field”
or “a p-adic simplex”, which refer to p-adic analogues of notions coming from
real algebraic geometry.

We let Z denote the value group of K, with additive notation. It is extended
by a largest element +∞ for v(0) and we let Γ = v(K) = Z ∪ {+∞}. We let
Q denote the divisible hull of Z and Ω = Q ∪ {+∞}. As an ordered group,
Z identifies naturally to the smallest non-trivial convex subgroup of Z. We
consider Z and Q as embedded into Q via this identification.

For every subset X of K we let X∗ = X\{0}. However, if X∗ is a subgroup of
the multiplicative group of K, we denote it X× in order to remind this property
(so R∗ = R \ {0} 6= R× but K∗ = K \ {0} = K×). For every subgroup G of
K× we let xG = {xg : g ∈ G} for every x ∈ K, and K/G = {xG : x ∈ K}.
Abusing the notation, 0G = {0} will be denoted 0 whenever the context makes
it unambiguous.

We let |a| = aR× for every a ∈ K, and |K| = K/R× = {|a| : a ∈ K}. The
latter is naturally ordered by inclusion, and isomorphic to Γ with the reverse
order : |a| ≤ |b| if and only if v(a) ≥ v(b). So |a| is just a multiplicative notation
for v(a): we have |ab| = |a|.|b| and |a+ b| ≤ max(|a|, |b|), and of course |a| = 0
if and only if a = 0.

In order to ease the notation, given a ∈ Km, A ⊆ Km and f : X → Km we
will often write va for v(a), vA for the direct image v(A), vf for the composite
v ◦ f , and similarly for |A| and |f |.

At some rare places it will be convenient to add to K a new element ∞
(and to Γ and |K| new elements −∞ and +∞ respectively) with the natural
convention that 0−1 = ∞, ∞−1 = 0, v(∞) = −∞, |∞| = +∞, and a.∞ = ∞
for every a ∈ K×. We also let 0.∞ = 1 and 00 = 1 when needed.

2.a Topology and coordinate projections

When an m-tuple a is given, it is understood that (a1, . . . , am) are its coordi-
nates, except if otherwise specified. For every a ∈ Km we let

va =
(
va1, . . . , vam

)
and |a| =

(
|a1|, . . . , |am|

)
.

This has not to be confused with ‖a‖ = max(|a1|, . . . , |am|). For r ∈ K× the
(clopen) ball of center a and radius r is defined as

B(a, r) =
{
x ∈ Km : ‖x− a‖ ≤ |r|

}
.

The valuation induces a topology on K, which is inherited by |K| and Γ.
The topology generated on Ω by the open intervals and the intervals ]a,+∞]
for a ∈ Q, extends the topology of Γ. The direct products of these topological
spaces endow the product topology. For every subset X of any of these spaces,
X denotes the topological closure of X. In particular Z = Γ and Q = Ω. Note
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that Γ is closed in Ω. The specialisation preorder on the subsets of X is
defined by B ≤ A iff B ⊆ A.

We let ∂X = X \X denote the frontier of X. We say that X is relatively
open if it is open in X, that is if ∂X = X \X.

When a function f is largely continuous (see Section 1) we usually denote
f the continuous extension of f to the closure of its domain. At the contrary,
the restriction of f to some subset A of its domain is denoted f|A.

The support of a ∈ Km, denoted Supp a, is the set of indexes k such that
ak 6= 0. The support of an element of |K|m or Γm is defined accordingly, so that

Supp |a| = Supp v(a) = Supp a.

For every subset S of Km and every I ⊆ {1, . . . ,m} we let

FI(S) =
{
a ∈ S : Supp a = I

}
.

When FI(S) 6= ∅ we call it the face of S with support I. Faces of subsets
of |K|m or Γm are defined accordingly. The coordinate projection of Km

(resp. |K|m, Γm) onto its face with support I will be denoted πI . So πI(a) is
the unique point b with support I such that bi = ai for every i ∈ I.

For every a ∈ Km+1 (resp. |K|m+1 or Γm+1) we let â denote the tuple of
the first m coordinates of a, so that a = (â, am+1). If A is a set of (m+1)-tuples

we let Â = {â : a ∈ A}, and if A is a family of such sets we let

Â =
{
Â : A ∈ A

}
.

We call Â (resp. Â) the socle of A (resp. A).
Given two families H, A of subsets of Km+1 we say that H is finer than A

if every H ∈ H which meets a set A ∈ A is contained in A. If moreover H is a
partition of

⋃
A we say that H refines A. We will often distinguish between

“horizontal refinements” for which Ĥ = Â, and “vertical refinement” for which
H is the family of A∩ (X ×K) where A ranges over A and X over a refinement
of the socle of A.

2.b Semi-algebraic sets and formulas

For every integer N ≥ 1 let

PN =
{
a ∈ K : ∃x ∈ K, a = xN

}
.

P×N = PN \ {0} is a clopen subgroup of K× with finite index, and P1 = K×.
Hence a subset Km is a semi-algebraic set if it is a boolean combination of
finitely many sets Si defined by conditions

fi(x) ∈ PNi (1)

where the fi’s are m-ary polynomial functions. A semi-algebraic map is a
function whose graph is semi-algebraic. Rational functions, root functions and
monomial functions (see below) are semi-algebraic, among many others.
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Abusing a little bit the terminology, we also say that a subset S of Km×|K|n
is semi-algebraic if {(x, t) ∈ Km+n : (x, |t|) ∈ S} is semi-algebraic. Similarly a
function f : X ⊆ Km → |K|n is semi-algebraic if its graph is. When a map ϕ
is defined on the disjoint union of finitely many semi-algebraic sets Ai living in
different copies of Km, we say that ϕ is semi-algebraic if its restriction to each
Ai is semi-algebraic in the classical sense.

Remark 2.2. If N ′ divides N then P×N is a clopen subgroup of P×N ′ with
finite index. For this reason, all the integers Ni,j appearing in (1) can be
replaced by any common multiple N . Note also that 0 ∈ PN is an empty
condition, equivalent to 1 ∈ PN , hence all the fi,j ’s can be assumed to be
non-zero polynomials.

The so-called first order formulas in the language of rings with parameters
in K, formulas for short, are defined inductively as follows:

1. Every equation “f(x) = 0” with f an n-ary polynomial with coefficients
in K is a formula with n free variables.

2. Every combination of formulas with n free variables using the logical con-
nectives “and”, “or”, “not” (denoted ∧, ∨, ¬) is a formula with n free
variables.

3. If ϕ(x) is a formula with an n-tuple x of free variables x1, . . . , xn, then
∃xnϕ(x) and ∀xnϕ(x) are formulas with n− 1 free variables.

In the last notation above it is understood that the quantified variable xn only
concerns elements of K. Thus a formula ϕ(x) with n free variables always states
a property of the elements of Kn. When a tuple a ∈ Kn has this property we
say that ϕ(x) is satisfied by a in K and denote it K |= ϕ(a). A set S is
definable over K if there exists a formula ϕ(x) with n free variables such that

S =
{
a ∈ Kn : K |= ϕ(a)}.

A family (Ca)a∈A of semi-algebraic subsets of Kn is uniformly definable if
A ⊆ Km is definable and there is a formula ϕ(x, y) with m + n free variables
such that Ca = {b ∈ Km : K |= ϕ(a, b)} for every a ∈ A.

Given m-ary definable functions f , g, the set of points in Km satisfying the
condition “|f(x)| ≤ |g(x)|” is known to be definable6. Thus we will consider
these expressions as formulas as well (more exactly as abbreviations of some first
order formulas in the language of rings stating the same property). Similarly, if
ϕ(x, y) is a formula with m+ n variables and S ⊆ Kn is definable by a formula
ψ(y) then we will consider ∃y ∈ S, ϕ(x, y) as a formula since it is an abbreviation
for the genuine formula ∃y, ψ(y) ∧ ϕ(x, y). We refer the reader to [Hod97] for
more information on this topic.

Theorem 2.3 (Macintyre). The definable subsets of Km are exactly the semi-
algebraic ones.

Remark 2.4. This fundamental theorem says that, in this paper, “semi-
algebraic” and “definable” are synonymous. In particular a subset of Km is

6This follows from the non-trivial fact that R is definable by means of the Kochen operator
(see [PR84]).
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semi-algebraic whenever it can be defined by a formula. This is an extremely
convenient criterion for being semi-algebraic, which we will use everywhere with-
out more comments.

Another important consequence of Macintyre’s theorem is that every
p-adically closed field is elementarily equivalent to a finite extension of Qp (see
[PR84]). With other words, there is a finite extension L of Qp such that K and
L satisfy exactly the same formulas. The following semi-algebraic version of the
so-called “théorème des fermés embôıtés” transfers from L to K by means of
this elementary equivalence.

Theorem 2.5. Let (Cα)α∈R∗ be a uniformly definable family of non-empty,
closed and bounded subsets of Kn, such that |β| ≤ |α| implies that Cβ ⊆ Cα.
Then

⋂
α∈R∗ Cα is non-empty.

The next classical properties can easily be derived from this theorem (or
transfered from L to K by elementary equivalence).

Theorem 2.6. For every continuous semi-algebraic function f : X ⊆ Km →
Kn whose domain X is closed and bounded, f(X) is closed and bounded. As a
consequence:

1. ‖f‖ is bounded and attains its bounds.

2. If f is a injective then it is a homeomorphism from X to f(X).

Corollary 2.7. For every bounded semi-algebraic subset X of Km which is
non-empty, there is an element x ∈ X such that ‖x‖ is maximal on X.

Another crucial property of p-adically closed fields is the existence of so
called “built-in Skolem functions” (see [vdD84], or the appendix of [DvdD88]
for a more constructive proof). Basically, it says that for every semi-algebraic
subset A of Km+n, the coordinate projection of A onto Km has a semi-algebraic
section.

Theorem 2.8 (Skolem functions). Let X ⊆ Km be semi-algebraic set and
ϕ(x, t) a formula with m+ n free variables. If, for every a ∈ X there is b ∈ Kn

such that K |= ϕ(a, b), then there exists a semi-algebraic function ξ : X → Kn

(called a Skolem function) such that K |= ϕ(x, ξ(x)) for every x ∈ X.

For example, if a semi-algebraic function f : X → K takes values in PN ,
then Theorem 2.8 applied the formula ϕ(x, t) saying that “f(x) = tN” gives a
semi-algebraic function ξ : X → K such that f = ξN .

2.c Root functions and monomial functions

Following Lemma 1.3 in [CL12] there is for each integer M > 0 a unique
group homomorphism acM from K× to (R/πMR)× such that acM (π) = 1 and
acM (u) = u+ πMR for every u ∈ R×. The construction of acM given in [CL12]
shows that for each integer N > 0 the set

QN,M = {0} ∪
{
x ∈ P×N · (1 + πMR) : acM (x) = 1

}
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is semi-algebraic. Q×N,M = QN,M \ {0} is a clopen subgroup of K× with finite

index. When v(K×) = Z, it is worth mentioning that QN,M can be given a
simpler description as follows:

QN,M = {0} ∪
⋃
k∈Z

πkN
(
1 + πMR

)
.

If M > 2v(N), Hensel’s Lemma implies that 1 + πMR ⊆ PN , hence QN,M is
contained in PN . The importance of QN,M comes from the following property,
which also follows from Hensel’s lemma (see for example lemma 1 and corollary 1
in [Clu01]).

Lemma 2.9. The function x 7→ xe is a group endomorphism of Q×N,M . If

M > v(e) this endomorphism is injective and its image is Q×eN,v(e)+M .

In particular x 7→ xe defines a continuous bijection from Q1,v(e)+1 to

Qe,2v(e)+1. We let x 7→ x1/e denote the reverse continuous bijection. In particu-
lar it is defined on QN,M for every N , M such that e divides N and M > 2v(e).

For every positive integers e, n we let

Ue = {x ∈ K : xe = 1} and Ue,n = Ue · (1 + πnR).

Analogously to Landau’s notation O(xn) of calculus, we let Ue,n(x) denote any
semi-algebraic function in the multi-variable x with values in Ue,n. Any such
function is the product of two semi-algebraic functions, with values in Ue and
1 + πnR respectively. So, given a family of functions fi, gi on the same domain
X, we write that fi = Ue,ngi for every i, when there are semi-algebraic functions
ωi : X → R and χi : X → Ue such that for every x in X

fi(x) = χi(x)
(
1 + πnωi(x)

)
gi(x).

U1,n(x) is simply denoted Un(x).

Remark 2.10. If f(x) = Un(x) for some n > 2v(e) then f1/e is well defined
and takes values in 1+πn−v(e)R. Therefore we can write Un(x) = (Un−v(e)(x))e.

A function g is N-monomial on S ⊆ Kq if either it is constantly equal to
∞ or there exists ξ ∈ K and β1, . . . , βq ∈ Z such that

∀x = (x1, . . . , xq) ∈ S, g(x) = ξ

q∏
i=1

xNβii .

In this definition we use when needed our convention that 00 = 1. A function f
is N-monomial mod Ue,n if f = Ue,ng with g an N -monomial function.

2.d Cell decomposition and dimension theory

Given a clopen semi-algebraic subgroup G of K× with finite index, a presented
cell A mod G in Km+1 is a tuple (cA, νA, µA, GA) with cA a semi-algebraic
function on a non-empty domain X ⊆ Km with values in K (called the center
of A), νA and µA either semi-algebraic functions on X with values in K× or
constant functions on X with values 0 or ∞ (called the bounds of A), and GA
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an element of K/G (called the coset of A), having the property that for every
x ∈ X there is t ∈ K such that:

|νA(x)| ≤ |t− cA(x)| ≤ |µA(x)| and t− cA(x) ∈ GA (2)

The set of tuples (x, t) ∈ X ×K satisfying (2) is the cellular set underlying
A. Abusing the notation we will also denote it A most often. The conditions
enumerated above (2) ensure that the domain X of cA, µA, νA is exactly the

socle Â of A. When two presented cells A and B have the same underlying
cellular set we write it A ' B.

A is of type 0 if GA = {0}, of type 1 otherwise. We say that A is largely
continuous if its center and bounds are so. We say that it is well presented
if either vνA − vµA is unbounded or νA = µA.

We call A a fitting cell if it has fitting bounds that is, for every x ∈ Â:

|µA(x)| = sup{|t− cA(x)| : (x, t) ∈ A}

|νA(x)| = inf{|t− cA(x)| : (x, t) ∈ A}
Cellular sets mod K× and P×N have been first introduced in [Den84]. Cellular

sets mod Q×N,M appear implicitly in [Clu01], and explicitly in further papers of
Cluckers. In this paper we will use the word “cell” mostly for presented cells
but also very often for the underlying cellular sets, the difference being clear
from the context. For instance we will freely talk of disjoint (presented) cells,
of bounded (presented) cells, of (presented) cells partitioning some set and so
on, meaning that the corresponding cellular sets have these properties.

For any Z ⊆ Â we will write A ∩ (Z × K) both for this (cellular) set and
for the presented cell (cA|Z , νA|Z , µA|Z , GA). The latter will also be denoted
(cA, νA, µA, GA)|Z . Similarly Gr cA both denotes the graph of cA and the pre-
sented cell (cA, 0, 0, {0}).

Sometimes it will be convenient to write GA = λAG for some λA ∈ GA.
We will always do this uniformly, so that λA = λB whenever GA = GB . To
that end a set ΛG of representatives of K/G is fixed once for all, and when
we consider a presented cell A mod G it is understood that λA is the unique
element of GA ∩ ΛG. In addition, we require from this set of representatives
that every λ ∈ ΛG has the smallest possible positive valuation. In particular if
G = PN or QN,M and A is a cell mod G of type 1 then 0 ≤ vλA < N .

For every family A of presented cells in Km+1 we let CB(A) denote the
family of all the functions cA, µA, νA for A ∈ A. Given another family D of
presented cells in Km+1 we say that:

1. D belongs to VectA if for every D ∈ D, cD, νD are linear combinations
(with coefficients in K) of the restrictions to D̂ of the centers and bounds

of the cells A ∈ A such that D̂ ⊆ Â, and either µD is so or µD =∞.

2. D belongs to AlgnA if D is finer than A and for every A ∈ A, every D ∈ D
contained in A and every (x, t) ∈ D:

(a) either t− cA(x) = Un(x, t)(t− cD(x));

(b) or t − cA(x) = Un(x, t)hD,A(x) where hD,A : D̂ → R is the product
of (finitely many) linear combinations of functions cB |D̂ such that

B ∈ A and D̂ ⊆ B̂.
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Theorem 2.11 (Denef). Given a semi-algebraic subgroup G of K× with finite
index, let A be a finite family of presented cells mod G in Km+1. Then for every
positive integer n there exists a finite family D of fitting cells mod G refining A
such that D̂ is a partition and D belongs to VectA and to AlgnA.

This is essentially theorem 7.3 of [Den84]. Indeed, for any given integer N ,
if n is large enough then 1+πnR ⊆ PN ∩R×. Hence Un(x, t) in conditions (2a),
(2b) of the definition of AlgnA can be written u(x, t)N with u a semi-algebraic
function from A to R× (thanks to Theorem 2.8). This is how the above result
is stated in [Den84] with G = K×. Our slightly more precise form, as well
as the additional properties involving VectA and AlgnA, appear only in the
proof of theorem 7.3 in [Den84] (still with G = K×). The generalization to
fitting cells mod an arbitrary clopen semi-algebraic group G with finite index
in K× is straightforward.

The cell decomposition leads to a good dimension theory for semi-algebraic
sets over p-adically closed fields, see [SvdD88] and [vdD89]. We will use re-
peatedly its following properties, for every semi-algebraic sets A, B and semi-
algebraic map f defined on A. By convention dim ∅ = −∞.

1. dimA = 0 if and only if A is finite non-empty.

2. dimA ∪B = max(dimA,dimB).

3. If A 6= ∅, dim ∂A < dimA.

4. dim f(A) ≤ dimA.

The local dimension of a semi-algebraic set A ⊆ Km at a point a ∈ A
is the minimum of dimU , for every semi-algebraic neighbourhood U of a in
A (with respect to the relative topology, induced by Km on A). A is pure
dimensional if it has the same local dimension at every point. Note that if
a semi-algebraic set B is open in A and A is pure dimensional then B is so,
and that a cell is pure dimensional if and only if its socle is. This last point,
combined with Denef’s Cell Decomposition Theorem 2.11 and a straightforward
induction, shows that every semi-algebraic set A is the union of finitely many
pure dimensional ones.

2.e Discrete and p-adic simplexes

We say that f : S ⊆ FI(Γ
m) → Ω is affine if either it is constantly equal to

+∞, or there are elements α0 ∈ Q and αi ∈ Q for i ∈ I such that

∀x ∈ S, f(x) = α0 +
∑
i∈I

αixi.

In [Dar16] we introduced discrete polytopes in Γq as “largely continuous
precells mod N”, for an arbitrary q-tuple N of positive integers. In this paper
N = (1, . . . , 1) will not play any role so we can remove it in the next definition.

The only polytope in Γ0 is Γ0 itself (which is a one-point set). For every

I ⊆ [[1, q + 1]], a subset A of FI(Γ
q+1) is a discrete polytope of Γq+1 if Â is a

11



discrete polytope of Γq and if there is a pair (µ, ν) of largely continuous affine

maps from Â to Ω, called a presentation of A, such that 0 ≤ µ ≤ ν and

A =
{
a ∈ FI(Γq) : â ∈ Â and µ(â) ≤ aq+1 ≤ ν(â)

}
.

Example 2.12.

• A = {(x, y) ∈ Z2 : 0 ≤ y ≤ x/2} is a discrete simplex, with proper faces
F{2}(A) = {(+∞, y) ∈ {+∞}× Z : 0 ≤ y} and F∅(A) = {(+∞,+∞)}.

• B = {(x, y, z) ∈ Z3 : (x, y) ∈ A and z = 2y − x} is a subset of Z3 defined
by linear inequalities, whose proper faces F{3}(B) = {+∞}2 × N and
F∅(B) are linearly ordered by specialization. However it is not a polytope,
because the linear map ϕ(x, y) = 2y−x is not largely continuous on A: it
has no limit when (x, y) tends to (+∞,+∞) in A.

All the references in the next proposition are taken from [Dar16].

Proposition 2.13. Let q ≥ 1 and A ⊆ FI(Γ
q) be a discrete polytope. Let

(µ, ν) be a largely continuous presentation of A, let J be a subset of I, and

Ĵ = J \ {m}. Finally let Y = FĴ(Â). Then FJ(A) 6= ∅ if and only if either
m ∈ J and µ̄ < +∞ on Y , or m /∈ J and ν̄ = +∞ on Y (Proposition 3.11).
When this happens:

1. FJ(A) = πJ(A) (Proposition 3.3).

2. The socle of FJ(A) is a face of Â: F̂J(A) = FĴ(Â) = Y (Proposition 3.7).

3. FJ(A) is a discrete polytope and (µ̄|Y , ν̄|Y ) is a presentation of it (Propo-
sition 3.11):

FJ(A) =
{
b ∈ FJ(Γm) : b̂ ∈ Y, and µ̄(̂b) ≤ bm ≤ ν̄ (̂b)

}
.

We will also use the next result (Proposition 3.5 in [Dar16]).

Proposition 2.14. Let A ⊆ Γq be a discrete polytope, f : A → Ω be an
affine map and B = FJ(A) = πJ(A) a face of A. Assume that f extends to
a continuous map f∗ : A ∪ B → Ω. Then f∗ is affine and if f∗ 6= +∞ then
f = f∗|B ◦ πJ |A. In particular if f∗ 6= +∞ then f(A) = f∗(B).

A discrete simplex is a discrete polytope whose faces are linearly or-
dered by specialization. This is a “monohedral largely continuous precell mod
(1, . . . , 1)” in [Dar16]. Of course every face of a simplex is a simplex (see Re-
mark 3.12 of [Dar16]).

For every M ≥ 1 we let DMRq = (R∩Q1,M )q and define p-adic simplexes
of index M as the inverse images of discrete simplexes by the restriction of
the valuation to DMRq. The faces of a simplex S of index M are obviously the
pre-images in DMRq of the faces of vS. In particular they are linearly ordered
by specialization. S is closed if and only if vS is a singleton in Γq. If S is not
closed, its largest proper face T is called its facet and ∂S = T .

Remark 2.15. With the notation of Proposition 2.14, if S = v−1(A) ∩DMRq

and T = v−1(B) ∩ DMRq then T = FJ(S), and so by Proposition 2.14 T =
πJ(S). We will sometimes refer to the restriction of πJ to A (resp. S) as to
“the coordinate projection of A onto B (resp. of S onto T )”.
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2.f Simplicial complexes

We will have to consider complexes of sets, of cells and of simplexes. All of them
are finite families of subsets of a topological space X, organised in a such a way
that one controls how the closures of these sets intersect.

Recall first that an ordered set A is a tree if for every A in A, the set of
elements in A smaller than A is linearly ordered. It is a rooted tree if it
has one smallest element. A lower subset of A is a subset B of A such that
whenever an element of A is smaller than an element of B, it belongs to B.

Now, given a finite family A of pairwise disjoint subsets of X, we call A
a closed complex if every A ∈ A is relatively open and if it frontier ∂A is
a union of elements of A. The specialization preorder is then an order on A.
If A, ordered by specialization, is a tree (resp. a rooted tree) we call it a
(resp. rooted) closed monoplex. A complex (resp. monoplex) is then an
arbitrary subfamily of a closed complex (resp. closed monoplex). Of course a
complex A is a closed complex if and only if

⋃
A is closed.

Remark 2.16. Using that every semi-algebraic set is the disjoint union of
finitely many pure dimensional ones, and that dim ∂A < A for every semi-
algebraic set A, a straightforward induction shows that every finite family of
semi-algebraic subsets of Km refines in a complex of pure dimensional semi-
algebraic sets.

A simplicial complex in DMRq (resp. in Γq) is a complex of simplexes in
DMRq (resp. in Γq). We say that S is well dispatched if for every S, S′ ∈ S,
S′ ≤ S if and only if SuppS′ ⊆ SuppS.

Let S be a finite family of simplexes in DMRq (or Γq). Then S is a simplicial
complex if and only if for every S, T ∈ S, S ∩ T is the union of the common
faces of S and T . When this happens:

1. S is a monoplex;

2. every subset S0 of S in DMRq is again a simplicial complex;

3.
⊎
S0 is closed in

⊎
S if and only if S0 is a lower subset of S.

Let S denote the family of all the faces of the elements of S. We call it the
closure of S, and say that S is closed if S = S. Note that S is a complex
(resp. a closed complex) if and only if S ⊆ S (resp. S = S) and the elements
of S are pairwise disjoint.

If S is a simplicial complex, we say T is a simplicial subcomplex of S of
if T is a simplicial complex such that T refines a decreasing subset of S, and⋃
T is a closed subset of

⋃
S.

The following results are respectively Theorem 6.3 and Proposition 6.4 of
[Dar16].

Theorem 2.17 (Monotopic Division). Let S be a simplex in DMRm and T
a simplicial complex in DMRm which is a partition of ∂S. Let ε : ∂S → K×

be a definable function such that the restriction of |ε| to every proper face of S
is continuous. Then there exists a finite partition U of S such that U ∪ T is
a simplicial complex in DMRm, U contains for every T ∈ T a unique cell U
with facet T , and moreover

∥∥u − πJ(u)
∥∥ ≤ ∣∣ε(πJ(u))

∣∣ for every u ∈ U , where
J = Supp(T ).
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Proposition 2.18. Let A ⊆ DMRq be a relatively open set. Assume that A is
the union of a simplicial complex A in DmRq. Then for every integer n ≥ 1
there exists a finite partition of A in semi-algebraic sets A1, . . . , An such that
∂Ak = ∂A for every k.

Finally, a simplicial complex of index M is a collection S of finitely many
(possibly zero) rooted simplicial complexes Si in DMRqi , for various integers
qi (indexed by some finite set I). Its closure is the collection of the closures
of the Si’s. It is well dispatched if each Si is. We say that T = (Ti)i∈I is a
simplicial subcomplex of S if each Ti is a simplicial subcomplex of Si.

Given a semi-algebraic homeomorphism ϕ from
⊎
S to a subset X of Km,

we will let
ϕ(S) =

{
ϕ(S) : S ∈ S

}
.

If S is closed, ϕ(S) is obviously a closed monoplex of pure dimensional semi-
algebraic sets partitioning X.

Remark 2.19. With ϕ as above, S is closed if and only if X is closed and
bounded. Indeed, each

⋃
Si is clopen in

⊎
S, hence its homeomorphic image

Xi by ϕ is clopen in X. In particular X is closed and bounded in Km if and
only if each Xi is so. Let ϕi be the semi-algebraic homeomorphism from

⋃
Si

to Xi induced by restriction of ϕ. Note that
⋃
Si is bounded (it is contained

in Rqi). By Theorem 2.6 applied to ϕi and ϕ−1
i it follows that

⋃
Si is closed in

Kqi , that is Si is closed, if and only if Xi is closed and bounded in Km.

3 Applications

The proof of our main result Tm goes by induction on m. Some of the applica-
tions given in this section are actually needed in the induction step, hence it is
important to emphasize that all of them follow from Tm for a fixed (throughout
all this section) integer m.

Theorem 3.1. If f : X ⊆ Km → K is semi-algebraic and |f | is continuous,
then there exists a function h : X → K semi-algebraic and continuous such that
|f | = |h| on X.

Proof: Tm gives a triangulation (T , ϕ) of f with parameters (1, 1, e,M).
On every T ∈ T , f ◦ ϕ|T = Ue,1ψ with ψ : T → K a 1-monomial function.
Thus for some qT such that T is contained in DMRqT , there are λT in K and
α1,T , . . . , αqT ,T in Z such that:

∀x ∈ T, |f ◦ ϕ(x)| =
∣∣∣∣λT qT∏

i=1

x
αi,T
i

∣∣∣∣ (3)

Let α0,T = vλT and ξT : vT → Γ be defined by:

∀a ∈ vT, ξT (a) = α0,T +

qT∑
i=1

αi,Tai

By construction ξT (vx) = vf(ϕ(x)) for every x ∈ T (in particular ξT only
depends on f ◦ϕ, even if the coefficients αi,T in (3) are not uniquely determined
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by f ◦ϕ on T ). By assumption vf is continuous on X hence so is vf ◦ϕ on
⊎
T .

In particular ξT extends continuously to vS for every face S of T in T , and the
restriction to S of such an extension ξT is precisely ξS . By proposition 2.14 it
follows that if ξS 6= +∞ (that is if f ◦ϕ 6= 0 on S) then ξT = ξS ◦πS where πvS
denotes the coordinate projection of vT to vS (see Remark 2.15).

Now, for every T in T let gT : T → K be defined (by induction on T ordered
by specialization) as follows:

1. If f ◦ ϕ = 0 on T , gT = 0.

2. If T is minimal (with respect to the specialisation preorder) among the
simplexes in T on which f ◦ ϕ 6= 0 then for every x ∈ T :

gT (x) = πα0,T

qT∏
i=1

x
αi,T
i

3. Otherwise gT = gS ◦ πS where πS is the coordinate projection (see Re-
mark 2.15) of T onto its larger proper face S in T on which f ◦ ϕ 6= 0.

By construction vgT (x) = ξT (vx) for every x ∈ T hence |gT | = |f | on T .
Moreover for every S ≤ T and y ∈ S, gT (x) tends to gS(y) as x tends to y in T
(because gT (x) = gS(πS(x)) if gS 6= 0, and otherwise because |gT | = |f ◦ ϕ| on
T , |gS | = |f ◦ ϕ| = 0 on S and |f ◦ ϕ| = |f | ◦ ϕ is continuous by assumption).

The function h : X → K defined by h = gT ◦ ϕ−1 on every ϕ(T ) with T in
T , is clearly semi-algebraic. By construction |f | = |h| on X, and by the above
argument h is continuous on X.

Theorem 3.2. For every non-empty semi-algebraic sets Y ⊆ X ⊆ Km, there
is a semi-algebraic retraction of X onto Y if and only if Y is closed in X.

Proof: One direction is general. For the converse we assume that Y is closed
in X. Let (S, ϕ) be a triangulation of X, Y given by Tm, and T be the family
of simplexes T in S such that ϕ(T ) ⊆ Y . It suffices to construct a continuous
retraction of

⊎
S onto

⊎
T .

Let S0 = T and σ0 be the identity map on
⊎
T . Because Y is closed in X,

T is a lower subset of S. Let k be a positive integer and assume that there is a
lower subset Sk−1 of S containing T , and a retraction σk−1 of

⊎
Sk−1 to T . If

Sk−1 = S we are done. Otherwise let S be a minimal element (with respect to
the specialisation order) in S \Sk−1, and let7 Sk = Sk−1 ∪{S}. It only remains
to build a retraction τ of

⊎
Sk onto

⊎
Sk−1. Indeed σk−1 ◦ τ will then be a

continuous retraction of Sk onto T , and the result will follow by induction.
If S has no proper face in S then it is clopen in

⊎
Sk. So the map τ which

is the identity map on
⊎
Sk and which sends every point of S to an arbitrary

given point of
⊎
Sk−1 is continuous on Sk, and a retraction of

⊎
Sk onto Sk−1.

Otherwise let T be the largest proper face of S in S. By minimality of S, T
belongs to Sk−1. Let πT be the coordinate projection of S onto T . The frontier

7We are abusing the notation here: S is a finite collection of simplicial simplexes Si in
DMRqi for various qi, Sk is a collection of lower subsets Sk,i of Si, there is an index i0
such that S belongs to Si0 , and what we have denoted abusively Sk−1 ∪ {S} is actually the
collection of all the Sk,i’s for i 6= i0 and of Sk,i0 ∪ {S}.
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of S inside
⊎
Sk is the closure of T in

⊎
Sk, hence the function τ which coincides

with the identity map on
⊎
Sk−1 and with πT on S is continuous. It is then a

retraction
⊎
Sk onto Sk−1, which finishes the proof.

The Splitting Theorem 3.4 is a strengthening of the next lemma using re-
tractions.

Lemma 3.3. Let X ⊆ Km be a relatively open semi-algebraic set without iso-
lated points and n ≥ 1 an integer. Then there exists a partition of X in semi-
algebraic sets Xk for 1 ≤ k ≤ n such that ∂Xk = ∂X for every k.

We are going to prove Lemma 3.3 by using a triangulation (U , ϕ) of (X, ∂X)
and applying Proposition 2.18 to ϕ−1(X). In order to ensure that this set is
still relatively open, we reduce first to the case where X is bounded by means
of the following construction.

Let K̂ = K ∪ {∞} and for every I ⊆ {1, . . . ,m} let Km
I = K̂m

I ∩Km where

K̂m
I = {x ∈ K̂m : xk ∈ R ⇐⇒ k ∈ I}.

Let RmI = {x ∈ Rm : ∀k /∈ I, xk 6= 0}, and for every x ∈ RmI let ψI(x) =
(yk)1≤k≤m be defined by yk = xk if k ∈ I, and yk = 1/(πxk) otherwise. Clearly
ψI is semi-algebraic homeomorphism from RmI to Km

I which extends uniquely

to a homeomorphism ψ̂I from Rm to K̂m
I .

Proof: Note first that if it is given a partition of X in finitely many semi-
algebraic pieces U1, . . . , Ur which are clopen in X, then it suffices to prove the
result separately for each Uj . Indeed, each Uj will then be relatively open
with ∂Uj ⊆ ∂X (because Uj is clopen in X), and

⋃
j≤r ∂Uj = ∂X (because

∂Uj = U j \X and
⋃
j≤r U j = X). So, if a partition of each Uj in semi-algebraic

pieces (Uj,k)1≤k≤n is found such that ∂Uj,k = ∂Uj for every k, then the union Xk

of Uj,k for 1 ≤ j ≤ r defines a partition of X in semi-algebraic pieces and we have
∂Xk =

⋃
j≤r ∂Uj,k (same argument as above) hence ∂Xk =

⋃
j≤r ∂Uj = ∂X.

Now, as I ranges over the subsets of {1, . . . ,m}, the sets X ∩ Km
I form a

partition of X in semi-algebraic sets clopen in X. By the argument above we
can deal separately with each of these sets, which reduces to the case where
X ⊆ Km

I for some I.

Let Y = ψ−1
I (X) and X̂ be the closure of X in K̂m

I . Note that ψ̂I(Y ) = X̂.

The fact that X \X is closed Km, hence in Km
I , implies that X̂ \X is closed in

K̂m
I . It follows that its image by ψ̂−1

I , which is precisely Y \Y , is closed in Rm,
hence in Km. Thus Y is relatively open. It then suffices to prove the result for
Y , that is we can assume that X = Y is bounded. Of course we can assume as
well that ∂X is non-empty (otherwise X1 = X and Xk = ∅ for 2 ≤ k ≤ n is
obviously a solution).

Tm gives a triangulation (U , ϕ) of (X, ∂X). U is the disjoint union of finitely
many simplicial complexes Uj in DMRqj for 1 ≤ j ≤ r. Let Uj = ϕ(

⋃
Uj) ∩X

for every j, this defines a partition of X in semi-algebraic sets clopen in X. By
using again the initial remark in this proof, it suffices to check the result for
each Uj separately. So we can assume that U itself is a simplicial complex in
DMRq for some q.
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By construction X is semi-algebraic, closed and bounded, and ϕ−1 is semi-
algebraic and continuous, so ϕ−1(Y ) = ϕ−1(Y ) for every semi-algebraic8 Y ⊆
X. Let A = ϕ−1(X), we have A = ϕ(X hence A \A = ϕ(X \X) is closed, that
is A is relatively open. Proposition 2.18 then applies to A and gives a partition
of A in semi-algebraic sets A1, . . . , An such that ∂Ak = ∂A for every k.

For 1 ≤ k ≤ n let Xk = ϕ(Ak). This semi-algebraic sets form a partition
of X, because A1, . . . , An form a partition of A. Moreover, since

⋃
U is semi-

algebraic, closed and bounded, we have ϕ(B) = ϕ(B) for every semi-algebraic9

set B contained in
⋃
U . It follows that for 1 ≤ k ≤ n we have ∂Xk = ϕ(∂Ak) =

ϕ(∂A) = ∂X, which proves the result.

Theorem 3.4. Let X be a relatively open non-empty semi-algebraic subset of
Km without isolated points, and Y1, · · · , Ys a collection of closed semi-algebraic
subsets of ∂X such that Y1 ∪ · · · ∪ Ys = ∂X. Then there is a partition of X in
non-empty semi-algebraic sets X1, . . . , Xs such that ∂Xi = Yi for 1 ≤ i ≤ s.

Proof: X is non-empty and has no isolated point, hence is infinite. The result
is obvious for s = 0 (there is nothing to prove) and s = 1 (take X1 = X). By
induction it suffices to prove it for s = 2. Indeed, if s ≥ 3 and the result is
proved for s−1, then the result for s = 2 applied to X with Z1 = Y1∪· · ·∪Ys−1

and Z2 = Bs gives a partition in two pieces X ′1, X ′2 such that ∂X ′l = Zl for
l = 1, 2, and the induction hypothesis applied to X ′1 with Y1, . . . , Ys gives a
partition of X ′1 in pieces X1, . . . , Xs−1 such that ∂Xi = Yi for 1 ≤ i ≤ s. The
conclusion follows, by taking Xs = X ′2. So from now on we assume that s = 2.

It suffices to prove the weaker result that a partition (X ′1, X
′
2) exists with all

the required properties for (X1, X2) except possibly the condition that they are
non empty. Indeed, if such a partition is found and for example X ′2 = ∅ then
necessarily Y2 = ∂X ′2 = ∅. In that case pick any x ∈ X, and choose a clopen
neighbourhood V of x such that V ∩ ∂X is empty (this is possible because X is
relatively open). Then X1 = X \ V and X2 = X ∩ V give the conclusion.

Let ρ : X → ∂X be a continuous retraction of X onto ∂X given by Theo-
rem 3.2. Let V ⊆ ∂X be any semi-algebraic set open in ∂X, Z its closure and
A = ρ−1(Z)∩X. We are claiming that ∂A = Z. Note that A is closed in X by
continuity of ρ, because A is the inverse image of the closed set Z by ρ|X . So

it suffices to prove that A ∩ ∂X = Z, or equivalently that A ∩ ∂X contains V
and is contained in Z. For the first inclusion let y be any element of V , and W
any neighbourhood of y. We have to prove that W ∩ A 6= ∅. By continuity of
ρ at y = ρ(y) there is a neighbourhood U of y such that U ∩X is contained in
ρ−1(W ∩ V ). In particular

U ∩W ∩X ⊆ U ∩X ⊆ ρ−1(W ∩ V ) ⊆ ρ−1(V ) = A

so U ∩W ∩A = U ∩W ∩X. On the other hand, U ∩W ∩X 6= ∅ because U ∩W
is a neighbourhood of y and y ∈ V ⊆ X. A fortiori W ∩ A is non-empty. This
proves that y ∈ A, hence that V ⊆ A ∩ ∂X. Conversely, if y′ is any element
of ∂X \ Z, there is a neighbourhood W ′ of y′ such that W ′ ∩ ∂X is disjoint

8For every continuous map f : X ⊆ Kq → Kr and every Y ⊆ X, if X is closed then
f(Y ) ⊆ f(Y ). The reverse inclusion holds true if X is compact, or if f , Y , X are semi-
algebraic and X is closed and bounded (see Theorem 2.6).

9See footnote 8
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from Z. By continuity of ρ, ρ−1(W ) is then a neighbourhood of y′ in X. It is
disjoint from ρ−1(Z) = A hence y′ /∈ A. So A is disjoint from ∂X \ Z. That is
A ∩ ∂X ⊆ Z, which proves our claim.

For k = 1, 2 let Zk be the closure of Yk\Y2−k = ∂X\Y2−k and Ak = ρ−1(Zk).
Let Z0 be the closure of ∂X \ (Z1 ∪ Z2) and A0 = ρ−1(Z0). The above claim
gives that ∂Ak = Zk for 0 ≤ k ≤ 2. Let B0 be the set of non-isolated points of
A0. Clearly ∂B0 = ∂A0 = Z0 since A0\B0 is finite. In particular B0 is relatively
open, and Lemma 3.3 gives two semi-algebraic sets B1, B2 partitioning B0 such
that ∂B1 = ∂B2 = Z0. So if we set X1 = A1∪B1 and X2 = A2∪B2∪ (A0 \B0)
we get the conclusion.

Theorem 3.5. Let f : X ⊆ Km → K be a semi-algebraic function with bounded
graph (that is f is a bounded function on a bounded domain). If it has finitely
many limit values at every point of X then f is piecewise largely continuous.

Note that the counterpart of Theorem 3.5 for real-closed fields holds true.
Indeed, by triangulation we are reduced to the case of a continuous function f
on a simplex S ⊆ Km. The assumption that f has finitely many limit values
at every point of S then implies directly that f is largely continuous. Indeed,
this follows easily from the fact that over real-closed fields the direct image by
a continuous semi-algebraic map of any semi-algebraically connected set (such
as S ∩ B with B a ball centered at any point of S) is again semi-algebraically
connected.

At the contrary, p-adic simplexes are not at all semi-algebraically connected
and it can happen that a function satisfying all these assumptions on a p-adic
simplex is not largely continuous. For example on the simplex S = D1R∗ the
semi-algebraic function f defined by f(x) = 0 if v(x) ∈ 2Z and f(x) = 1
otherwise is a continuous, bounded function having two distinct limit values at
0. Thus f is not largely continuous. It is obviously piecewise largely continuous,
though.

Proof: Every semi-algebraic function is piecewise continuous (see for example
[Mou09]). So, replacing f by its restriction to the pieces of an appropriate
partition of X is necessary, we can assume that f is continuous. Removing
X ∩ ∂X if necessary (using a straightforward induction on dimX and the fact
that dim ∂X < dimX) we can even assume that X is relatively open. The
proof then goes by induction on the lexicographically ordered tuples (e, e′) where
e = dimX and e′ = dim ∂X. If ∂X is empty, that is X is closed, then f is largely
continuous and the result is obvious. So let us assume that e′ ≥ 0 (hence e ≥ 1)
and the result is proved for smaller tuples (e, e′).

Let D = (∂X × K) ∩ Gr f . The projection of D onto ∂X has finite fibers
hence D is a union of cells of type 0. The number of these cells, say N , then
bounds the cardinality of these fibers, that is the number of limit values of f
at every point of ∂X. For every a ∈ ∂X let Da = {t ∈ K : (a, t) ∈ D}. We

first show that D̂ = ∂X, that is Da 6= ∅ for every a ∈ ∂X. For every ε ∈ R∗
let Cε = (B(a, ε) × K) ∩ Gr f . This is a uniformly semi-algebraic family of
closed and bounded semi-algebraic subsets of Kn. Each of them is non-empty
because Cε contains (x, f(x)) for any x in B(a, ε)∩X (which is non-empty since
a ∈ ∂X). Obviously Cε1 ⊆ Cε2 whenever |ε1| ≤ |ε2|, so

⋂
ε∈R∗ Cε is non-empty

by Theorem 2.5. The latter is equal to Da, which proves our claim.
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For 1 ≤ i ≤ N let Wi be the set of a ∈ ∂X such that Da has exactly i
elements. These sets Wi form a partition of D in semi-algebraic pieces. By
Theorem 2.8 (and a straightforward induction) there are semi-algebraic func-
tions fi,j : Wi → K such that Da = {fi,j(a)}1≤j≤i for every a ∈ Da. Since
dim ∂X < dimX, by induction hypothesis these functions fi,j are piecewise
largely continuous. This gives a partition of ∂X in semi-algebraic pieces Vk
for 1 ≤ k ≤ r, and a family of largely continuous semi-algebraic functions
gk,l : Vk → K for 1 ≤ l ≤ sk such that Vk ⊆ Wsk and D is the union of the
graphs of all these functions gk,l.

Theorem 3.4 applied to X and the sets Vk for 1 ≤ k ≤ r gives a partition of
X in semi-algebraic pieces Xk such that ∂Xk = Vk. It suffices to prove that the
restrictions of f to each Xk is piecewise largely continuous. So we can assume
that r = 1 and X = X1. That is, we have a semi-algebraic set V = V1 dense
in ∂X and largely continuous functions gl = g1,l : V → K for 1 ≤ l ≤ s = s1

such that Da = {gl(a)}1≤l≤s has s elements for every a ∈ Da. Replacing V by
V \ ∂V if necessary we can assume that V is relatively open.

Let ρ : X → V be a continuous retraction given by Theorem 3.2. For
1 ≤ l ≤ s let

Ul =
{
x ∈ X : ∀k 6= l,

∣∣f(x)− ḡl
(
ρ(x)

)∣∣ < ∣∣f(x)− ḡk
(
ρ(x)

)∣∣}.
Each Ul is open in X by continuity of f , ρ and the ḡk’s. Their complement
X ′ = X \

⋃l
k=1 is closed in X, hence ∂X ′ ⊆ ∂X. Moreover, for every a ∈ V ,

the limit values gk(a) of f at a being distinct by construction, there exists
ε ∈ R∗ such that every point of B(a, ε) ∩X belongs to one of the Uk’s. With
other words B(a, ε) ∩ X ′ = ∅ hence a does not belong to the closure of X ′.
So ∂X ⊆ ∂X \ V = ∂V , in particular dim ∂X ′ < dimV = dim ∂X hence the
induction hypothesis applies to the restriction of f to X ′.

It only remains to check that the restrictions of f to each Ul is piecewise
largely continuous. We are claiming that f has only one limit value at every
point a of U l\∂V . Note that U l is the disjoint union of U l∩X and U l∩∂X, and
that ∂X = V ∪∂V . Obviously, if a ∈ U l∩X then by continuity of f , f(x) tends
to f(a) as x tends to a in Ul. Now if a ∈ (U l \ ∂V ) \X then a ∈ V , ρ(a) = a
and ḡk(ρ(a)) = gk(a) for every k. Hence by definition of Ul, f(x) is closer to
gl(a) than to every other gk(a), so gl(a) is the only possible limit value of f(x)
as x tends to a in Ul, which proves our claim. So the semi-algebraic function g
which coincides with f on U l ∩X and with gl on V is continuous. The frontier
of its domain is contained in Ul ∩ ∂X ⊆ ∂X = V ∪ ∂V and is disjoint from V ,
hence is contained in ∂V . By induction hypothesis, g is then piecewise largely
continuous, hence so is f|Ul since f and g coincide on Ul.

4 Largely continuous cell decomposition

This section recalls the main theorem of [Den84] in order to emphasize some
details which appear only in its proof. These details are important for us
because they ensure that the center and bounds of the cells involved in the
conclusions inherit certain properties, defined below, from the center and
bounds of the cells in the assumptions. Using them we finally derive from
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Tm a new preparation theorem for semi-algebraic functions “up to a small
deformation” (Theorem 4.6). The point is that after such a deformation, we
get a preparation theorem involving only largely continuous cells.

Given a basic function f , we say that a function h : X ⊆ Km → K belongs
to coalg(f) if there exists a finite partition of X into definable pieces H, on
each of which the degree in t of f(x, t) is constant, say eH , and such that the
following holds. If eH ≤ 0 then h(x) is identically equal to 0 on H. Otherwise
there is a family (ξ1, . . . , ξrH ) of K-linearly independent elements in an algebraic
closure of K and a family of definable functions bi,j : H → K for 1 ≤ i ≤ eH
and 1 ≤ j ≤ rH , and aeH : H → K∗ such that for every x in H

f(x, T ) = aeH (x)
∏

1≤i≤eH

(
T −

∑
1≤j≤rH

bi,j(x)ξj

)
and

h(x) =
∑

1≤i≤eH

∑
1≤j≤rH

αi,jbi,j(x)

with the αi,j ’s in K. If F is any family of basic functions we let coalg(F) denote
the set of linear combinations of functions in coalg(f) for f in F .

Theorem 4.1 (Denef). Let F ⊆ K[X,T ] be a finite family of polynomials, with
X an m-tuple of indeterminates and T one more indeterminate. Let N ≥ 1 be an
integer and A a family of boolean combinations of subsets of the form f−1(PN )
with f ∈ F . For every integer n ≥ 1 there is a finite family of fitting cells mod
P×N refining A, with center and bounds in coalg(F), and for every such cell H

a positive integer αf,H and a semi-algebraic function hf,H : Ĥ → K such that
for every (x, t) ∈ H:

f(x, t) = Un(x, t)hf,H(x)(t− cH(x))αf,H .

Proof: W.l.o.g. we can assume that every f in F is non constant and that n
is large enough so that 1 + πnR ⊆ P×N . Theorem 7.3 in [Den84] gives a finite
family of cells B mod K× partitioning Km, and for each of them a positive
integer αf,B and semi-algebraic functions uf,B : B → R× and hf,B : B̂ → K
such that:

∀(x, t) ∈ B, f(x, t) = uf,B(x, t)Nhf,B(x)(t− cB(x))αf,B (4)

Moreover it appears along the line of the proofs of lemma 7.2 and theorem 7.3
in [Den84] that these functions uNf,B are precisely of the form 1 + πnωf,B for
some semi-algebraic function ωf,B on B, and that the center and bounds of B
belong to coalg(F). Refining the socle of B if necessary we can ensure that
hf,B(x)P×N is constant as (x, t) ranges over B. On the other hand B splits into
finitely many cells mod P×N , with the same center and bounds as B, because
P×N as finite index in K×. On each of these cells H, f(x, t)P×N is constant by
(4). Hence H is either contained or disjoint from A, for every A ∈ A. So the
family of all these cells H which are contained in

⋃
A gives the conclusion.
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Using that every semi-algebraic function is piecewise continuous, the cells
mod P×N given by Theorem 4.1 can easily be chosen with continuous center and
bounds. However it is not possible to ensure that they are largely continuous
(think to the case where A consists in a single semi-algebraic set which is itself
the graph of a semi-algebraic function which is not largely continuous). Our
aim, in the remaining of this section, is to find a work-around. We are going
to prove that it can be done, not exactly for θ but for a function θ ◦ uη where
η ∈ Km can be chosen arbitrarily small and uη is the linear automorphism of
Km+1 defined by:

∀(x, t) ∈ Km ×K, uη(x, t) = (x+ tη, t). (5)

Remark 4.2. The smaller is η, the closer is uη from the identity map since ‖η‖
is also the norm (in the usual sense for linear maps) of uη− Id. So the functions
θ ◦ uη can be considered as “arbitrarily small deformations” of θ.

In [vdD98] a good direction for a subset S of Km+1 is defined as a non-zero
vector x = (x1, . . . , xm+1) ∈ Km+1 such that every line directed by x has finite
intersection with S. It is more convenient to identify collinear such vectors
hence we redefine good directions for S as the points x = [x1, . . . , xm+1] in
the projective space Pm(K) such that every affine line in Km+1 directed by x
has finite intersection with S.

Analogously we call x ∈ Pm(K) a geometrically good direction for a
family F of polynomials in K[X,T ] if for every algebraic extension F of K and
every f ∈ F , x is a good direction for the zero set of f in Fm+1.

Remark 4.3. With the above notation, [η, 1] is a good direction for S if and
only if the projection of u−1

η (S) onto Km has finite fibers. Indeed for every
a ∈ Km and every t ∈ K we have:

(a, 0) + t(η, 1) ∈ S ⇐⇒ (a+ tη, t) ∈ S ⇐⇒ (a, t) ∈ u−1
η (S)

Therefore [η, 1] is a geometrically good direction for F if and only if for every
algebraic extension F of K and every f ∈ F , the projection onto Fm of the zero
set of f ◦ uη in Fm+1 has finite fibers.

Lemma 4.4 (Good Direction). For every finite family F of non-zero polynomial
in K[X,T ], the set of geometrically good directions for F contains a non empty
Zariski open subset of Pm(K). In particular, for every non-zero ε ∈ R there is
η ∈ Rm such that ‖η‖ ≤ |ε| and [η, 1] is a good direction for F .

Proof: Let pF be the product of the polynomials in F , and d its total degree.
Then pF writes pF = p◦F − qF with p◦F a non zero homogeneous polynomial of
degree d and qF a polynomial of total degree < d.

Let b ∈ Km+1 be non-zero and x be the corresponding point in Pm(K).
It is not a geometrically good direction for F if and only if for some algebraic
extension F of K and some a ∈ Fm the line a + F.b is contained in the zero
set of pF in Fm+1, that is pF (a + tb) = 0 for every t ∈ F or equivalently
p◦F (a + Tb) = qF (a + Tb). This implies that the degree in T of p◦F (a + Tb) is
< d. In particular the coefficient of T d in p◦F (a+Tb) is zero. A straightforward
computation shows that this coefficient is just p◦F (b).
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So every element in Pm(K) which is outside the zero set of p◦F is a geometri-
cally good direction for F . This proves the main point. Now if Km is identified
to its image in Pm(K) by the mapping a 7→ [a, 1] then every ball in Km is
Zariski dense in Pm(K), so the last point.

Lemma 4.5. Assume Tm. Let η ∈ Km be such that [η, 1] is a geometrically
good direction for F . Let uη be as in (5) and Fη = {f ◦uη : f ∈ F}. Then every
function in coalg(Fη) whose graph is bounded is piecewise largely continuous.

Proof: The functions in coalg(Fη) are linear combinations of functions in
coalg(fη) for f ∈ F , hence it suffices to fix any f in F and prove the result
for coalg(fη). Let d be the degree in T of f , and F a Galois extension of K in
which every polynomial in K[T ] of degree ≤ d splits in linear factor. Given a
basis B = (ξ1, . . . , ξr) of F over K, for each integer e ≤ d let ae ∈ K[X] be the
coefficient of T e in fη, let Ae ⊆ Km be the set of elements x ∈ Km such that
d◦T fη(x, T ) = e, and choose a family of semi-algebraic functions bi,j : Ae → K
such that for every x ∈ Ae

fη(x, T ) = ae(x)
∏
i≤e

(
T −

∑
j≤r

bi,j(x)ξj

)
. (6)

Let ZF (fη) denote the zero set of fη in F , and σ1, . . . , σr be the list of
K-automorphisms of F . Fix an integer i ≤ e, and for every x ∈ Ae let

λi(x) =
∑
j≤r

bi,j(x)ξj .

For every k ≤ r we have

σk(λi(x)) =
∑
j≤r

bi,j(x)σk(ξj).

Inverting the matrix (σk(ξj))j≤r,k≤r gives for every j ≤ r the function bi,j as a
linear combination of σk ◦ λi for k ≤ r. By construction Grσk ◦ λi is contained
in ZF (fη). The later is closed, hence Grσk ◦ λi is contained in ZF (fη) too.

The projection of ZF (fη) onto Fm has finite fibers since η is a good direction
for F (see Remark 4.3). So the same holds true for the closure of the graph of
σk ◦ λi. This means that each σk ◦ λi has finitely many different limit values
at every point of Ae. Obviously each bi,j inherit this property, hence so does
every h ∈ coalg fη. If moreover the graph of h is bounded, it then follows from
Theorem 3.5 (using Tm) that h is piecewise largely continuous.

Now we can turn to the “largely continuous cell decomposition up to small
deformation” which was the aim of this section. We obtain it by combining
the above construction based on good directions and the classical cell prepara-
tion theorem for semi-algebraic functions from Denef (Corollary 6.5 in [Den84])
revisited by Cluckers (Lemma 4 in [Clu01]).

Theorem 4.6. Assume Tm. Let (θi : Ai ⊆ Km+1 7→ K)i∈I be a finite family of
semi-algebraic functions whose domains Ai are bounded. Then for some integer
e ≥ 1 and every integers n,N ≥ 1 there exists a tuple η ∈ Km, an integer
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M0 > 2v(e), an integer N0 divisible by eN , and a finite family D of largely
continuous fitting cells mod Q×N0,M0

, such that D refines {u−1
η (Ai) : i ∈ I}

and such that for every i ∈ I, every D ∈ D contained in u−1
η (Ai) and every

(x, t) ∈ D

θi ◦ uη(x, t) = Ue,n(x, t)hi,D(x)
[
λ−1
D

(
t− cD(x)

)]αi,D
e

where uη is as in (5), hi,D : D̂ → K is a semi-algebraic function and αi,D ∈ Z.
Moreover the set of η ∈ Km having this property is Zariski dense (in par-

ticular η can be chosen arbitrarily small), and the integers e, M can be chosen
arbitrarily large (in the sense of footnote 2).

Remark 4.7. The above expression of θi ◦ uη is well defined because e divides
N0, M0 > 2v(e) and λ−1

D (t− cD(x)) belongs to QN0,M0 for every (x, t) ∈ D (see

the definition of x 7→ x
1
e on QN0,M0

after Lemma 2.9). Of course if D is of type
0, then λD = t − cD(x) = 0 and we use our conventions that 0−1 = ∞ and
∞.0 = 1.

If we were only interested in the existence of such a preparation theorem
with largely continuous cells for θi ◦ uη, the integer N would be of no use and
could be taken equal to 1. However it will be convenient to allow different values
of N when we will use Theorem 4.6 in the proof the Triangulation Theorem.

Proof: Let e∗,M∗ ≥ 1 be arbitrary integers. Corollary 6.5 in [Den84] applied to
each θi gives an integer ei ≥ 1 and a family Ai of semi-algebraic sets partitioning
Ai such that for every every A in Ai and every (x, t) in A:

θeii (x, t) = ui,A(x, t)
fi,A(x, t)

gi,A(x, t)
(7)

where ui,A is a semi-algebraic function from A to R× and fi,A, gi,A are polyno-
mial functions such that gi,A(x, t) 6= 0 on A. Replacing if necessary each ei by
a common multiple e of them and of e∗, we can assume that ei = e for every i
and e is divisible by e∗. Let A be a refinement of

⋃
i∈I Ai’s.

Fix any two integers n,N ≥ 1 and any integer n0 such that n0 ≥ n + v(e)
and n0 > 2v(e). Since Dn0R× is a subgroup of R× with finite index, every
A ∈ A splits into finitely many semi-algebraic pieces on each of which ui,A is
constant modulo Dn0R× (for every i ∈ I such that A ⊆ Ai). Thus, refining A
if necessary, (7) can be replaced, for every A in A contained in Ai and every
(x, t) in A, by

θei (x, t) = Un0
(x, t)ũi,A

fi,A(x, t)

gi,A(x, t)
(8)

with ũi,A ∈ R×.
Macintyre’s Theorem 2.3, applied to each A in A gives a finite family B of

semi-algebraic sets refining A, an integer N0 ≥ 1 and a finite list F of non-
zero polynomials in m + 1 variables such that every element of B is a boolean
combinations of sets f−1(PN0) with f ∈ F . By Remark 2.2, N0 can be chosen
divisible by eN . Expanding F if necessary, we can assume that all the polyno-
mials fi,A and gi,A in (8) also belong to F (except of course those which are
null).
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Lemma 4.4 gives η ∈ Km+1 such that [η, 1] is a geometrically good direction
for Fη, where Fη = {f ◦ uη : f ∈ F}. Note that every set in Aη = {u−1

η (A) :
A ∈ A} is a boolean combination of sets f−1

η (PN0
) with fη ∈ Fη. Denef’s

Theorem 4.1 applied to Fη gives a finite family C of fitting cells mod P×N0
which

refines Aη and whose center and bounds belong to coalgFη, such that for every
f ∈ F , every C ∈ C and every (x, t) ∈ C

fη(x, t) = Un0(x, t)hf,C(x)
(
t− cC(x)

)αf,C (9)

where hf,C : Ĉ → K is a semi-algebraic function and αf,C is a positive integer.
We removed the zero polynomial from F , but obviously (9) holds true for f = 0
as well, by taking hf,C = 0 in that case. Each Ai is bounded hence so is their
union

⋃
A as well as

⋃
Aη. So the center and bounds of every cell in C must be

bounded functions with bounded domain. By Lemma 4.5 (assuming Tm) these
functions are piecewise largely continuous. Refining the socle of C if necessary,
and C accordingly, we are then reduced to the case where every cell in C is
largely continuous. Note that Un0

◦ uη = Un0
, so by combining (8) and (9) we

get that for every i ∈ I, every C ∈ C contained in u−1
η (Ai) and every (x, t) ∈ C

θi,η(x, t)e = Un0
(x, t)hi,C(x)

(
t− cC(x)

)αi,C
(10)

where θi,η = θi ◦ uη, hi,C : Ĉ → K is a semi-algebraic function and αi,C ∈ Z.
For any integer M0 > 2v(e), Q×N0,M0

is a subgroup with finite index in P×N0

hence every such cell C mod P×N0
splits into finitely many cells D mod Q×N0,M0

with the same center, bounds and type as C. The integer M0 can be chosen
arbitrarily large, in particular greater than M∗. Let D be the family of all these
cells D. From (10) and Lemma 2.9 we derive that for every i ∈ I, every D ∈ D
contained in u−1

η (Ai) and every (x, t) ∈ D

θi,η(x, t)e = Un0
(x, t)h̃i,D(x)

([
λ−1
D

(
t− cD(x)

)]αi,D
e

)e
(11)

where h̃i,D = hi,C and αi,D = αi,C with C the unique cell in C containing
D. The factor Un0

in (11) can be written Uen0−v(e) by Remark 2.10. Thus (11)
implies that h̃i,D takes values in Pe. So by Theorem 2.8 there is a semi-algebraic
function hi,D such that h̃i,D = hei,D. As a consequence, from (11) it follows that
there is a semi-algebraic function χi,D with values in Ue such that for every
(x, t) ∈ D

θi,η(x, t) = χi,D(x, t)Un0−v(e)(x, t)hi,D(x)
[
λ−1
D

(
t− cD(x)

)]αi,D
e (12)

By construction n0 − v(e) ≥ n hence the factor Un0−v(e) can a fortiori be
replaced by Un. Then χi,DUn (which is just Ue,n) replaces χi,DUn0−v(e) in (12),
which proves the result.

5 Cellular complexes

For this and the next section, let G be a fixed semi-algebraic clopen subgroup
of K× with finite index. Then vG is a subgroup of Z with finite index, hence
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vG = N0Z for some integer N0 ≥ 1. Our aim in these two sections is to prove
that every finite family of bounded largely continuous fitting cells mod G, such
as the one given by Theorem 4.6, can be refined in a complex of cells mod G
satisfying certain restrictive assumptions defined below.

Notation. For every largely continuous fitting cell A mod G in Km+1 with
socle X, and every semi-algebraic set Y contained in X let:

• ∂0
YA = (c̄A, 0, 0, {0})|Y if ν̄A = 0 on Y , ∂0

YA = ∅ otherwise;

• ∂1
YA = (c̄A, ν̄A, µ̄A, GA)|Y if µ̄A 6= 0 on Y , ∂1

YA = ∅ otherwise.

Provided that on Y , ν̄A and µ̄A either take values in K× or are constant, ∂0
YA

and ∂1
YA are (if non-empty) largely continuous fitting cells mod G contained in

A∩(Y ×K). Intuitively, we can represent them (when νA 6= 0 and ν̄A = 0 < µ̄A
on Y ) like this:

Y X
•

cA

A

•∂0
YA

∂1
YA

Remark 5.1. If X is a partition of X, the family of non-empty ∂iYA for
i ∈ {0, 1} and Y ∈ X form a partition of A.

Given two cells A, B in Km+1 and an integer n ≥ 1, we write B Cn A if
B ⊆ A and if there exists α ∈ {0, 1} and a semi-algebraic function hB,A : B̂ → K
such that for every (x, t) in B:

t− cA(x) = Un(x, t)hB,A(x)α
(
t− cB(x)

)1−α
We call hB,A a Cn-transition for (B,A). If A, B are families of cells in Km+1

we write B Cn A if B Cn A for every B ∈ B and A ∈ A such that B meets A.
A Cn-system for (B,A) is then the data of one Cn-transition for each possible
(B,A) in B ×A.

Remark 5.2. For any two finite families A, B of cells mod G, if B refines A
and belongs to AlgnA then B Cn A.

A closed Cn-complex of cells mod G is a finite family A of largely con-
tinuous fitting cells mod G such that

⋃
A is closed, the socle of A is a complex

of sets and for every A,B ∈ A if B meets A then for some i ∈ {0, 1}, ∂iYA is a

cell10 and B Cn ∂iYA, with Y = B̂. If moreover B = ∂iYA we call A a closed
cellular complex mod G. As the terminology suggests, we are going to prove
that closed Cn- and cellular complexes are complexes of sets in the general
sense of Section 2 (see Proposition 5.3). Any subset of a closed Cn-complex
(resp. closed cellular complex) is a Cn-complex (resp. a cellular complex.
As usually we call them monoplexes if they form a tree with respect to the
specialization order.

10The condition ∂iY A is a cell means that on Y , µ̄A and ν̄A either take values in K× or
are constant.
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When A is a Cn-complex of cells mod G, for every Y ∈ Â and every cells A,
B in A such that B meets A, there is an integer α ∈ {0, 1} and a semi-algebraic

function hB,A : B̂ → K such that for every (x, t) in B:

t− c̄A(x) = Un(x, t)hB,A(x)α
(
t− cB(x)

)1−α
.

An inner Cn-system for A is the data of one function hB,A as above for every
possible A,B ∈ A.

Proposition 5.3. Let A be a closed Cn-complex of cells mod G. Then A is
a closed complex of sets. Moreover, for every A,B ∈ A and every Z ∈ Â if B
meets ∂0

ZA then B = ∂0
ZA = Gr c̄A|Z .

Proof: By assumption the socle of every cell A in A is relatively open and
pure dimensional. Thanks to the restrictions we made on the bounds in our
definition of presented cells, it follows that A is also relatively open and pure
dimensional.

In order to show that A is a partition, let A, B be two cells in A which are
not disjoint and let X = Â. Both B̂ and X belong to Â and are not disjoint,
hence B̂ = X. Since B meets A ⊆ A, by assumption B is contained in ∂iXA with
i = tpB. But then ∂iXA meets A, hence obviously is equal to A. So B ⊆ A,
and equality holds by symmetry.

Now let A be any cell in A and X = Â. Since
⋃
A is closed, every point

of A belongs to a unique B ∈ A. Since B meets A, by assumption B ⊆ ∂iYA

with Y = B̂ and i = tpB. In particular B ⊆ A, which proves that A is a union
of cells in A (hence so is ∂A since A is a partition and ∂A is disjoint from A).
This proves that A is closed complex of sets.

The last point follows. Indeed, if B meets ∂0
ZA ⊆ A then it is contained in

∂iYA for some i ∈ {0, 1}, with Y = B̂. In particular ∂0
ZA meets ∂iYA. They are

two pieces of a partition of A (see Remark 5.1) hence ∂0
YA = ∂iZA. Therefore

Y = Z and i = 0, so B ⊆ ∂0
ZA. That is, B is of type 0 and cB = c̄A on B̂ = Z,

so B = Gr c̄A|Z = ∂0
ZA.

Proposition 5.4. Let A be a finite family of largely continuous fitting cells mod
G and n ≥ 1 an integer. There exists a Cn–complex D of cells mod G refining
A such that D Cn A.

In the next section we will prove that one can even require that D is a cellular
monoplex mod G.

Proof: The proof goes by induction on d = dim
⋃
Â. If a Cn-complex D+ is

found which proves the result for a family A+ of cells mod G containing A+

then obviously the family D of cells in D+ contained in
⋃
A proves the result

for A. Thus, enlarging A if necessary, we can assume that
⋃
A and

⋃
Â are

closed. By Denef’s Theorem 2.11 and Remark 5.2 there is a finite family B of
largely continuous fitting cells mod G refining A such that B Cn A. Replacing
A by this refinement if necessary we can also assume that A is a partition.

If B is any vertical refinement of A then obviously BCnA. Thus, by taking if
necessary a finite partition X refining Â and replacing A by the corresponding
vertical refinement (that is the family of all cells A ∩ (X × K) with A ∈ A
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and X ∈ X contained in Â), we can assume that Â = X is a partition. By
the same argument we can assume as well that for every A ∈ A and every
X ∈ X contained in ∂X, the restrictions of µ̄A and ν̄A to X take values in K×

or are constant, hence ∂0
XA (resp. ∂1

XA) is a cell with socle X whenever it is
non-empty. By Remark 2.16 we can even assume that it is a complex of pure
dimensional sets. Let Xd be the family of X ∈ X with dimension d. Note that
every X ∈ Xd is open in

⋃
X because X is a complex and dim

⋃
X = d.

For every X ∈ Xd let AX be the family of cells in A with socle X. For
every cell A ∈ AX of type 1 such that νA = 0, Gr cA is contained in A hence
in
⋃
AX since

⋃
A is closed and Â is a partition. It may happen that Gr cA

does not belong to A. With Proposition 5.3 in view we have to remedy this.
Every point (x, cA(x)) in Gr cA belongs to some cell B in AX . This cell must
be of type 0 otherwise the fiber Bx = {t ∈ K : (x, t) ∈ B} would be open,
hence it would contain a neighbourhood V of cA(x) and so {x} × V would be
contained in B and meet A, which implies that B ⊆ A since AX is partition, in
contradiction with the fact B meets Gr cA. So there is a finite partition YA of
X in semi-algebraic pieces Y on each of which there is a unique cell B ∈ AX of
type 0 whose center coincides with cA on Y . Repeating the same argument for
every A ∈ AX and every X ∈ Xd gives a finite partition Y of

⋃
Xd finer then

every such YA. Let X ′ be a complex of pure dimensional semi-algebraic sets
refining X ∪ Y. Replacing if necessary A by the vertical refinement defined by
X ′, we can then assume from now on that for every X in Xd and every A ∈ A
with socle X, if νA = 0 then Gr cA belongs to A.

Let Ad = {A ∈ A : Â ∈ Xd} and B be the union of A\Ad and of the family

of non-empty ∂iYA for i ∈ {0, 1}, A ∈ Ad and Y ∈ X \Xd. Clearly dim
⋃
B̂ < d

so the induction hypothesis gives a Cn–complex C of cells mod G refining B
such that C Cn B. A fortiori C Cn (A \ Ad) because the latter is contained in
B. So if we let D = C ∪ Ad, then D refines A and D Cn A. It only remains to
check that D is a Cn-complex, and first that D̂ is a complex of sets.

Note that Âd = Xd hence D̂ = Ĉ ∪ Âd = Ĉ ∪ Xd is a partition, and every
set in D̂ is pure dimensional and relatively open (by induction hypothesis for Ĉ
and by construction for Xd). For every X ∈ D̂, we have to prove that ∂X is a

union of sets in Ĉ ∪Xd. If X ∈ Ĉ this is clear because Ĉ is a complex. Otherwise
X ∈ Xd hence ∂X is a union of sets in X (because X is a complex). All these
sets have dimension < d = dimX hence belong to X \ Xd. But C refines B,

which contains A\Ad, whose socle is X \Xd, hence Ĉ refines X \Xd. Thus ∂X

is also the union of sets in Ĉ, hence of D̂.
Now let D,E ∈ D be such that E meets D, let X = D̂ and Y = Ê. By

construction ∂0
YD and ∂1

YD are cells (if non-empty) and cover D∩ (Z ×K). So
there is i ∈ {0, 1} such that ∂iYD is a cell which meets E. We have to prove
that E Cn ∂iXD. Note that Y meets the socle of D, which is contained in X,

hence Y = X or Y ⊆ ∂X because D̂ is a complex. So, if dimX < d then also
dimY < d hence D,E ∈ C. In that case ECn ∂jXD because C is a Cn–complex.
Thus we can assume that dimX = d, that is D ∈ Ad. We know that Y = X
or Y ⊆ ∂X. In the first case Y = X hence ∂iXD ∈ Ad ⊆ D by construction,

so E = ∂iXD because D is a partition. In the second case Y ∈ Ĉ hence E ∈ C.
Now Y is contained in some Z ∈ X \Xd because Ĉ refines X \Xd, and E meets
∂iZD. By construction ∂iZD belongs to B. Since CCnB it follows that ECn∂iZD
hence a fortiori E Cn ∂iYD because E ⊆ Y ×K and ∂iYD = ∂iZD ∩ (Y ×K).
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Before entering in more complicated constructions, let us mention here two
elementary properties of fitting cells which will be of some use latter.

Proposition 5.5. Let A ⊆ Km+1 be a cell mod G of type 1. Then:

• µA is a fitting bound if and only if µA =∞ or vµA(Â) ⊆ vGA.

• νA is a fitting bound if and only if νA = 0 or vνA(Â) ⊆ vGA).

Proof: The case where µA = ∞ being trivial, we can omit it. If µA 6= ∞
is a fitting bound then obviously vµA(Â) ⊆ vGA because v(t − cA(x)) ∈ vGA
for every (x, t) ∈ A. Conversely assume that vµA(Â) ⊆ vGA. Let x be any

element of Â. We have to prove that |µA(x)| = max{|d| : d ∈ Dx} where Dx =
{t− cA(x) : (x, t) ∈ A}. Dx is bounded since µA 6=∞, hence by Corollary 2.7 it
contains an element d of maximal norm. By construction |d| ≤ |µA(x)|. Assume
for a contradiction that |d| < |µA(x)|, that is v(d/µA(x)) > 0. By construction
v(d) and vµA(x) belong to vGA = vλA + vG hence v(d/µA(x)) ∈ vG = N0Z.
Thus v(d/µA(x)) ≥ N0, that is |d| ≤ |πN0µA(x)|. Pick any g ∈ G such that
v(g) = N0 and let t′ = cA(x) + d/g. We have t′ − cA(x) = d/g ∈ GA, |νA(x)| ≤
|d| ≤ |d/g| and |d/g| ≤ |µA(x)|, hence (x, t′) ∈ A. So t′ − cA(x) ∈ Dx and
|d| < |t′ − cA(x)|, a contradiction. The proof for νA is similar and left to the
reader.

Proposition 5.6. For every fitting cell A mod QN0,M0
in Km+1, if A ⊆ Rm+1

then vµA ≥ −M0.

Since A ⊆ Rm+1, one may naively expect that |µA| ≤ 1, that is vµA ≥ 0.
The presented cell A = (−π−M0 , π−M0 , π−M0 , QN0,M0

) is a counterexample in
K: it is contained in R (it is actually equal to R) and vµA = −M0 < 0.

Proof: Assume the contrary, that is vµA(x) < −M0 for some x ∈ Â. Since A is
a fitting cell there is t ∈ K such that (x, t) ∈ A and v(t−cA(x)) = vµA(x). Since
A ⊆ Rm+1, t ∈ R hence v(t − cA(x)) < 0 = v(t) implies that vcA(x) = v(t −
cA(x)) = vµA(x). So there are a ∈ R and g ∈ QN,M such that cA(x) = aπM0+1

and t − cA(x) = λAg. In particular v(λAg) = v(t − cA(x)) = vµA(x) < −M0

so πM0λAg /∈ R. Now let t′ = t + πM0λAg, then t′ /∈ R since t ∈ R and
πM0λAg /∈ R. On the other hand 1 + πM0 ∈ QN0,M0

and

t′ − cA(x) = t− cA(x) + πM0λAg = λAg + +πM0λAg = λA(1 + πM0)g.

So t′ − cA(x) ∈ λAQN0,M0
and v(t′ − cA(x)) = v(λA(1 + πM0)g) = v(λAg) =

vµA(x). Thus (x, t′) ∈ A, a contradiction since t′ /∈ R and A ⊆ Rm+1.

6 Cellular monoplexes

We keep as in Section 5 a semi-algebraic clopen subgroup G of K× with finite
index, and N0 ≥ 1 an integer such that vG = N0Z. Lemma 6.1 below (together
with Lemma 7.10) is the technical heart of this paper. All this section is devoted
to its proof.
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Lemma 6.1. Assume Tm. Let A be a finite set of bounded, largely continuous,
fitting cells mod G in Km+1. Let F0 be a finite family of definable functions
with domains in Â. Let n,N ≥ 1 be a pair of integers. For some integers e,
M > 2v(e) which can be made arbitrarily large (in the sense of footnote 2),
there is a tuple (V, ϕ,D,FD) such that:

• D is a cellular monoplex mod G refining A such that D Cn A.

• FD is a Cn-system for (D,A).

• (V, ϕ) is a triangulation of 11 F0 ∪ FD ∪ CB(D) with parameters

(n,N, e,M), such that D̂ = ϕ(V).

Note that, in order to obtain this result, it does not suffice to find a contin-
uous monoplex D of well presented cells mod G refining A such that D Cn A,
and then to select an arbitrary Cn-system FD for (D,A) and to apply Tm to
F0∪FD∪CB(D). Indeed, this will give a triangulation (V, ϕ) of F0∪FD∪CB(D).

But ϕ(V) will then be a refinement of D̂, not D̂ itself. It is then tempting to
refine vertically D, that is to replace D by the family E of cells D ∩ (ϕ(V )×K)

for D ∈ D and V ∈ V such that ϕ(V ) ⊆ D̂. This ensures that Ê = ϕ(V) and E
is a cellular complex such that E Cn A. But E is no longer a monoplex.

In order to break this vicious circle we have to build V, D and FD simul-
taneously. The remaining of this section is devoted to this construction. It is
divided in three parts: (6.a) preparation, (6.b) vertical refinement, (6.c) hori-
zontal refinement.

6.a Preparation

Given a family X of subsets of Km, we let F0|X denote the family of all the
restrictions f|X with f ∈ F0 and X ∈ X contained in the domain of f . By
the same argument as in the beginning of the proof of Proposition 5.4, we can
assume that

⋃
A is closed. Finally, replacing if necessary A by a refinement

D given by Proposition 5.4 and F0 by F0|X with X = D̂, we are reduced to
the case where A is a closed Cn–complex of bounded cells mod G. Enlarging
F0 if necessary, we can, and will, assume that it contains CB(A) and an inner
Cn-system for A. For some integers e, M > 2v(e) which can be made arbitrarily
large, Tm gives a triangulation (S, ϕ) of F0 with parameters (n,N, e,M). For

every A ∈ A we let SA = ϕ−1(Â).

Since
⋃
A is bounded and closed in Km+1, its image

⋃
Â by the coordinate

projection is closed in Km by Theorem 2.6. Now ϕ is a homeomorphism from⊎
S to

⋃
Â, hence S is closed by Remark 2.19.

Let A′ be the family of cells A∩ (ϕ(S)×K) for A ∈ A and S ∈ S such that

ϕ(S) ⊆ Â, and let F ′0 = F0|ϕ(S). Since every cell in A′ has the same center
and bounds as the unique cell in A which contains it, clearly A′ is still a closed
Cn–complex, F ′0 contains CB(A′) and an inner Cn-system for A′, and (S, ϕ) is
still a triangulation of F ′0. Thus, replacing (A,F0) by (A′,F ′0) if necessary, we

can assume that ϕ(S) = Â, that is SA ∈ S for every A ∈ A.
A preparation for (S, ϕ,A,F0) is a tuple (T ,B,FB) such that:

11Recall that CB(D) denotes the family of center and bounds of the cells in D.
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(P1) T is a simplicial subcomplex of S. We let S|T = {S ∈ S : S ⊆
⊎
T }, and

A|T be the family of cells A ∈ A such that SA ∈ S|T . Note that:

• T is closed because
⊎
T is closed in

⊎
S.

• By Remark 2.19 it follows that the image by ϕ of
⋃
T , that is the

socle of A|T , is closed too.

• Hence A|T is closed because
⋃
A|T is the inverse image of its socle

by the (continuous) coordinate projection of
⋃
A onto

⋃
Â.

(P2) B is a cellular monoplex mod G refining A|T such that ϕ(T ) = B̂. For

every B ∈ B we let TB = ϕ−1(B̂). Note that B is closed because
⋃
B =⋃

A|T .

(P3) B Cn A|T and FB is a Cn-system for (B,A|T ).

(P4) T together with the restriction of ϕ to
⊎
T , which we will denote ϕ|T , is

a triangulation of FB ∪ CB(B) with parameters (n,N, e,M). Note that,
since T refines S|T and (S, ϕ) is a triangulation of F0, (T , ϕ|T ) is also a
triangulation of F0|X with X = ϕ(T ).

Remark 6.2. Obviously (∅, ∅, ∅) is preparation for (S, ϕ,A,F0). Given an
arbitrary preparation (T ,B,FB) for (S, ϕ,A,F0) such that

⋃
T 6=

⋃
S, and S

a minimal element in S \S|T , it suffices to build from it a preparation (U , C,FC)
such that

⊎
U =

⊎
T ∪ S. Indeed, S|U contains one more element of S than

S|T thus, starting from (∅, ∅, ∅) and repeating the process inductively we will
finally get a preparation (V,D,FD) such that

⊎
V =

⊎
S, hence A|V = A. (P4)

then implies that (V, ϕ) is a triangulation of F0 ∪FB ∪CB(B) with parameters
(n,N, e,M). So the tuple (V, ϕ,D,FD) satisfies the conclusion of Lemma 6.1,
which finishes the proof.

So from now on, let (T ,B,FB) be a given preparation for (S, ϕ,A,F0) such
that

⊎
T 6=

⊎
S. Let S be a minimal element in S \ S|T and AS = {A ∈ A :

Â = ϕ(S)}. The minimality of S ensures that every proper face of S belongs to
S|T , hence

⊎
S ∪ S and

⋃
(A|T ∪ AS) are closed.

Claim 6.3. Let A be a cell of type 1 in AS, T a simplex in T contained in S,
and Y = ϕ(T ). If ν̄A = 0 on Y then Gr c̄A|Y = ∂0

YA belongs to B. If moreover
µ̄A 6= 0 on Y then ∂1

YA is covered by the cells in B that it meets, and among
them there is a unique cell B1

T whose closure meets ∂0
YA. More precisely:

B1
T =

(
c̄A|Y , 0, µB1

T
, GA

)
and either |µB1

T
| = |µ̄A| on Y , or |µB1

T
| ≤ |πN0 µ̄A| on Y . In particular the

closure of B1
T contains ∂0

YA.

Proof: Note first that for every i ∈ {0, 1}, ∂iYA is contained in A hence in
⋃
A

since it is closed by assumption. Every cell in A which meets ∂iYA is contained
in it since A is a Cn-complex, and belongs to A|T (otherwise its socle would
not meet Y since Y ⊆

⋃
ϕ(T )). Since B refines A|T it follows that ∂iYA is the

union of the cells B in B which it contains.
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In particular, if ν̄A = 0 on A then ∂0
YA 6= ∅ hence it contains a cell B ∈ B.

Necessarily B is of type 0 since ∂0
YA is so, and thus B = ∂0

YA since they have
the same socle Y . This proves the first point.

For the second point, since ν̄A = 0 6= µ̄A on Y both ∂0
YA and ∂1

YA are
non-empty. Now ∂0

YA is contained in the closure of ∂1
YA, which is the union of

the closure of the cells in B contained in ∂1
YA. Hence necessarily the closure of

at least one of them, say B, meets ∂0
YA.

B̂ meets Y and both of them belong to B̂ so B̂ = Y . Since B ∩ (Y × K)
meets ∂0

YA and B ⊆ ∂1
YA is disjoint from ∂0

YA, B must be of type 1 with νB = 0
because otherwise B would be closed in Y ×K. It follows that B∩(Y ×B) is the
union of B and ∂0

YB, and the latter meets ∂0
YA. By the first point ∂0

YA ∈ B. By
Proposition 5.3 applied to B, ∂0

YB ∈ B. Thus ∂0
YB = ∂0

YA, in particular they
have the same center so cB = c̄A|Y . Pick any (x, t) ∈ B, so that t−cB(x) ∈ GB .
B is contained in ∂1

YA hence t − c̄A(x) ∈ GA. Since cB(x) = c̄A(x) it follows
that GB ∩GA 6= ∅ hence GA = GB .

This proves that B = (c̄A|Y , 0, µB , GA). The uniqueness of B follows. Indeed
if B′ is any cell in B contained in ∂1

YA whose closure meets ∂0
YA, the same

argument shows that B′ = (c̄A|Y , 0, µB′ , GA). This implies that for any t′ ∈ K
such that t′ − c̄A(x) is small enough and belongs to GA, the point (x, t′) will
belong both to B and B′, so B = B′.

If |µB | = |µ̄A|Y | we are done, so let us assume the contrary. Then |µB(x)| 6=
|µ̄A(x)| for some x ∈ Y . B is a fitting cell so let t ∈ K be such that (x, t) ∈ B
and |t− cB(x)| = |µB(x)|. We have |t− c̄A(x)| ≤ |µ̄A(x)| because (x, t) ∈ ∂1

YA,
so |µB(x)| < |µ̄A(x)|. We are going to show that |µB | < µ̄A| on Y . Since ∂1

YA
is a fitting cell it follows that ∂1

YA is not contained in B, so there is at least one

other cell C in B contained in ∂1
YA. Now Ĉ is contained in Y and both of them

belong to B̂ so B̂ = Y . For each y in Y fix ty in K such that (y, ty) ∈ C. Since
C is contained in ∂1

YA we have:

0 ≤ |ty − c̄A(y)| ≤ |µ̄A(y)| and ty − c̄A(y) ∈ GA

Necessarily |µB(y)| < |ty − c̄A(y)| because otherwise (y, ty) would belong both
to C and B, a contradiction. Hence a fortiori |µB(y)| < |µ̄A(y)|. By Proposi-
tion 5.5 this implies that |µB(y)| ≤ |πN0 µ̄A(y)| because B and A are fitting cells
mod G, vG = N0Z and GB = GA. So |µB | ≤ |πN0 µ̄A|Y | in that case, which
proves our claim.

We can start now our construction of a preparation (U , C,FC) for
(S, ϕ,A,F0) such that

⊎
U =

⊎
T ∪ S. We are going to refine AS twice. First

“vertically”, according to the image by ϕ of a certain partition of S which,
together with T , forms a simplicial subcomplex U of S refining S|T ∪ {S}
(Claim 6.5). Then “horizontally” by enlarging the cells in B contained in the
closure of

⋃
AS in such a way that the family of these new cells, together with B,

forms a cellular monoplex C mod G refining A|T ∪AS = A|U such that CCnA|U .
The point of the construction is to ensure that C comes with a Cn-system FC
for (C,A|U ) such that (U , C,FC) is a preparation for (S, ϕ,A,F0).
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6.b Vertical refinement

Let TS be the list of proper faces of S. We first deal with the case when S is
not closed, that is TS 6= ∅. For every A in AS let:

(c◦A, ν
◦
A, µ

◦
A) = (cA ◦ ϕ, νA ◦ ϕ, µA ◦ ϕ)|S

For every T ∈ TS and every A ∈ AS let ΦT,A(t, ε) be the formula saying
that (t, ε) ∈ T × R∗ and that one of the following conditions hold, with n1 =
max(n, 1 + 2vN):

(A1)t,ε: ν̄
◦
A(t) 6= 0 and for every s ∈ S such that ‖s− t‖ ≤ |ε|:

|c◦A(s)− c̄◦A(t)| ≤ |πn1 ν̄◦A(t)|

and |ν◦A(s)| = |ν̄◦A(t)| and |µ◦A(s)| = |µ̄◦A(t)|

(A2)t,ε: ν̄
◦
A(t) = 0, µ̄◦A(t) 6= 0 and for every s ∈ S such that ‖s− t‖ ≤ |ε|:

|c◦A(s)− c̄◦A(t)| ≤ |πn1−N0µ◦B(t)|

and |ν◦A(s)| ≤ |µ◦B(t)| ≤ |µ̄◦A(t)| = |µ◦A(s)| where B is the cell B1
T given by

Claim 6.3.

(A3)t: ν̄
◦
A(t) = µ̄◦A(t) = 0.

Let Φ(t, ε) be the conjunction of the (finitely many) ΦT,A(t, ε)’s as T ranges
over TS and A over AS . Finally let Ψ(t, ε) be the formula saying that that |ε| is
maximal among the elements ε′ in R∗ such that K |= Φ(t, ε′). Obviously Ψ(t, ε)
implies Φ(t, ε).

By continuity of the center and bounds of A, for every t ∈ T there exists
εt,T,A ∈ R∗ such that K |= ΦT,A(t, εt,T,A). Hence for every t ∈ ∂S there is
ε ∈ R∗ such that K |= Φ(t, ε) (every ε ∈ R∗ such that |ε| ≤ |εt,T,A| for every
(T,A) ∈ TS × AS is a solution). For every t ∈ ∂S, the set Et of elements ε
of R∗ such that K |= Φ(t, ε) is semi-algebraic, bounded and non-empty. So
by Corollary 2.7 there is εt ∈ Et such that |εt| is maximal in |Et|, that is
K |= Ψ(t, εt). Theorem 2.8 then gives a semi-algebraic function ε : ∂S → R∗

such that K |= Ψ(t, ε(t)) for every t ∈ ∂S, hence a fortiori:

∀t ∈ ∂S, K |= Φ(t, ε(t)). (13)

Claim 6.4. Let ε : ∂S → R∗ be the semi-algebraic function defined above. Then
the restriction of |ε| to every proper face T of S is continuous.

Proof: Note first that if K |= ΦT,A(t, ε′) for some t ∈ T and ε′ ∈ R∗ then
K |= ΦT,A(t′, ε′) for every t′ ∈ T ∩B where B = B(t, ε′) is the ball with center
t and radius ε′.

Indeed, assume for example that ν̄◦A(t) 6= 0, hence (A1)t,ε′ holds true. It
asserts that for every s ∈ S ∩B

|c◦A(s)− c̄◦A(t)| ≤ |πn1 ν̄A(t)| (14)

and |νA(s)| = |ν̄◦A(t)| and |µA(s)| = |µ̄◦A(t)|. Now T ∩ B ⊆ S ∩B hence, as s
tends in S ∩B to any given t′ ∈ T ∩B we get

|c◦A(t′)− c̄◦A(t)| ≤ |πn1 ν̄A(t)| (15)
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and |νA(t′)| = |ν̄◦A(t)| and |µA(t′)| = |µ̄◦A(t)|. By combining (14) and (15) with
the triangle inequality we obtain that for every s ∈ S ∩B

|c◦A(s)− c̄◦A(t′)| ≤ |πn1 ν̄A(t)| = |πn1 ν̄A(t′)|

and |µA(s)| = |µ̄◦A(t′)|, that is (A1)t′,ε′ .
Assume now that µ̄◦A(t) = 0, hence ν̄◦A(t) = 0, that is (A3)t holds true. Then

ϕ(T ) ∈ Â and µ̄A(ϕ(t)) = 0 imply that µ̄A = 0 on ϕ(T ) because A is a closed
Cn–complex (see foonote 10). So µ̄◦A = ν̄◦A = 0 on T , and (A3)t′ follows.

The intermediate case (A2)t,ε where ν̄◦A(t) = 0 and µ̄◦A(t) 6= 0 is similar, and
left to the reader.

Now it follows that if K |= Ψ(t, ε′) and ‖t′ − t‖ ≤ |ε′|, then K |= Ψ(t, ε′′) if
and only if |ε′| = |ε′′|. So |ε(t)| = |ε(t′)| for every t, t′ ∈ T such that ‖t− t′‖ ≤
|ε(t)|. Thus |ε| is locally constant, hence continuous on T .

Theorem 2.17 applies to S, TS and the function ε. It gives a partition US of
S such that US ∪ TS is a simplicial complex, for each T ∈ TS there is a unique
U ∈ US with facet T , and for every u ∈ U :

‖u− πU (u)‖ ≤ |ε(πU (u))| (16)

where πU is the coordinate projection of U onto T (see Remark 2.15). On ϕ(U)
let σU = ϕ ◦ πU ◦ ϕ−1. This is a continuous retraction of ϕ(U) onto ϕ(T ).

For every U ∈ US and every A ∈ AS let

AU = A ∩
(
ϕ(U)×K

)
. (17)

Let TU = ∅ if U is closed, and TU ∈ TS be the facet of U otherwise. Finally let
U = US ∪ TS .

Claim 6.5. With the notation above, U is a simplicial subcomplex of S refining
S|T ∪ {S} and containing T . For every U ⊆ S in U and every A ∈ AS, AU is
a largely continuous fitting cell mod G. Moreover if U is not closed then:

1. If |ν̄A| 6= 0 on ϕ(TU ), then for every x ∈ ÂU :∣∣cA(x)− c̄A(σU (x))
∣∣ ≤ ∣∣πn1 ν̄A(σU (x))

∣∣ (18)

|νA(x)| = |ν̄A(σU (x))| and |µA(x)| = |µ̄A(σU (x))| (19)

2. If |ν̄A| = 0 < |µ̄A| on ϕ(TU ), then for every x ∈ ÂU :∣∣cA(x)− c̄A(σU (x))
∣∣ ≤ ∣∣πn1−N0µB(σU (x))

∣∣ (20)

|νA(x)| ≤ |µB(σU (x))| ≤ |µ̄A(σU (x))| = |µA(x)| (21)

where B is the cell B1
T given by Claim 6.3.

Proof: By construction U is clearly a simplicial complex refining T ∪ {S},
hence refining S|T ∪ {S} since T refines S|T . For every U ⊆ S in U and every
A ∈ AS , AU is a largely continuous fitting cell mod G by (17), because A is so.
If moreover U is not closed let T = TU ∈ TS be its facet, let x be any element
of ÂU = ϕ(U), s = ϕ−1(x) ∈ U and t = πU (s) ∈ T , where πU is the coordinate
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projection of U onto T (see Remark 2.15). Note that σU (x) = ϕ ◦ πU (s) = ϕ(t)
hence c̄A(σU (x)) = c̄◦A(t), and similarly for ν̄A(σU (x)) and µ̄A(σU (x)). By (13)
we have K |= Φ(t, ε(t)).

If |ν̄A| 6= 0 on ϕ(T ) then ν̄◦A(t) = ν̄A(σU (x)) 6= 0 hence Φ(t, ε(t)) says that
(A1)t,ε(t) holds for t. By (16), ‖s − t‖ ≤ |ε(t)| so (18) and (19) follow from
(A1)t,ε(t). Similarly, if |ν̄A| = 0 < |µ̄A| on ϕ(T ) then (20) and (21) follow from
(A2)t,ε(t).

This finishes the construction of the vertical refinement of AS if S is not
closed. When S is closed we simply take U = S|T ∪ {S}. Claim 6.5 holds true
in this case too, for the trivial reason that there is no non-closed U ⊆ S in U .

Remark 6.6. For every U ∈ US , if νAU = 0 then Gr cAU = BU for some
B ∈ AS . Indeed νA|ϕ(U) = νAU = 0 implies that νA = 0 (thanks to our
definition of presented cells) hence Gr cA = ∂0

ϕ(S)A belongs to A: it is contained

in A, hence in
⋃
A since the latter is closed, in particular it meets at least one

cell B in A, and the last point of Proposition 5.3 then gives that B = Gr cA.
Thus B = Gr cA ∈ AS , and clearly Gr cAU = BU .

6.c Horizontal refinement

For every A ∈ AS we are going to construct for each U ∈ US a partition EA,U of
AU , and for each E in EA,U a semi-algebraic function hE,AU : ϕ(U) → K such
that:

(Pres) Ê = ϕ(U) = ÂU and E is a largely continuous fitting cell mod G.

(Fron) One of the following holds:

(∂1) ∂E = ∅.
(∂2) ∂E = Gr cE and Gr cE ∈ EC,U for some C ∈ AS .

(∂3) ∂E = B for some B ∈ B, in which case U is not closed, B̂ = ϕ(TU )
and:

(cB , νB , µB) = (c̄E , ν̄E , µ̄E)|ϕ(TU ).

(Out) E Cn AU and hE,AU is a Cn-transition for (E,AU ).

(Mon) cE ◦ϕ|U , µE ◦ϕ|U , νE ◦ϕ|U and hE,AU ◦ϕ|U are N -monomial mod Ue,n.

This last construction will finish the proof of Lemma 6.1. Indeed, assuming
that it is done, let C be the union of B and all the cells E in EA,U for A ∈ AS
and U ∈ US . Let FC be the union of the family of the corresponding functions
hE,AU and of FB. By Claim 6.5, U is a simplicial subcomplex of S such that⊎
U =

⊎
T ∪ S. The assumption (P2) for B, together with (Pres) and (Fron),

give that C is a cellular monoplex mod G refining A|T ∪AS and that ϕ(U) = Ĉ.
The assumption (P3) for B and FB , together with (Out) above, give that
C Cn A|U and FC is a Cn-system for (C,A|U ). Finally the assumption (P4)
for (T , ϕ|T ) together with (Mon) ensure that (U , ϕ|U ) is a triangulation of
FC ∪ CB(C) with parameters (n,N, e,M). So (U , C,FC) is a preparation of
(S, ϕ,A,F0), and since

⊎
U =

⊎
T ∪ S we conclude by Remark 6.2.

So let A ∈ AS and U ∈ US be fixed once for all in the remaining.
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Remark 6.7. Recall that (S, ϕ) is a triangulation of F0, and F0 contains
CB(A). In particular cA ◦ϕ|S is N -monomial mod Ue,n hence a fortiori cA ◦ϕ|U
is so. By (17) cAU = cA|ϕ(U) hence cAU ◦ ϕ|U = cA ◦ ϕ|U . Thus cAU ◦ ϕ|U
is N -monomial mod Ue,n, and so are µAU ◦ ϕ|U and νAU ◦ ϕ|U by the same
argument.

Let us first assume that U is closed. We distinguish two elementary cases.

Case 1.1: µAU = 0 or νAU 6= 0.
Then AU is closed. We let EA,U = {AU} and hAU ,AU = 1. (Pres), (∂1), (Out)
and (Mon) are obvious (using Remark 6.7 for the latter).

Case 1.2: 0 = |νAU | < |µAU |.
We let EA,U = {AU} and hAU ,AU = 1. Again (Pres), (Out) and (Mon) are
obvious (same as Case 1.1). Moreover ∂AU = Gr cAU = Gr cA, which belongs
to AS by Remark 6.6. If we let B = Gr cA, we have BU = Gr cAU and µBU = 0
hence EB,U = {BU} by the previous case. So ∂AU = Gr cA and Gr cA ∈ EB,U ,
which proves that (∂2) holds true.

These cases being solved, we assume in the remaining that U is not closed.
Recall that TU is then the facet of U and belongs to T . By construction ∂ϕ(U) =
ϕ(∂U) = ϕ(TU ) = ϕ(TU ). For the convenience of the reader, each of the
following cases is illustrated by a geometric representation of its conditions
(almost like if we were dealing with a cell A over a real closed field, except

that the vertical intervals representing the fibres of A over Â can be clopen). In
this figures AU is represented by a gray area in K2, its bounds by dotted lines,
its socle ϕ(U) by the horizontal axe, ∂ϕ(U) = ϕ(TU ) by a dot on the left bound
of ϕ(U), and A ∩ (ϕ(TU )×K) by a thick line or dot on the vertical axe above
ϕ(TU ).

Case 2.1: |µ̄AU | = 0 on ϕ(TU ).

•

• cA

E = AU
or

•

• cA

E = AU

We let EA,U = {AU} and hAU ,AU = 1. (Pres), (Out) and (Mon) are obvious
as in the previous cases.

• Sub-case 2.1.a: νAU 6= 0 or µAU = νAU = 0. Then ∂AU is the closure of
Gr c̄AU |ϕ(TU ) = Gr c̄A|ϕ(TU ). The latter belongs to B by Claim 6.3, which
proves (∂3).

• Sub-case 2.1.b: νAU = 0 6= µAU . Then ∂AU is the closure of Gr cAU . By
Remark 6.6, there is a cell C ∈ AS such that CU = Gr cAU . Then µCU = 0
(because AU is a fitting cell) hence EC,U = {CU} by the previous sub-case.
So ∂AU = Gr cAU and Gr cAU ∈ EC,U , which proves that (∂2) holds true.
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Case 2.2: 0 < |ν̄A| on ϕ(TU ).

•
cA

EB1

EB3 cB2 ◦ σU = EB2

B1

•B2

B3

In this case, by Claim 6.3, ∂1
ϕ(TU )A = Ā ∩ (ϕ(TU ) ×K) is the union of the

cells B ∈ B which it contains. For every such B, B̂ = ϕ(TU ) (because B̂ = ϕ(T )

and B̂ ⊆ ϕ(TU )) and we let:

EB = (cB ◦ σU , νB ◦ σU , µB ◦ σU , GB)

These EB ’s form a family EA,U of two by two disjoint largely continuous cells
because the various cells B involved are so and:

(x, t) ∈ EB ⇐⇒ x ∈ ÂU and (σU (x), t) ∈ B. (22)

Each EB has socle ϕ(U) = ÂU and for every x ∈ ϕ(U), σU (x) belongs to

ϕ(TU ) = B̂. If B is of type 0, then so is EB and µB(σU (x)) = 0 (because
B is a fitting cell of type 0) hence EB is a fitting cell. If B is of type 1, then
µB(σU (x)) ∈ vGB by Proposition 5.5 (because B is a fitting cell of type 1). That
is µEB (x) ∈ GEB hence µEB is a fitting bound by Proposition 5.5. Similarly
νEB is a fitting bound, so EB is a fitting cell. This proves (Pres), and one can
easily derive from (22) that ∂EB = B so that (∂3) holds true. Note also that
cEB ◦ ϕ|U is N -monomial mod Ue,n because cB ◦ ϕ|TU is so and cEB ◦ ϕ|U =
cB ◦ σU ◦ ϕ|U = cB ◦ ϕ ◦ πU = cB ◦ ϕ|TU . The same reasoning applies to νEB
and µEB . So the next claim finishes to prove that EA,U is a partition of AU and
that (out), (Mon) hold true.

Claim 6.8. EB Cn AU and there is a semi-algebraic Cn-transition hEB ,AU for
(EB , AU ) such that hEB ,AU ◦ ϕ|U is N -monomial mod Ue,n.

Proof: For every (x, t) in EB , let us prove that (x, t) belongs to AU . Since

x ∈ ÂU it suffices to prove that (x, t) ∈ A. By construction (σU (x), t) belongs
to B hence to ∂1

ϕ(TU )A so:∣∣ν̄A(σU (x))
∣∣ ≤ ∣∣t− c̄A(σU (x))

∣∣ ≤ ∣∣µ̄A(σU (x))
∣∣ and t− c̄A(σU (x)) ∈ GA (23)

By (19) |νA(x)| = |ν̄A(σU (x))| and |µA(x)| = |µ̄A(σU (x))|. Moreover by (18):∣∣(t− cA(x)
)
−
(
t− c̄A(σU (x))

)∣∣ =
∣∣cA(x)− c̄A(σU (x)

∣∣
≤

∣∣πn1 ν̄A(σU (x))
∣∣ (24)

<
∣∣t− c̄A(σU (x))

∣∣
Thus |t− cA(x)| = |t− c̄A(σU (x))| and by (23):

|νA(x))| ≤ |t− cA(x)| ≤ |µA(x)|
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Moreover by (24):∣∣∣∣ t− cA(x)

t− c̄A(σU (x))
− 1

∣∣∣∣ ≤ ∣∣∣∣πn1
ν̄A(σU (x))

t− c̄A(σU (x)

∣∣∣∣ ≤ ∣∣πn1
∣∣ (25)

n1 > 2vN hence 1 + πn1R ⊆ PN by Hensel’s lemma. Since t− c̄A(σU (x)) ∈ GA
by (23) and GA ∈ K×/P×N , it follows that t− cA(x) ∈ GA. So (x, t) ∈ A which
proves that EB ⊆ A.

It remains to check that EBCnAU , and to find a Cn-transition for (EB , AU ).
For every (x, t) ∈ EB let:

ωB(x, t) = π−n
(

t− cA(x)

t− c̄A(σU (x))
− 1

)
By (25) ωB takes values in πn1−nR hence in R since n1 ≥ n, thus for every
(x, t) ∈ EB :

t− cA(x) = Un(x, t)
(
t− c̄A(σU (x))

)
(26)

with Un = 1 +πnωB in this case. We have B ⊆ ∂1
ϕ(TU )A and by (P3) BCnA|T .

Since A is a closed Cn-complex this implies that for some A′ ∈ A we have
BCnA′Cn ∂1

ϕ(TU )A. Let h0 ∈ F0 be a Cn-transition function for (A′, ∂1
ϕ(TU )A),

and h1 ∈ FB a Cn-transition function for (B,A′). Then for some α0, α1 ∈ {0, 1}
and every (x′, t′) in B we have

t′ − c̄A(x′) = Un(x′, t′)hα0
0 (x′)

(
t′ − cA′(x′)

)1−α0

and
t′ − cA′(x′) = Un(x′, t′)hα1

1 (x′)
(
t′ − cB(x′)

)1−α1

hence t′ − c̄A(x′) = Un(x′, t′)h(x′)α(t′ − cB(x′))1−α with h = h1−α0
0 h

(1−α0)α1

1

and α = α0 + α1 − α0α1. So h is a Cn-transition function for (B, ∂1
ϕ(TU )A).

Moreover h0 ◦ ϕ|TU and h1 ◦ ϕ|TU are N -monomial mod Ue,n by (P4), hence so
is h ◦ ϕ|TU . For every (x, t) in EB , (σU (x), t) ∈ B so

t− c̄A
(
σU (x)

)
= Un(x, t)h

(
σU (x)

)α[
t− cB

(
σU (x)

)]1−α
.

Combining this with (26) and the definition of cEB = cB ◦ σU we get

t− cA(x) = Un(x, t)h
(
σU (x)

)α[
t− cEB (x)

]1−α
.

So EBCnAU and h◦σU is a Cn-transition for (EB , AU ). Moreover h◦σU ◦ϕ|U =
h ◦ ϕ ◦ πU by definition of σU . The coordinate projection πU of U onto TU is
obviously 1-monomial, and h ◦ ϕ|TU is N -monomial mod Ue,n by construction.
So h ◦ σU ◦ ϕ is also N -monomial mod Ue,n and we can take hEB ,AU = h ◦ σU .

Case 2.3: 0 = |ν̄A| < |µ̄A| on ϕ(TU ) and νA 6= 0.

•
cA

E

D µB1 ◦ σU = µE

•B0

B1

. . . B3, B2
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Let B0 = B0
TU

and B1 = B1
TU

the two cells in B given by claim 6.3. Let:

E = (cA, νA, µB1 ◦ σU , GA)|ϕ(U)

If |µB1
| = |µ̄A| on ϕ(TU ) then |µB1

◦ σU | = |µA| on ϕ(U) by (21). Thus E and
AU have the same underlying set. In this case we let EA,U = {E} and properties
(Pres), (Mon), (∂3) are trivially true. So is (out), using Remark 6.7 for cA ◦ϕ|U ,
νA ◦ ϕ|U , and (P4) for µB1

◦ σU ◦ ϕ|U = µB1
◦ ϕ|TU .

Otherwise |µB1 | < |µ̄A| on ϕ(TU ) by Claim 6.3 and we let:

D = (cA, π
−N0µB1

◦ σU , µA, GA)|ϕ(U)

|µB1
| ≤ |πN0 µ̄A| on ϕ(TU ) by Claim 6.3, |µ̄A ◦ σU | = |µA| on ϕ(U) by (21), so

|νD| = |π−N0µB1 ◦ σU | ≤ |µ̄A ◦ σU | ≤ |µA| = |µD| on ϕ(U). Moreover A is a
fitting cell hence for every x ∈ ϕ(U) there is t ∈ K such that (x, t) ∈ A and
|t − cA(x)| = |µA(x)|, so (x, t) ∈ D. Thus D is indeed a cell, with socle ϕ(U).
It is actually a largely continuous cell, and µD = µA is a fitting bound. Let us
check that νD = π−N0µB1

◦σU is a fitting bound too. B1 is a fitting cell of type 1
with socle ϕ(TU ) hence µB1(ϕ(TU )) ⊆ vGB1 by Proposition 5.5. But GB1 = GA
by Claim 6.3, GA = GD and ϕ(TU ) = σU (ϕ(U)) by construction, and N0 ∈ vG
so νD(ϕ(U)) ⊆ vGD. Thus νD is indeed a fitting bound by Proposition 5.5.

Clearly AU is the disjoint union of E and D. Moreover the cells in B con-
tained in D̄ ∩ (ϕ(TU ) × K) are exactly those contained in Ā ∩ (ϕ(TU ) × K)
except B0 and B1. Thus the construction that we have done for AU in case 2.2
applies to D because ν̄D = π−N0µB1 6= 0 on ϕ(TU ) and because the analogues
of conditions (18) and (19) that we used for AU in case 2.2 hold for D in the
present case. Indeed by (20) we have∣∣cAU (x)− c̄AU (σU (x))

∣∣ ≤ ∣∣πn1−N0 µ̄B1
(σU (x))

∣∣.
This is just condition (18) for D since cD = cAU and νD = π−N0µB1 . Moreover
condition (19) for D is:

|νD| = |ν̄D ◦ σU | and |µD| = |µ̄D ◦ σU |

The first equality is true by definition of νD as π−N0µB1 ◦ σU . The second one
is true because µD = µA and because of (21).

So the construction of Case 2.2 gives a partition E ′ of D and for each E′ ∈ E ′
a semi-algebraic function12 hE′,AU : ϕ(U) → K satisfying conditions (Pres),
(∂3), (out) and (Mon). Since E also has these properties (with hE,AU = 1 since
cE = cA on ϕ(U)) we can take EA,U = {E} ∪ E ′.

Case 2.4: µ̄A 6= 0 on ϕ(TU ) and νA = 0.

•
cA

E

D
µ = νD

•B0

. . . B2, B1

12Case 2.2 applied to D actually gives for each E′ ∈ E ′ a Cn-transition hE′,D for (E′, D).
But D ⊆ AU and cD = cAu so hE′,D is also a Cn-transition for (E′, AU ) and we can set
hE′,AU = hE′,D.
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Let again B1 = B1
TU

be the cell given by claim 6.3. We are going to split AU
in two cells E and D to which previous cases apply. In order to do so, choose
any i ∈ SuppU \ SuppTU . For every u ∈ U let ξi(u) = ui, the i-th coordinate
of u. Clearly ξi is largely continuous and ξ̄i = 0 on ∂U = T̄U . So the function:

µ = (ξi ◦ ϕ−1)N .(µB1
◦ σU )

is largely continuous on ÂU = ϕ(U) and µ̄ = 0 on ϕ(TU ), hence also on ϕ(TU ) =
∂ϕ(U). Note that µ ◦ ϕ|U is N -monomial mod Ue,n. Let:

E = (cA, 0, π
N0µ,GA)|ϕ(U)

D = (cA, µ, µA, GA)|ϕ(U)

E and D are largely continuous fitting cells mod G which define a partition of
AU . (Here we use that A is a fitting cell: for every x ∈ ϕ(U) there is t ∈ K
such that (x, t) ∈ A and |t − cA(x)| = |µA(x)| so (x, t) ∈ D, which proves that
D is really a cell. That D, E are fitting cells and AU = E∪D then follows from
Proposition 5.5.) In particular E satisfies condition (Pres). Since νE = 0 and
µ̄E = πN0 µ̄ = 0 on ∂ϕ(U), we have ∂E = Gr cE . By Remark 6.6, Gr cAU = CU
for some C ∈ AS , and by Sub-case 2.1.1 applied to CU , Gr cAU ∈ EC,U . This
proves (∂2) for E since cE = cAU . Let hE,AU = 1, this is a Cn-transition for
(E,AU ) since they have the same center, so E satisfies (out). It also satisfies
(Mon), thanks to Remark 6.7 for cE = cAU and because µE ◦ϕ|U = πN0µ ◦ϕ|U
is N -monomial mod Ue,n.

Case 2.3 applies to D because νD = µ 6= 0, |ν̄D| = |µ̄| = 0 on ϕ(TU ) and
|µ̄D| = |µ̄A| 6= 0 on ϕ(TU ), and because the analogues of conditions (20) and
(21) that we used for AU in case 2.3 hold for D in the present case. Indeed
(20) holds for D because it holds for AU , and because D and AU have the same
center. Condition (21) for D is:

|νD| ≤ |µB1 ◦ σU | ≤ |µ̄D ◦ σU | = |µD|

The first inequality is true because |νD| = |µ| ≤ |µB1
◦ σU | by construction, the

second one is true by claim 6.3 and because µD = µA, and the last equality is
true because it is true for AU by (21) and because µD = µAU = µA|ϕ(U).

So the construction of case 2.3 gives a partition E ′ of D and for each E′ ∈ E ′
a semi-algebraic function13 hE′,AU : ϕ(U) → K satisfying conditions (Pres),
(Fron), (out) and (Mon). Since E also has these properties we can take EA,U =
{E} ∪ E ′.

7 Cartesian morphisms

Let A be a cellular monoplex mod G such that
⋃
A is a closed subset of Rm+1.

Let (U , ψ) be a triangulation of CB(A) with parameters (n,N, e,M) such that
for every A ∈ A, ψ−1(A) ∈ U (we will denote it UA). Note that this is essentially
the data given by the conclusion of Lemma 6.1. The aim of this section is to
build a triangulation (S, ϕ) ofA with the same parameters (n,N, e,M), together

13Same remark as in footnote 12.
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with a continuous projection Φ :
⊎
S →

⊎
U such that the following diagram is

commutative. ⋃
A

����

⊎
S

ϕoo

Φ
����⋃

Â
⊎
U

ψoo

In order to do so we will make the assumption that G = QN,M ′ with M ′ =
M + v(N) and M > v(N). In addition we temporarily assume that A is a
rooted tree, and U a simplicial complex in DMRq1 for some q1. We keep these
data and assumptions until the end of this section, where we finally state our
result in a more precise and slightly more general form.

The construction is done below through a series of claims whose guiding lines
is the following. We first book some place FH(A)(D

MRqA) for each A ∈ A. So we
consider A and U as trees, ordered by specialization, and build a pair of trees of
finite subsets of N∗ ordered by inclusion, H = (H(A))A∈A and P = (P (A))A∈A,
such that H is isomorphic to A and P is isomorphic to U (Claim 7.3. Then we
allocate this place FH(A)(D

MRqA) to a simplex SA which we build in it, together
with a semi-algebraic isomorphism ϕA and a semi-algebraic projection ΦA such
that the following diagram is commutative (Claim 7.7).

A

����

SA
ϕAoo

ΦA
����

Â UA
ψ|UAoo

It is then the shape of the trees H and P which controls how the various pieces
glue together, so that S = (SA)A∈A is a simplicial complex (Claim 7.8) and the
resulting maps ϕ, Φ are continuous on

⊎
S (Claims 7.5 and 7.9).

Claim 7.1. The faces of UA are exactly the sets UB with B ≤ A in A.

Proof: Let B ≤ A in A, Y = B̂ and i = tpB. Then, with the notation of
Section 5, B = ∂iYA because A is a cellular complex. Since A is bounded, the
socle of A is closed hence Y must be contained in it. Since ψ−1(Y ) = UB , it
follows that UB is a face of UA. Conversely for every face V of UA, the set B =
∂0
ψ(V )A (resp. B = ∂1

ψ(V )A) is non-empty if ν̄A|Y = 0 (resp. µ̄A|Y 6= 0) hence

belongs to A. One of these two cases necessarily happens (because |ν̄A| ≤ |µ̄A|
on Y ), which gives B ∈ A such that UB = V .

Claim 7.2. Given any two cells B ≤ A in A, B < A if and only if either
UB < UA or tpB < tpA. In particular if B is the predecessor of A in A then
either UB is the facet of UA, or UB = UA, in which case tpB = 0 and tpA = 1

Proof: Recall that B = ∂jYA with Y = B̂ = ψ(UB) and j = tpB. In particular

A = ∂iXA with X = Â and i = tpA. Thus B 6= A if and only if UB 6= UA or
tpB 6= tpA. Since UB ≤ UA by the previous claim, and obviously tpB ≤ tpA
(otherwise ∂jYA = ∅) this proves the equivalence. In particular if UB = UA then
tpB < tpA hence tpB = 0 and tpA = 1.
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If B is the predecessor of A in A and UB 6= UA, then UB < UA by Claim 7.1.
Let V be the facet of UA. Then UB ≤ V < A hence B ≤ ∂jψ(V )A < A. On the

other hand B is the predecessor of A in A, hence B = ∂jψ(V )A. So B̂ = ψ(V )

and finally UB = V .

Given a strictly increasing map σ : I → J with I ⊆ [[1, r]] and J ⊆ [[1, s]],
we let [σ] : Ks → Kr be defined by [σ](y) = u where ui = yσ(i) if i ∈ I, and
ui = 0 otherwise. We say that an application f : S ⊆ Kr → Ks is a Cartesian
map if for every I ⊆ [[1, r]] the restriction of f to S ∩ FI(Kr) is of that form,
that is if there is J ⊆ [[1, s]] and a strictly increasing map σ : I → J such that
f(y) = [σ](y) for every y ∈ S with support I. If X is the disjoint union of finitely
many sets Xk ⊆ Krk for various k, then a Cartesian map on X is simply the
data of a Cartesian map on each Xk. A Cartesian morphism is a continuous
Cartesian map.

Claim 7.3. There exists a pair of applications H, P from A to P(N∗) such
that H is strictly increasing and for every B ≤ A in A:

(C0) If tpA = 0 then H(A) = P (A).

(C1) If tpA = 1 then H(A) = P (A) ∪ {rA} for some rA > maxP (A).

(C2) CardP (A) = Card(SuppUA).

(C3) P (B) = H(B)∩P (A) (in particular P is increasing and P (B) ⊆ H(B)).

(C4) If σA : SuppUA → P (A) denotes the increasing bijection given by (C2)
then σA(SuppUB) = P (B).

Remark 7.4. Since σA and σB are strictly increasing, (C4) implies that σA(i) =
σB(i) for every i ∈ SuppUB .

Proof: The construction goes by induction in CardA. For the root A of A we
let P (A) = SuppUA, H(A) = P (A) if tpA = 0, and H(A) = P (A) ∪ {q1 + 1}
if tpA = 1 (recall that U is a simplicial complex in DMRq1). If A = {A} we
are done. Otherwise let A be a maximal element of A and apply the induction
hypothesis to A \ {A}. This defines P (A′), H(A′) for every A′ ∈ A \ {A} so
that H is strictly increasing on A \ {A} and properties (C0) to (C4) hold true
for every B′ ≤ A′ in A \ {A}.

Let B be the predecessor of A in A and k = Card(SuppUA \ SuppUB) + 1.
For every A′ ∈ A \ {A} let Pk(A′) = {ki}i∈P (A′) and Hk(A′) = {ki}i∈H(A′).
Clearly Pk and Hk inherit all the properties of P and H. Thus, replacing if
necessary P and H by Pk and Hk we can assume that H(A′) ⊆ kN∗ for every
A′ ∈ A \ {A}.

Let q′ be the maximum of the integers in all these sets H(A′). We have to
define P (A) and H(A) so that the resulting maps P , H satisfy (C0) to (C4)
for every B′ ≤ A′ in A, H(B′) ⊆ H(A′) and H(B′) 6= H(A′) if B′ 6= A′.
By induction hypothesis it suffices to check these properties when A′ = A and
B′ = B.

We are going to build σA first, and then let P (A) = σA(SuppUA). Let
j1 < · · · < jr be an enumeration of SuppUB . Let j0 = 0 and jr+1 = q′ + 1. For
every i ∈ SuppUA there is a unique l ∈ [[0, r]] such that jl ≤ i < jl+1. We then
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let σA(i) = σB(jl) + i − jl (if jl = j0 = 0 we let σB(jl) = 0 in this definition).
Note that jl + k ≤ jl+1 and σB(jl+1) ∈ P (B) ⊆ kN∗ hence

σA(jl) ≤ σA(i) < σB(jl) + jl+1 − jl ≤ σB(jl) + k ≤ σB(jl+1).

It follows immediately that σA is strictly increasing. Let P (A) = σA(SuppUA),
by construction (C2) and (C4) hold true, P (A) ∩ kN∗ = P (B) and P (B) is
strictly contained in P (A) except if SuppUA = SuppUB . Note also that in any
case q′ + k /∈ H(B) ∪ P (A). In order to define H(A) we distinguish four cases,
given by by Claim 7.2.

Case 1: tpA = 0, hence tpB = 0 and UB is the facet of A. In particular
SuppUB is strictly contained in SuppUA, hence so is P (B) in P (A). By induc-
tion hypothesis (C0), H(B) = P (B). Let H(A) = P (A), then H(B) ⊆ H(A),
H(B) 6= H(A) and (C0), (C3) are obvious.

Case 2: tpA = 1, tpB = 0 and UB = UA. Then P (B) = P (A) by con-
struction, and P (B) = H(B) by induction hypothesis (C0). Let H(A) =
H(B) ∪ {q′ + k}, then H(B) ⊆ H(A), H(B) 6= H(A) and (C1) are obvious
because q′+k /∈ H(B), and H(B)∩P (A) = P (B)∩P (A) = P (B) which proves
(C3).

Case 3: tpA = 1, tpB = 0 and UB is the facet of UA. We let H(A) =
P (A)∪ {q′+ 1}. By induction hypothesis (C0) H(B) = P (B). By construction
P (B) ⊆ P (A) ⊆ H(A). So H(B) ⊆ H(A), H(B) 6= H(A) and (C1) are obvious
because q′ + k /∈ H(B) ∪ P (A). As in Case 2, H(B) ∩ P (A) = P (B) ∩ P (A) =
P (B) which proves (C3).

Case 4: tpA = tpB = 1 and UB is the facet of UA. By induction hypothesis
(C1), P (B) is strictly contained in P (A). Let H(A) = P (A) ∪ H(B). Then
H(B) ⊆ H(A), H(B) 6= H(A) because H(A) \H(B) = P (A) \ kN∗ = P (A) \
P (B) 6= ∅, H(A) ∩ P (B) = (P (A) ∩ P (B)) ∪ (H(B) ∩ P (B)) = P (B) ∪ P (B) =
P (B) which proves (C3), and (C1) follows because then H(A)\P (A) = H(B)\
P (A) = H(B) \ P (B) is a singleton by induction hypothesis (C1).

With the notation of Claim 7.3, let q2 be the maximal element of
⋃
A∈AH(A)

and S† = {FH(A)(D
MRq2)}A∈A. For every A ∈ A let ΦA = [σA] :

FH(A)(D
MRq2) → DMRq1 . Finally let Φ :

⋃
S† → DMRq1 be the resulting

Cartesian map.

Claim 7.5. Φ is continuous, hence a Cartesian morphism.

Proof: We have to show that for every T ≤ S in S† and every z ∈ T , Φ(y)
tends to Φ(z) as y tends to z in S. By construction there are A, B in A such
that H(A) = SuppS, H(B) = SuppT , Φ(y) = [σA](y) and Φ(z) = [σB ](z).
Since [σA] is obviously continuous, it tends to [σA](z) so we have to prove that
[σA](z) = [σB ](z). Let u = [σA](z) and u′ = [σB ](z). Recall that u, u′ ∈ DMRq1

and for every i ∈ [[1, q1]], ui = zσA(i) if i ∈ SuppUA, ui = 0 otherwise, u′i = zσB(i)

if i ∈ SuppUB , and u′i = 0 otherwise.
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Since T ≤ S we have SuppT ≤ SuppS, that is H(B) ≤ H(A), hence
B ≤ A since H is strictly increasing. In particular SuppUB ⊆ SuppUA hence
for every i ∈ [[1, q1]], we have ui = u′i = 0 if i /∈ SuppUA, and by Remark 7.4
zσA(i) = zσB (i) if i ∈ SuppUB , that is ui = u′i in this case too. The remaining
case occurs when i ∈ SuppUA \ SuppUB , so that ui = zσA(i) and u′i = 0.
We have to prove that zσA(i) = 0, that is σA(i) /∈ Supp z. By (C4) and the
assumption on i, σA(i) ∈ P (A) \ P (B). By (C3), P (A) \ P (B) = P (A) \H(B).
So σA(i) /∈ H(B), and we are done since Supp z = SuppT = H(B).

For every A ∈ A, µA ◦ ψ is N -monomial mod Ue,n so there are ζ ∈ K and
some integers βi,A for i ∈ SuppUA such that for every u ∈ UA

µA ◦ ψ(u) = Ue,n(u) · ζ ·
∏

i∈SuppUA

u
Nβi,A
i .

If µA 6= 0 then vµA(Â) = vGA = vλA + NZ by Proposition 5.5, and by
the above displayed equation v(ζ) ≡ v(λA) [N ]. So there is β0,A ∈ Z such
that v(ζ) = v(λA) + Nβ0,A. Let µvA : vUA → Z be defined by14 µvA(a) =
M ′ + β0,A +

∑
i∈SuppUA

βi,Aai. If µA = 0 then we let µA(a) = +∞ for every
a ∈ vUA. Define νvA accordingly. By construction, for every u ∈ UA we have

vµA
(
ψ(u)

)
= vλA +NµvA(vu)−NM ′ (27)

vνA
(
ψ(u)

)
= vλA +NνvA(vu)−NM ′ (28)

In particular µvA (resp. νvA) is uniquely determined by µA (resp. νA), even if
the coefficients βi,A are not.

Remark 7.6. Since A is a fitting cell mod QN,M ′ contained in R, vµA+M ′ ≥ 0
by Proposition 5.6. On the other hand 0 ≤ vλA ≤ N − 1 (see Section 2). So,
for every u ∈ UA we have by (27):

µvA(vu) = vµA(ψ(u)) +NM ′ − vλA
≥ −M ′ +NM ′ − (N − 1)

= (N − 1)(M ′ − 1) ≥ 0

Let SA ⊆ DMRq2 be defined as follows.

• If tpA = 0, SA is the set of y ∈ FH(A)(D
MRq2) = FP (A)(D

MRq2) such
that Φ(y) ∈ UA.

• If tpA = 1, SA is the set of y ∈ FH(A)(D
MRq2) such that Φ(y) ∈ UA and

µvA(vΦ(y)) ≤ vyrA ≤ νvA(vΦ(y)).

In both cases, for every y ∈ SA let

ϕA(y) =
(
ψ ◦ Φ(y), cA(ψ ◦ Φ(y)) + π−NM

′
λAy

N
rA

)
where rA = maxH(A) (if H(A) = ∅, which happens when A is a point, then rA
is not defined but in that case tpA = 0, hence λA = 0 and we can let λAy

N
rA = 0

by convention).

14We remind the reader that A is a cell mod QN,M′ with M ′ = M + v(N).
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Claim 7.7. Φ(SA) = UA and ϕA is a bijection from SA to A.

Proof: If tpA = 0 the result is trivial because in that case H(A) = P (A) hence
the restriction of Φ to FH(A)(D

MRq2) is a bijection onto FSuppUA(DMRq1). So
from now we assume that tpA = 1, hence H(A) = P (A)∪{rA} and rA /∈ P (A)
by (C1).

Let y, y′ ∈ SA be such that ϕA(y) = ϕA(y′). Then ψ(Φ(y)) = ψ(Φ(y′)) and

cA(ψ ◦ Φ(y)) + π−NM
′
λAy

N
rA = cA(ψ ◦ Φ(y′)) + π−NM

′
λAy

′N
rA

These two equations imply that yNrA = y′NrA . Since yrA , y
′
rA ∈ D

MR = Q1,M ∩R
and M > v(N) it follows that yrA = y′rA by Lemma 2.9. On the other hand
ψ(Φ(y)) = ψ(Φ(y′)) implies Φ(y) = Φ(y′) (because ψ is one-to-one), that is
yi = y′i for every i ∈ P (A) (because Φ(y) = [σA](y) by construction). Thus
yi = y′i for every i ∈ P (A) ∪ {rA} = H(A), that is y = y′ since Supp y =
Supp y′ = H(A). This proves that ϕA is one-to-one.

Let us check now that A ⊆ ϕA(SA). Pick any (x, t) ∈ A, let u = ψ−1(x)
and δ = t − cA(x). Since δ ∈ λAQN,M ′ and πNM

′ ∈ QN,M ′ we have πNM
′
δ ∈

λAQN,M ′ . Recall thatM ′ = M+v(N), by Lemma 2.9 there is a unique z ∈ Q1,M

such that πNM
′
δ = λAz

N , hence t = cA(x) + π−NM
′
λAz

N . On the other hand
we have vµA(ψ(u)) = vµA(x) ≤ vδ so by (27)

vz =
v(πNM

′
δ/λA)

N
≥ NM ′ + vµA(ψ(u))− vλA

N
= µvA(vu).

In particular vz ≥ 0 by Remark 7.6 so z ∈ Q1,M ∩ R = DMR. Similarly vz ≤
νvA(vu) by (28). Let y ∈ DMRq2 be such that yi = uσA(i) if i ∈ P (A), yi = z
if i = rA, yi = 0 otherwise. Then y ∈ FH(A)(D

MRq2), Φ(y) = [σA](y) = u and
µvA(vu) ≤ vyrA ≤ νvA(vu) since yrA = z, so y belongs to SA. By construction
ϕA(y) = (x, t) ∈ A, which proves that A ⊆ ϕA(SA).

We turn now to Φ(SA). For every u ∈ UA, ψ(u) ∈ Â so there is (x, t) ∈ A
such that u = ψ−1(x). The above construction gives y ∈ SA such that ϕA(y) =
(x, t). In particular ψ ◦ Φ(y) = x, so Φ(y) = ψ−1(x) = u, which proves that
Φ(SA) ⊆ UA. Since Φ(SA) ⊆ UA by definition of SA we get that Φ(SA) = UA.

It only remains to show that ϕA(SA) ⊆ A. Pick any y ∈ SA, let (x, t) =
ϕA(y) and δ = t − cA(x) = π−NM

′
λAy

N
rA . Since Φ(y) ∈ Φ(SA) = UA, we have

x = ψ(Φ(y)) ∈ ψ(UA) = Â. Since yrA ∈ DMR = Q1,M ∩ R, by Lemma 2.9

yNrA ∈ QN,M+v(N) = QN,M ′ . Hence δ = π−NM
′
λAy

N
rA belongs to λAQN,M ′ . We

have µvA(vΦ(y)) ≤ vyrA by definition of SA, so by (27)

vµA
(
ψ(Φ(y))

)
= vλA +NµvA(vΦ(y))−NM ′ ≤ vλA +NvyrA −NM ′.

The left hand side is equal to vµA(x). For the right hand side we have

vλA +NvyrA −NM ′ = v
(
π−NM

′
λAy

N
rA

)
= vδ.

So vµA(x) ≤ vδ, that is |δ| ≤ |µA(x)|. Similarly |νA(x)| ≤ |δ| hence (x, t) ∈ A.

Claim 7.8. SA is a simplex in DMRq2 , whose faces are exactly the sets SB
with B ≤ A in A.
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Proof: Let q = CardP (A) and q′ = CardH(A). Let τA (resp. τ ′A) be the
strictly increasing map from P (A) to [[1, q]] (resp. from H(A) to [[1, q′]]). By
construction and by Claim 7.5 the following diagram is commutative (vertical
arrows are the natural coordinate projections).

DMRq
′ [τ ′A] //

��

FH(a)(DMRq2)

[σA]=Φ

**��
DMRq

[τA] // FP (a)(DMRq2)
[σA]=Φ // FSuppUA(DMRq1)

The horizontal arrows in this diagram are isomorphisms. All of them are ob-
tained simply by renumbering the coordinates, hence they preserve the faces
and the property of being a simplex. It will then be convenient here to identify
isomorphic spaces, hence to consider UA ⊆ DMRq and SA ⊆ DMRq

′
. Since

Φ(SA) = UA by Claim 7.7, after this identification UA is just the image of SA
by the coordinate projection of DMRq

′
to DMRq. Since H(A) = SuppSA we

identify also H(A) with [[1, q′]], and P (A) with [[1, q]].
If tpA = 0 then H(A) = P (A), q′ = q and the vertical arrows are identity

maps. Thus SA identifies with UA. In particular SA is a simplex. Every B ≤ A
is also of type 0 and SB identifies to UB . The conclusion follows by Claim 7.1.

From now on, let us assume that tpA = 1. Then q′ = q+ 1 hence UA is just
the socle of SA. Similarly, UB is the socle of SB for every B ≤ A (if tpB = 0
we have SB = UB × {0}). By construction SA is the inverse image of vSA by
the valuation (restricted to DMRq+1) and

vSA =
{
a ∈ Zq+1 : â ∈ vUA and µvA(â) ≤ aq+1 ≤ νvA(â)

}
.

Since µA ◦ ψ and νA ◦ ψ are largely continuous on UA, (27) and (28) imply
that µvA is largely continuous on vUA. They are affine maps by definition. Since
0 ≤ µvA by Remark 7.6, and µvA ≤ νvA because |νA| ≤ |µA|, it follows that vSA
is a polytope in Γq+1. We are going to check that its faces are exactly the sets
vSB for B ≤ A in A. This will finish the proof since SA will then have the
expected faces, which implies that SA is a simplex because these faces form a
chain by specialisation (because A is a tree).

Step 1. Let B ≤ A in A, then B = ∂iYA with Y = B̂ and i = tpB. Let

J = H(B) ⊆ H(A) = [[1, q + 1]] and Ĵ = P (A) = J \ {q + 1}. Since (µB , νB) =
(µ̄A, ν̄A)|Y , if tpB = 1 we have by construction

vSB =
{
a ∈ FJ(Γq+1) : â ∈ vUB and µ̄vA(â) ≤ aq+1 ≤ ν̄vA(â)

}
. (29)

This remains true also if tpB = 0 because in that case q+ 1 /∈ J and ν̄vA = +∞
on vUB (because ν̄A = νB = 0 on Y ) so the right hand side is just vUB×{+∞},
that is vSB (because SB = UB × {0} when tpB = 0). In both cases we also
have vUB = FĴ(UA), because vUB is a face of UA by Claim 7.1 and Supp vUB =

P (B) = Ĵ . So the description of vSB given by (29) coincides with the description
of FJ(vSA) given by Proposition 2.13, which proves that vSB = FJ(vSA).

45



Step 2. Conversely let FJ(vSA) 6= ∅ be a face of vSA, for some J ⊆ [[1, q+ 1]],

and let Ĵ = J \ {q + 1}. By Proposition 2.13 the socle of FJ(vSA) is FĴ(vUA)
(because vUA is the socle of vSA) and two cases can happen: q + 1 ∈ J and
µ̄vA < +∞ on FĴ(vUA), or q + 1 /∈ J and ν̄vA = +∞ on FĴ(vUA). In both cases

FJ(vSA) =
{
a ∈ FJ(Γq+1) : â ∈ FĴ(vUA) and µ̄vA(â) ≤ aq+1 ≤ ν̄vA(â)

}
. (30)

Since FĴ(vUA) is a face of vUA, by Claim 7.1 there is C ≤ A in A such that

FĴ(vUA) = vUC . Let Y = Ĉ = ψ(UC).
If q + 1 /∈ J then by Proposition 2.13, ν̄vA = +∞ on FĴ(vUA) = vUC . That

is ν̄A = 0 on Y = ψ(UC), hence ∂0
YA ∈ A. Let B = ∂0

YA and apply Step 1 to

B. Since J = Ĵ is the support of vUC = vUB and of SB (because tpB = 0), we
deduce from (29) and (30) that vSB = FJ(SA).

If q + 1 ∈ J then by Proposition 2.13, µ̄vA 6= +∞ on FĴ(vUA) = vUC . That
is µ̄A 6= 0 on Y = ψ(UC), hence ∂1

YA ∈ A. Let B = ∂1
YA and apply Step 1 to

B. Since Ĵ is the support of vUC = vUB and J = Ĵ ∪ {q + 1} is the support of
SB (because tpB = 1), we deduce from (29) and (30) that vSB = FJ(SA).

Finally let ϕ :
⋃
S →

⋃
A be defined by ϕ|A = ϕA on each SA.

Claim 7.9. ϕ is a homeomorphism from
⋃
S to

⋃
A.

Proof: We already know by Claim 7.7 that ϕ is a bijection from
⋃
S to

⋃
A. It

follows from Claim 7.8 that
⋃
S is closed, and it is obviously bounded. Thus by

Theorem 2.6 it suffices to show that ϕ is continuous. Since each ϕA is obviously
continuous on SA, we only have to prove that for every z ∈ ∂SA and y ∈ SA,
ϕA(y) tends to ϕ(z) as y tends to SA. By Claim 7.8 there is B ≤ A in A such
that z ∈ SB , hence ϕ(z) = ϕB(z). By Claim 7.5, ψ ◦ Φ(y) tends to ψ ◦ Φ(z).

By Claim 7.7, ψ ◦ Φ(y) ∈ Â and ψ ◦ Φ(z) ∈ B̂ hence cA(ψ ◦ Φ(y)) tends to
c̄A(ψ ◦ Φ(z)), which is equal to cB(ψ ◦ Φ(z)) since c̄A|B̂ = cB . Thus it only

remains to check that λAy
N
rA tends to λBz

N
rB .

If tpA = 0 then also tpB = 0 hence and we are done, since λAy
N
rA = 0 =

λBz
N
rB . If tpB = 1 then λB = λA (because A is a cellular complex) and rA = rB

(because by (C1) and (C3), H(B) 6= P (B) = H(B)∩P (A) implies that H(B) is
not contained in P (A), hence rA ∈ H(B) since H(B) ⊆ H(A) = P (A) ∪ {rA}).
Hence obviously λAy

N
rA tends to λAz

N
rA = λBz

N
rB in that case. Finally if tpA = 1

and tpB = 0 then rA /∈ H(B) (because by (C0) and (C3), H(B) = P (B) ⊆
P (A)), hence zrA = 0 since Supp z = SuppSB = H(B). Thus λAy

N
rA tends to

λAz
N
RA

= 0, which proves the result because λBz
N
rB = 0 since tpB = 0.

We can recap now our construction and state the result which was the aim
of this section.

Lemma 7.10. Let A be a cellular monoplex mod Q×N,M+v(M) such that
⋃
A is a

closed subset of Rm+1. Let (U , ψ) be a triangulation of CB(A) with parameters
(n,N, e,M) such that M > v(N) and for every A ∈ A, ψ−1(A) ∈ U (let us
denote it UA). Then there exists a simplicial complex S of index M , a Cartesian
morphism Φ :

⊎
S →

⊎
U and a semi-algebraic homeomorphism ϕ :

⊎
S →

⋃
A

such that for every A ∈ A, ϕ−1(A) ∈ S (let us denote it SA) and for every
y ∈ SA

ϕ(y) =
(
ψ ◦ Φ(y), cA(ψ ◦ Φ(y)) + π−NM

′
λAy

N
rA

)
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where15 rA = max(SuppSA).

Proof: Let (Ak)1≤k≤r be the list of minimal elements in A, and for each k let
Ak be the family of elements in A greater than Ak. This is a rooted, cellular
monoplex mod Q×N,M+v(N). For every A ∈ Ak, A is the union of the cells B ≤ A
in A since A is a cellular complex and

⋃
A is closed. All these cells B belong to

Ak hence
⋃
Ak is closed. Since

⋃
A\
⋃
Ak is the union of the finitely many other

Al it is closed, hence
⋃
Ak is clopen in

⋃
A. Let Uk = {ψ−1(Â) : A ∈ Ak}, this

is a lower subset of U with smallest element ψ−1(Âk) hence a rooted simplicial
complex in DM1Rq1,k for some q1,k. Finally let ψk be the restriction of ψ to⋃
Uk.
Claims 7.1 to 7.9 apply to (Uk, ψ,Ak) and give a simplicial complex Sk

in DMRq2,k for some q2,k, a Cartesian morphism Φk :
⋃
Sk →

⋃
Uk and a

semi-algebraic homeomorphism ϕk :
⊎
Sk →

⋃
Ak satisfying all the required

properties. Since each
⋃
Ak is clopen in

⋃
A, and each

⋃
Uk is clopen in

⊎
U ,

the conclusion follows by taking for U the family {Uk}1≤k≤r and for Φ (resp.
ϕ) the map obtained by glueing together the various Φk (resp. ϕk).

8 Triangulation

We have come up to the moment when we can show that Tm ⇒ Tm+1. As T0

is rather obvious, this will finish the proof of Tm for every m.

Theorem 8.1. Assume Tm. Let (θi : Ai ⊆ Km+1 → K)i∈I be a finite family of
semi-algebraic functions, and n,N ≥ 1 be any integers. Then for some integers
e,M ≥ 1 which can be chosen arbitrarily large (in the sense of footnote 2), there
exists a simplicial complex T of index M and a semi-algebraic homeomorphism
ϕ :
⊎
T →

⋃
i∈I Ai such that for every i in I:

1. {ϕ(T ) : T ∈ T and ϕ(T ) ⊆ Ai} is a partition of Ai.

2. ∀T ∈ T such that ϕ(T ) ⊆ Ai, θi ◦ ϕ|T is N -monomial mod Ue,n.

Proof: By using the same partition ofKm+1 as in the proof of Lemma 3.3 we are
reduced to the case where each Ai is contained in Rm+1. We can also extend
each θi to Rm+1 by an arbitrary value, and add to this family the indicator
functions of each Ai inside Rm+1, hence assume that all these functions have
domain Rm+1, which is closed and bounded. Let e∗ ≥ 1 and M∗ ≥ 1 be any
integers.

Theorem 4.6 applies to (θi)i∈I . It gives an integer e0 ≥ 1, a tuple η ∈ Rm,
a linear automorphism uη(x, t) = (x + tη, t) of Km+1 (note that uη(Rm+1) =
Rm+1 since η ∈ Rm+1), a pair of integers N0 ≥ 1 and M0 > 2v(e0) such that
e0N divides N0, and a finite family A of largely continuous cells mod Q×N0,M0

partitioning u−1
η (Rm+1) = Rm+1 such that for every i ∈ I, every A ∈ A and

every (x, t) ∈ A

θi ◦ uη(x, t) = Ue0,n(x, t)hi,A(x)
[
λ−1
A

(
t− cA(x)

)]αi,A
e0 (31)

15If SuppSA = ∅ then rA is not defined but in that case SA is a point, hence so is A so
λA = 0 and we can let λAy

N
rA

= 0 by convention.
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where hi,A : Â→ K is a semi-algebraic function and αi,A ∈ Z.
Let n1 = max(1+2v(e0), n+v(e0)), Lemma 6.1 applied to A and the family

F0 = {hi,A : i ∈ I, A ∈ A} gives a pair of integers e1 ≥ 1 and M1 > 2v(e1), a
cellular monoplex B mod QN0,M0 refining A such that B Cn1 A, a Cn1-system
F1 for (B,A), and a triangulation (U , ψ) of F0 ∪ F1 ∪ CB(B) with parameters
(n1, N0, e1,M1). Moreover e1,M1 can be chosen arbitrarily large, in the sense
of footnote 2, so we can require that e∗ divides e1 and M1 ≥ M∗, and that
M1 ≥M0 − v(N0) and M1 > v(N0) ≥ v(e0).

Q×N0,M1+v(N0) is a subgroup ofQ×N0,M0
(becauseM1+v(N0) ≥M0) with finite

index. Hence every cell in B is the disjoint union of finitely many cells C mod
Q×N0,M1+v(N0) with the same socle and bounds as B. Since vQ×N0,M1+v(N0) =

N0Z = vQ×N0,M0
, these cells C are still fitting cells by Proposition 5.5. One

easily sees that they form a cellular monoplex C refining A such that C Cn1 A
and F1 is a Cn1-system for (C,A). Moreover CB(C) = CB(B) and Ĉ = B̂
so (U , ψ) is a triangulation of B(C) with parameters (n1, N0, e1,M1) such that

ψ−1(Ĉ) ∈ U for every C ∈ C.
Since M1 > v(N0), Lemma 7.10 applies to C and (U , ψ). It gives a simplicial

complex T of index M1, a Cartesian morphism Φ :
⊎
T →

⊎
U and a semi-

algebraic homeomorphism ϕ :
⊎
T →

⋃
C such that ϕ−1 maps each C in C onto

some T in T , and for every y in T

ϕ(y) =
(
ψ ◦ Φ(y), cC(ψ ◦ Φ(y)) + π−NM

′
λCy

N0
rC

)
(32)

where16 rC = max(SuppT ). Let ϕη = uη◦ϕ, this is a semi-algebraic homeomor-
phism from

⊎
T to Rm+1. We are going to check that θi ◦ ϕη|T is N -monomial

mod Ue0e1,n for every i ∈ I and every T ∈ T . This will prove the result, with
e = e0e1 and M = M1.

So pick any T ∈ T , let C = ϕ(T ) and rC be as above. There is a unique
B ∈ B containing C, a unique A ∈ A containing B. For every (x, t) ∈ C let
δC(x, t) = t− cC(x). Let δA and δB be defined accordingly. Note that δC = δB
on C because C has the same center as B by construction. For every y ∈ T , by
(31) and (32) we have

θi ◦ ϕη(y) = Ue0,n
(
ϕ(y)

)
hi,A

(
ψ ◦ Φ(y)

)[
λ−1
A δA

(
ϕ(y)

)]αi,A
e0 .

We have Ue0,n(ϕ(y)) ∈ Ue0,n ⊆ Ue0e1,n so the factor Ue0,n(ϕ(y)) can be replaced
by Ue0e1,n(y). Recalling that (V, ψ) is a triangulation of F0∪F1 with parameters
(n1, N0, e1,M1), that Φ is a Cartesian morphism and hi,A ∈ F0, we get that the
second factor hi,A(ψ ◦Φ(y)) = hi,A ◦ψ(Φ(y)) is N0-monomial mod Ue1,n1

hence
a fortiori N -monomial mod Ue0e1,n since N divides N0 and n1 ≥ n. So it only
remains to prove that the last factor [λ−1

A δA ◦ ϕ|T ]αi,A/e0 is N -monomial mod

Ue0e1,n. It suffices to prove it for [λ−1
A δA ◦ ϕ]1/e0 .

We can assume that tpA = 1 otherwise λ−1
A δA = 1 and the result is trivial

(see Remark 4.7). Recall that C Cn1 A and F1 is a Cn-system for (C,A). For
every (x, t) ∈ C we then have

t− cA(x) = Un1
(x, t)hC,A(x)β

(
t− cC(x)

)1−β
16See footnote 15.
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with hC,A ∈ F1 and β ∈ {0, 1} (depending on A, C). So by (32) we have

δA
(
ϕ(y)

)
= Un1

(
ϕ(y)

)
hC,A

(
ψ ◦ Φ(y)

)β(
π−NMλCy

N0
rC

)1−β
. (33)

(V, ψ) is a triangulation of F1 with parameters (n1, N0, e1,M1) hence hC,A(ψ ◦
Φ(y)) is N0-monomial mod Ue1,n1 . So (33) implies that δA ◦ϕ|T is N0-monomial

mod Ue1,n1
, hence so is λ−1

A δA ◦ ϕ|T . Let χ : T → Ue1 and g : T → K be semi-
algebraic functions that for every y ∈ T

λ−1
A δA ◦ ϕ(y) = χ(y)Un1

(y)ζg(y) and g(y) =
∏

1≤i≤q

yαiN0
i

with ζ ∈ K, α1, . . . , αq ∈ Z. Let k = N0/(e0N), by construction e0N divides N0

hence k ∈ N∗. Since T ⊆ DM1Rq
′
, each yi ∈ DM1R ⊆ Q1,M1

⊆ Q1,v(e0)+1 (be-

cause M1 > v(e0)) hence ye0i ∈ Qe0,2v(e0)+1. A fortiori yαiN0 = ye0Nkαi belongs

to Qe0,2v(e0)+1 hence g takes values in Qe0,2v(e0)+1 and g1/e0 is N -monomial:

(
g(y)

) 1
e0 =

( ∏
1≤i≤q

ye0Nkαii

) 1
e0

=
∏

1≤i≤q

yNkαii

But λ−1
A δA also takes values in Qe0,2v(e0)+1 because δA(x, t) ∈ λAQN0,M0

for
every (x, t) ∈ A, and QN0,M0

⊆ Qe0,2v(e0)+1 since e0 divides N0 and M0 >

2v(e0). Thus (λ−1
A δA ◦ ϕ|T )/g = Un1ζχ takes values in Qe0,2v(e0)+1 as well. So

does the factor Un1
since n1 > 2v(e0). Hence finally ζξ(y) ∈ Qe0,2v(e0)+1 for

every y ∈ T , so (ζχ)1/e0 is well defined. Note that ζe1 = ζe1χe1 = [(ζχ)1/e0 ]e0e1

hence ζe1 ∈ Pe0e1 . Pick any η ∈ K such that ζe1 = ηe0e1 , and for every y ∈ T
let χ′(y) = (ζχ(y))1/e0/η. This is a semi-algebraic function taking values in
Ue0e1 because [

(ζχ)1/e0
]e0e1

= ζe1 = ηe0e1 .

By Remark 2.10, U1/e0
n1 = Un1−v(e0) because n1 > 2v(e0), and by definition

χ′Un1−v(e0) = Ue0e1,n1−v(e0). Altogether this gives that

[
λ−1
A δA ◦ ϕ|T

] 1
e0 = U

1
e0
n1 (ζχ)

1
e0 g

1
e0

= χ′Un1−v(e0)

(
(ζχ)

1
e0 /χ′i

)
g

1
e0

= Ue0e1,n1−v(e0)ηg
1
e0

Thus [λ−1
A δA ◦ ϕ]1/e0 is N -monomial mod Ue0e1,n1−v(e0) (because g

1
e0 is so). It

is a fortiori N -monomial mod Ue0e1,n since n1 − v(e0) ≥ n by construction.

9 Open problems

Almost every proof in this paper remains valid for subanalytic sets and maps,
and more generally for definable sets and maps in any p-optimal structure over
a p-adically closed field having the Extreme Value Property (see [DH15]). Un-
fortunately there is one exception: the argument given in Theorem 4.6 to build
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a cell decomposition with largely continuous centers and bounds, by means of
small deformations, only works for semi-algebraic sets. This is the single ob-
struction for a generalization to other structures, and there is good hope that a
work-around can be found in the future.

Question 9.1. How to extend the p-adic triangulation to richer structures, such
as the subanalytic structure?

The triangulation sheds some new light on the problem of classifying p-adic
semi-algebraic sets up to semi-algebraic homeomorphisms, but does not solve
it. Indeed we do not know at the moment when two simplicial complexes are
semi-algebraically homeomorphic. A necessary condition is obviously that they
have the same dimension.

Question 9.2. Given two semi-algebraic sets A ⊆ Km and B ⊆ Kn, how to
decide if they are semi-algebraically homeomorphic?

When A, B are both closed, bounded, without isolated point and of the
same dimension it is not so obvious to find an obstruction for them to be semi-
algebraically homeomorphic. If they have dimension 1 then Clucker’s construc-
tion in [Clu01] actually shows that they are semi-algebraically homeomorphic.
Here is a new criterion involving higher dimensions. Let C(A) denote the ring
of continuous semi-algebraic functions from A to K, and L(A) the lattice of
closed semi-algebraic subsets of A. Now let L◦(A) be the subscaled lattice (in
the sense of [Dar06]) of L(A) generated by A. This lattice contains the pure
dimensional components of A, the pure dimensional components of their inter-
sections, the closure of every boolean combination of such (inside A) and so on.
But contrary to L(A) it is a finite lattice. Let C(B), L(B) and L◦(B) be defined
accordingly. If A and B are semi-algebraically homeomorphic, then C(A) and
C(B) are isomorphic, hence L(A) and L(B) (which encode the topology of the
spectra of C(A) and C(B) by means of Stone’s duality) are isomorphic, and this
isomorphism maps L◦(A) to L◦(B). This leads us to a more precise question,
if not a conjecture.

Question 9.3. Let A ⊆ Km and B ⊆ Kn be closed, bounded, semi-algebraic
sets without isolated points, such that dimA = dimB and L◦(A) ' L◦(B). Are
they semi-algebraically homeomorphic?

If A and B are pure dimensional then L◦(A) ' L◦(B) follows from the other
assumptions in Question 9.3. Hence it might be sufficient to answer the next
weaker question.

Question 9.4. Are any two closed, bounded, semi-algebraic sets with the same
pure dimension ≥ 1 semi-algebraically homeomorphic?

Of course a positive answer to the above questions would solve the next
conjecture.

Conjecture 9.5. There are only countably many different homeomorphism
classes of semi-algebraic sets over K.
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