On expansions of weakly o-minimal non-valuational structures by convex predicates

Roman Wencel¹

Mathematical Institute, University of Wrocław

ABSTRACT

We prove that if $\mathcal{M} = (M, \leq, +, ...)$ is a weakly o-minimal non-valuational structure expanding an ordered group $(M, \leq, +)$, then its expansion by a family of 'non-valuational' unary predicates remains non-valuational. The paper is based on the author's earlier work on strong cell decomposition for weakly o-minimal non-valuational expansions of ordered groups.

0 Introduction

Several examples of weakly o-minimal structures are obtained as expansions of o-minimal structures by predicates interpreted as certain convex sets [MMS]. Among these we have an expansion of a real closed field by a valuation ring and an expansion of the ordered field of real algebraic numbers by a predicate interpreted as $(-\alpha, \alpha)$, where α is a transcendental number. Structures of the first sort were investigated by L. van den Dries and A. H. Lewenberg (see [DL] and [D2]) who showed for instance that if \mathcal{R} is an o-minimal expansion of a real closed field and V is a proper non-empty convex subring closed under 0-definable continuous functions, then the expansion (\mathcal{R}, V) is weakly o-minimal. The phenomenon occurring in all the mentioned examples was addressed in general by Y. Baisalov and B. Poizat (see [BP]) who proved that an expansion of any o-minimal structure by a family of convex predicates has weakly o-minimal theory (so in particular it is a weakly o-minimal structure). The result of [BP] was generalized by B. Baizhanov (see [Bz]) who proved that an expansion of a model of a weakly o-minimal theory by a family of convex predicates has weakly o-minimal theory. It is worth mentioning that Baizhanov's theorem has also an easy proof when one uses the fact that weakly o-minimal theories do not have the independence property and the result of S. Shelah (see [Sh783]) concerning quantifier elimination for the theory of an expansion of a sufficiently saturated model of a theory without the independence property by all externally definable sets. The question of G. Cherlin whether an expansion of a weakly o-minimal structure (not necessarily with weakly o-minimal theory) by a family of convex predicates is also weakly o-minimal still remains an open problem.

This paper is a sequel to the study of expansions of weakly o-minimal structures by convex predicates. In [We07] I introduced weakly o-minimal non-valuational expansions of ordered groups as a natural generalization of weakly o-minimal non-valuational expansions of real closed fields considered in [MMS]. A weakly o-minimal expansion of a real closed field is said to be non-valuational iff it does not define a non-trivial valuation. Similarly, a weakly o-minimal expansion \mathcal{M} of an ordered group $(M, \leq, +)$ is called non-valuational (or of non-valuational type) iff there is no proper and non-trivial subgroup of (M, +) definable in \mathcal{M} . Being of non-valuational type is

¹This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme (contract number: MEIF-CT-2003-501326) and by a Marie Curie European Reintegration Grant (contract number MERG-CT-2005-031095)

equivalent to several conditions which are discussed in [We07]. One of them says that the distance between the two parts of a definable cut is zero (the precise definition appears in §1).

Assume that $\mathcal{M} = (M, \leq, +, \ldots)$ is a weakly o-minimal non-valuational expansion of an ordered group. If $P \subseteq M$ is a finite union of convex sets, then P in a natural way determines a finite family of cuts in (M, \leq) . If the parts of all these cuts are 'close to' each other, then P is said to be non-valuational. Moreover, the expansion (\mathcal{M}, P) is interdefinable with some expansion of \mathcal{M} by a family of convex predicates. By [We07], $Th(\mathcal{M})$ is weakly o-minimal. Therefore by [Bz] also any expansion of \mathcal{M} by a family of non-valuational predicates has weakly o-minimal theory. The main result of this paper is Theorem 2.11, which says that every expansion of \mathcal{M} by a family of non-valuational predicates is of non-valuational type. We also show that the theory of such an expansion is weakly o-minimal without using Baizhanov's theorem (cf. Corollary 2.10).

The paper is organized as follows. In §1 we fix our notation and terminology, and recall some particularly useful results, mainly from [MMS] and [We07]. In §2 we outline the proofs of results mentioned above.

Last but not least, I would like to thank the referee whose comments allowed me to improve the quality of the paper.

1 Notation and preliminaries

Let (M, \leq) be a dense linear ordering without endpoints. A set $I \subseteq M$ is called convex in (M, \leq) iff for any $a, b \in I$ and $c \in M$ with $a \leq c \leq b$ we have that $c \in I$. If additionally $I \neq \emptyset$ and inf I, sup $I \in M \cup \{-\infty, +\infty\}$, then I is called an interval in (M, \leq) . A maximal convex subset of a non-empty subset of M is called a convex component of it. A pair $\langle C, D \rangle$ of non-empty subsets of M is called a cut in (M, \leq) iff C < D, $C \cup D = M$ and D has no lowest element. A first order structure $\mathcal{M} = (M, \leq, \ldots)$ expanding (M, \leq) is said to be weakly o-minimal iff every subset of M, definable in M, is a finite union of convex sets. A complete first order theory is called weakly o-minimal iff all its models are weakly o-minimal. The following remark characterizes weakly o-minimal structures in terms of sets definable in them.

Remark 1.1 Assume that (M, \leq) is a dense linear ordering without endpoints and for $m \in \mathbb{N}_+$, \mathcal{D}_m is a family of subsets of M^m for which the following conditions are satisfied.

- (a) If $I \subseteq M$ is an interval, then $I \in \mathcal{D}_1$.
- (b) If $X \in \mathcal{D}_1$, then X is a union of finitely many convex sets.
- (c) $\{\langle x, y \rangle \in M^2 : x < y\} \in \mathcal{D}_2$.
- (d) \mathcal{D}_m with the usual set-theoretic operations is a Boolean algebra.
- (e) If $X \in \mathcal{D}_m$, then $X \times M$, $M \times X \in \mathcal{D}_{m+1}$.
- (f) If $X \in \mathcal{D}_{m+1}$ and $\pi : M^{m+1} \longrightarrow M^m$ is the projection dropping the last coordinate, then $\pi[X] \in \mathcal{D}_m$.
 - (g) If $1 \le i < j \le m$, then $\{(x_1, ..., x_m) \in M^m : x_i = x_j\} \in \mathcal{D}_m$.

Then there is a weakly o-minimal structure \mathcal{M} expanding (M, \leq) such that for every $X \subseteq M^m$, X is definable in \mathcal{M} iff $X \in \mathcal{D}_m$.

Note that if one replaces 'convex sets' in (b) with 'intervals', then (a)-(g) in Remark 1.1 imply that there is an o-minimal expansion \mathcal{M} of (M, \leq) such that for every $X \subseteq M^m$, X is definable in \mathcal{M} iff $X \in \mathcal{D}_m$ (cf. [D1], Chapter 1).

Assume that $\mathcal{M} = (M, \leq, \ldots)$ is a weakly o-minimal structure. A cut $\langle C, D \rangle$ in (M, \leq) is called *definable* in \mathcal{M} iff the sets C, D are definable in \mathcal{M} . The set of all such cuts will be denoted by

 $\overline{M}^{\mathcal{M}}$. The set M can be regarded as a subset of $\overline{M}^{\mathcal{M}}$ by identifying an element $a \in M$ with the cut $\langle (-\infty, a], (a, +\infty) \rangle$. After such an identification, $\overline{M}^{\mathcal{M}}$ is naturally equipped with a dense linear ordering without endpoints extending that of (M, \leq) , and (M, \leq) is dense in $(\overline{M}^{\mathcal{M}}, \leq)$. For a definable set $X \subseteq M^m$, a function $f: X \longrightarrow \overline{M}^{\mathcal{M}}$ is said to be definable in \mathcal{M} iff the set $\{\langle \overline{x}, y \rangle \in X \times M : f(\overline{x}) > y \}$ is definable in \mathcal{M} .

Now assume that $\mathcal{M}=(M,\leq,+\ldots)$ is a weakly o-minimal structure expanding an ordered group $(M,\leq,+)$. A cut $\langle C,D\rangle$ is called non-valuational iff $\inf\{y-x:x\in C,y\in D\}=0$. We will say that \mathcal{M} is non-valuational (or of non-valuational type) iff all cuts definable in \mathcal{M} are non-valuational. If \mathcal{M} is non-valuational, then $\overline{\mathcal{M}}^{\mathcal{M}}$ can be naturally equipped with an ordered group structure extending that of $(M,\leq,+)$. The ordered groups $(M,\leq,+)$ and $(\overline{\mathcal{M}}^{\mathcal{M}},\leq,+)$ are divisible, abelian and torsion free. For details we refer the reader to §1 of [We07].

Assume that $\mathcal{M} = (M, \leq, ...)$ is a weakly o-minimal structure. Below, for every $m \in \mathbb{N}_+$ we inductively define *strong cells* in M^m and their *completions* in $(\overline{M}^{\mathcal{M}})^m$. The completion in $(\overline{M}^{\mathcal{M}})^m$ of a strong cell $C \subseteq M^m$ will be denoted by \overline{C} .

- (1) A one-element subset of M is a strong $\langle 0 \rangle$ -cell in M and is equal to its completion.
- (2) A non-empty convex open definable subset of M is a strong $\langle 1 \rangle$ -cell in M. If $C \subseteq M$ is a strong $\langle 1 \rangle$ -cell in M, then $\overline{C} := \{ x \in \overline{M}^{\mathcal{M}} : (\exists a, b \in C) (a < x < b) \}.$

Assume that $m \in \mathbb{N}_+$, $i_1, \ldots, i_m \in \{0, 1\}$ and suppose that we have already defined strong $\langle i_1, \ldots, i_m \rangle$ -cells in M^m and their completions in $(\overline{M}^M)^m$.

- (3) If $C \subseteq M^m$ is a strong $\langle i_1, \ldots, i_m \rangle$ -cell in M^m and $f: C \longrightarrow M$ is a continuous definable function which has a continuous extension $\overline{f}: \overline{C} \longrightarrow \overline{M}^M$, then $\Gamma(f)$, the graph of f, is a strong $\langle i_1, \ldots, i_m, 0 \rangle$ -cell in M^{m+1} . The completion of $\Gamma(f)$ in $(\overline{M}^M)^{m+1}$ is defined as $\Gamma(\overline{f})$.
- (4) If $C \subseteq M^m$ is a strong $\langle i_1, \ldots, i_m \rangle$ -cell in M^m and $f, g : C \longrightarrow \overline{M}^M \cup \{-\infty, +\infty\}$ are continuous definable functions which have continuous extensions $\overline{f}, \overline{g} : \overline{C} \longrightarrow \overline{M}^M$ such that $\overline{f}(\overline{x}) < \overline{g}(\overline{x})$ for $\overline{x} \in \overline{C}$, then the set

$$(f,g)_C := \{ \langle \overline{a}, b \rangle \in C \times M : f(\overline{a}) < b < g(\overline{a}) \}$$

is called a strong $\langle i_1, \dots, i_m, 1 \rangle$ -cell in M^m . The completion of $(f, g)_C$ in $(\overline{M}^M)^{m+1}$ is defined as

$$\overline{(f,g)_C} := (\overline{f},\overline{g})_{\overline{C}} := \{ \langle \overline{a},b \rangle \in \overline{C} \times \overline{M}^{\mathcal{M}} : \overline{f}(\overline{a}) < b < \overline{g}(\overline{a}) \}.$$

(5) We say that $C \subseteq M^m$ is a strong cell in M^m iff there are $i_1, \ldots, i_m \in \{0, 1\}$ such that C is a strong $\langle i_1, \ldots, i_m \rangle$ -cell in M^m .

If $C \subseteq M^m$ is a strong cell, then a definable function $f: C \longrightarrow \overline{M}^{\mathcal{M}}$ is called *strongly continuous* iff f has a continuous extension $\overline{f}: \overline{C} \longrightarrow \overline{M}^{\mathcal{M}}$. In a standard way we define the notion of *decomposition* of a definable set into strong cells partitioning a given definable set (for details we refer the reader to §2 of [We07]). We will say that \mathcal{M} has the *strong cell decomposition property* iff for any $m, k \in \mathbb{N}_+$ and any definable sets $X_1, \ldots, X_k \subseteq M^m$, there is a decomposition of M^m into strong cells partitioning each of the sets X_1, \ldots, X_k .

Fact 1.2 [MMS, Ar] Let $\mathcal{M} = (M, \leq, \ldots)$ be a weakly o-minimal structure and $A \subseteq M$. If $U \subseteq M$ is an infinite A-definable set and $f: U \longrightarrow \overline{M}^{\mathcal{M}}$ is an A-definable function, then there is a partition of U into A-definable sets X, I_0, \ldots, I_m such that X is finite, I_0, \ldots, I_m are non-empty convex open sets, and for every $i \leq m$, $f \upharpoonright I_i$ is locally constant or locally strictly increasing or locally strictly decreasing.

The following fact easily follows from the definition of strong cells.

Fact 1.3 Assume that $\mathcal{M} = (M, \leq, \ldots)$ is a weakly o-minimal structure with the strong cell decomposition property and $A \subseteq M$. If $U \subseteq M$ is a non-empty A-definable set and $f: U \longrightarrow \overline{M}^{\mathcal{M}}$ is an A-definable function, then there is a partition of U into A-definable sets X, I_0, \ldots, I_m such that X is finite, I_0, \ldots, I_m are non-empty convex open sets, and for every $i \leq m$, $f \upharpoonright I_i$ is strongly continuous and strictly monotone or constant.

Proof. By assumption, there is a decomposition C of M^2 into A-definable strong cells partitioning the set $\{\langle x,y\rangle\in U\times M:y< f(x)\}$. This yields a decomposition of U into finitely many A-definable convex open sets J_0,\ldots,J_k and a finite set X such that

$${J_0, \ldots, J_k} \cup {\{a\} : a \in X\} = \{\pi[C] : C \in \mathcal{C}\},\$$

where $\pi: M^2 \longrightarrow M$ is the projection dropping the second coordinate. By our definition of strong cells, $f \upharpoonright J_i$ is strongly continuous for $i \le m$. In such a situation, weak o-minimality of \mathcal{M} implies that each of the J_i 's could be decomposed into finitely many A-definable convex open sets and some finite set so that on each of the open sets, f is strictly monotone or constant. This finishes the proof.

Theorem 1.4 [We07] Let $\mathcal{M} = (M, \leq, +, ...)$ be a weakly o-minimal structure expanding an ordered group $(M, \leq, +)$. Then \mathcal{M} is of non-valuational type iff \mathcal{M} has the strong cell decomposition property.

2 The main result

Throughout this section we shall work in a weakly o-minimal structure $\mathcal{M}=(M,\leq,\ldots)$, usually assuming that \mathcal{M} has the strong cell decomposition property or is a non-valuational expansion of an ordered group. By C we will denote a non-empty, convex and non-definable (in \mathcal{M}) proper subset of M such that inf $C=-\infty$. Then $\langle C,M\setminus C\rangle$ is a cut in (M,\leq) (according to the terminology of [Bz] and [BVT] such cuts are called irrational). By Corollary 2.15 from [We07], we know that if \mathcal{M} is a non-valuational expansion of an ordered group, then $Th(\mathcal{M})$ is weakly o-minimal. Hence, by [Bz], also $Th(\mathcal{M},C)$ is weakly o-minimal. In a series of lemmas below we will show that if \mathcal{M} is a weakly o-minimal non-valuational expansion of an ordered group and the cut $\langle C,M\setminus C\rangle$ is non-valuational, then also the expansion (\mathcal{M},C) is of non-valuational type. Moreover, we will give a direct proof of the weak o-minimality of $Th(\mathcal{M},C)$.

a direct proof of the weak o-minimality of $Th(\mathcal{M}, C)$. For $m \in \mathbb{N}_+$ and $i \in \{1, ..., m+1\}$, by π_i^{m+1} we will denote the projection from M^{m+1} to M^m dropping the *i*-th coordinate and by $\mathcal{D}_m(\mathcal{M})$ the family of all subsets of M^m definable in \mathcal{M} .

Lemma 2.1 Assume that $\mathcal{M} = (M, \leq, ...)$ is a weakly o-minimal structure and $I \subseteq M$ is a convex open definable set such that $I \cap C \neq \emptyset$ and $I \setminus C \neq \emptyset$. If $f: I \longrightarrow \overline{M}^{\mathcal{M}}$ is a definable function such that $(\forall x \in I)(f(x) > c)$ $[(\forall x \in I)(f(x) < c)]$ for some $c \in M$, then there are an open interval

 $J \subseteq I$ and $\alpha > c$ $[\alpha < c]$, $\alpha \in M$, such that $J \cap C \neq \emptyset$, $J \setminus C \neq \emptyset$ and $(\forall x \in J)(f(x) > \alpha)$ $[(\forall x \in J)(f(x) < \alpha)]$.

Proof. Let $f: I \longrightarrow \overline{M}^{\mathcal{M}}$ be a definable function such that $(\forall x \in I)(f(x) > c)$, where $c \in M$. By Fact 1.2 and the non-definability of C, there is an open interval $I_1 \subseteq I$ such that $I_1 \cap C \neq \emptyset$, $I_1 \setminus C \neq \emptyset$ and $f \upharpoonright I_1$ is either strictly monotone or constant. Fix $a \in I_1 \cap C$, $b \in I_1 \setminus C$ and $\alpha \in M$ such that $c < \alpha < \min\{f(a), f(b)\}$. It is clear that $f(x) > \alpha$ whenever $x \in (a, b)$. The other case is proved in a similar way.

Lemma 2.2 Let $\mathcal{M} = (M, \leq, ...)$ be a weakly o-minimal non-valuational expansion of an ordered group. Assume that $I \subseteq M$ is a non-empty convex open definable set such that $I \cap C \neq \emptyset$ and $I \setminus C \neq \emptyset$, and $f, g : I \longrightarrow \overline{M}^{\mathcal{M}}$ are definable functions such that $(\forall x \in I)(f(x) < g(x))$. There are an element $a \in M$ and an open interval $J \subseteq I$ such that $J \cap C \neq \emptyset$, $J \setminus C \neq \emptyset$ and f(x) < a < g(x) for $x \in J$.

Proof. By Theorem 1.4 and Fact 1.3, without loss of generality we can assume that the functions f,g are strongly continuous. By Lemma 2.1, there are an open interval $I_1 \subseteq I$ and an element $\alpha \in M$, $\alpha > 0$, such that $I_1 \cap C \neq \emptyset$, $I_1 \setminus C \neq \emptyset$ and $(\forall x \in I_1)(g(x) - f(x) > \alpha)$. Fix $\varepsilon > 0$, $\varepsilon \in M$, such that $2\varepsilon < \alpha$. For $x_0 \in I_1$ define

$$\begin{array}{lcl} \delta_f(x_0) & = & \min(\varepsilon, \sup\{d \in M : d > 0, (\forall x \in (x_0 - d, x_0 + d) \cap I_1)(|f(x) - f(x_0)| < \varepsilon)\}) \\ \delta_g(x_0) & = & \min(\varepsilon, \sup\{d \in M : d > 0, (\forall x \in (x_0 - d, x_0 + d) \cap I_1)(|g(x) - g(x_0)| < \varepsilon)\}). \end{array}$$

Again, by Lemma 2.1, there are an open interval $I_2 \subseteq I_1$ and an element $\beta \in M$, $\beta > 0$, such that $I_2 \cap C \neq \emptyset$, $I_2 \setminus C \neq \emptyset$ and $\min(\delta_f(x_0), \delta_g(x_0)) > \beta$ for $x_0 \in I_2$. Fix $c_1 \in I_2 \cap C$ and $c_2 \in I_2 \setminus C$ such that $c_2 - c_1 < \beta$. For $x_1, x_2 \in (c_1, c_2)$ we have that

$$g(x_2) - f(x_1) = (g(x_2) - g(x_1)) + (g(x_1) - f(x_1)) > -\varepsilon + 2\varepsilon = \varepsilon.$$

Consequently,

$$\inf\{g(x): x \in (c_1, c_2)\} - \sup\{f(x): x \in (c_1, c_2)\} \ge \varepsilon.$$

If $a \in M$ is such that $\sup\{f(x) : x \in (c_1, c_2)\} < a < \inf\{g(x) : x \in (c_1, c_2)\}$, then for $x \in (c_1, c_2)$ we have that f(x) < a < g(x).

Lemma 2.3 Let \mathcal{M} be a weakly o-minimal non-valuational expansion of an ordered group. Assume that $X \subseteq M^2$ is a set definable in \mathcal{M} such that for any $a, b \in M$, if $\langle a, b \rangle \in X$, then there are $a_1, a_2 \in M$ such that $a_1 < a < a_2$ and $(a_1, a_2) \times \{b\} \subseteq X$. The following conditions are equivalent.

- (a) There are $a_1 \in C$, $a_2 \in M \setminus C$ and $b \in M$ such that $(a_1, a_2) \times \{b\} \subseteq X$.
- (b) There are $a_1 \in C$ and $a_2 \in M \setminus C$ such that $(a_1, a_2) \subseteq \pi_2^2[X]$.

Proof. The implication from (a) to (b) is obvious, so assume that (b) holds. Let \mathcal{C} be a decomposition of M^2 into strong cells in M^2 partitioning the set X. There is a convex open definable set $I \subseteq M$ such that $I \cap C \neq \emptyset$, $I \setminus C \neq \emptyset$ and for every $D \in \mathcal{C}$, we have that either $I = \pi_2^2[D]$ or $\pi_2^2[D] \cap I = \emptyset$. Below we consider two cases.

Case 1. The set $(I \times M) \cap X$ has empty interior. The following claim is a consequence of Lemma 2.1 from [We06] but for the sake of completeness we give a proof in our particular situation.

Claim. For every $x \in I$, the set $\{y \in M : \langle x, y \rangle \in X\}$ is finite.

Proof of the Claim. Suppose for a contradiction that for some $a \in I$, the set $\{y \in M : \langle a, y \rangle \in X\}$ is infinite, so it contains an open interval J. For $b \in J$ define

$$f(b) = \sup\{c \in M : c > a \text{ and } \{a\} \times (b,c) \subseteq (I \times M) \cap X\}.$$

The function f assumes values greater than a in $\overline{M}^{\mathcal{M}} \cup \{+\infty\}$. By Fact 1.3, there is an open interval $J' \subseteq J$ such that $f \upharpoonright J'$ is strongly continuous and strictly monotone or constant. It is clear that the set $\{\langle x,y\rangle: a < x < f(y), y \in J'\}$ is contained in $(I \times M) \cap X$ and contains an open box itself. This means that $(I \times M) \cap X$ has non-empty interior, a contradiction.

Using the Claim, for $x \in I$, we can define $f(x) = \min\{y \in M : \langle x, y \rangle \in X\}$. Our assumptions guarantee that f is constant (say f(x) = b whenever $x \in I$), so for any $a_1 \in I \cap C$ and $a_2 \in I \setminus C$, we have that $(a_1, a_2) \times \{b\} \subseteq X$.

Case 2. There are definable strongly continuous functions $f: I \longrightarrow \overline{M}^{\mathcal{M}} \cup \{-\infty\}$ and $g: I \longrightarrow \overline{M}^{\mathcal{M}} \cup \{+\infty\}$ such that $\overline{f}(a) < \overline{g}(a)$ for $a \in \overline{I}$ and $D:=(f,g)_I \subseteq X \cap (I \times M)$. By Lemma 2.2, there are $a_1 \in I \cap C$, $a_2 \in I \setminus C$ and $b \in M$ such that $(a_1,a_2) \times \{b\} \subseteq D \subseteq X$.

For a weakly o-minimal structure \mathcal{M} and a set $X \in \mathcal{D}_{m+1}(\mathcal{M})$ let

$$I(X,C) = \{ \overline{a} \in M^m : (\exists b \in C) (\exists c \in M \setminus C) (\{ \overline{a} \} \times (b,c) \subseteq X) \}.$$

Define also $\mathcal{E}_m(\mathcal{M}, C) = \{I(X, C) : X \in \mathcal{D}_{m+1}(\mathcal{M})\}$. Below we will show that if \mathcal{M} is a non-valuational expansion of an ordered group, then $\mathcal{E}_m(\mathcal{M}, C)$ is exactly the family of subsets of M^m definable in (\mathcal{M}, C) .

Lemma 2.4 Let \mathcal{M} be a weakly o-minimal structure with the strong cell decomposition property.

- (a) If $X \in \mathcal{D}_2(\mathcal{M})$ is a strong cell, then $I(\{\langle x,y \rangle \in M^2 : \langle y,x \rangle \in X\}, C)$ is a convex set.
- (b) If $Y \in \mathcal{E}_1(\mathcal{M}, C)$, then Y is a finite union of convex sets.
- (c) $C \in \mathcal{E}_1(\mathcal{M}, C)$.

Proof. (a) is obvious from the definition of strong cells. (b) follows from (a) and the strong cell decomposition property of \mathcal{M} . For the proof of (c), note that

$$C = I(\{\langle x, y \rangle \in M^2 : y > x\}, C).$$

Here the strong cell decomposition property in not needed.

Lemma 2.5 Assume that \mathcal{M} is a weakly o-minimal structure and $m \in \mathbb{N}_+$.

- (a) $\mathcal{D}_m(\mathcal{M}) \subseteq \mathcal{E}_m(\mathcal{M}, C)$.
- (b) $\mathcal{E}_m(\mathcal{M}, C)$ is closed under Boolean operations.
- (c) If $X \in \mathcal{E}_m(\mathcal{M}, C)$, then $X \times M, M \times X \in \mathcal{E}_{m+1}(\mathcal{M}, C)$.

Proof. (a) If $m \in \mathbb{N}_+$ and $X \in \mathcal{D}_m(\mathcal{M})$, then $X = I(X \times M, C)$.

- (b) Fix $m \in \mathbb{N}_+$ and $X, Y \in \mathcal{E}_m(\mathcal{M}, C)$. There are $X_1, Y_1 \in \mathcal{D}_{m+1}(\mathcal{M})$ such that $X = I(X_1, C)$ and $Y = I(Y_1, C)$. Clearly, $X \cup Y = I(X_1 \cup Y_1, C)$, $X \cap Y = I(X_1 \cap Y_1, C)$ and $M^m \setminus X = I(M^{m+1} \setminus X_1, C)$.
- (c) Let $m \in \mathbb{N}_+$ and $X \in \mathcal{E}_m(\mathcal{M}, C)$. Then $X = I(X_1, C)$ for some $X_1 \in \mathcal{D}_{m+1}(\mathcal{M})$. Hence $M \times X = I(M \times X_1, C)$ and $X \times M = I(\{\langle \overline{x}, y, z \rangle \in M^{m+1} : \langle \overline{x}, z \rangle \in X\}, C)$.

Lemma 2.6 Let \mathcal{M} be a weakly o-minimal expansion of an ordered group. If $X \in \mathcal{E}_{m+1}(\mathcal{M}, C)$, then $\pi_{m+1}^{m+1}[X] \in \mathcal{E}_m(\mathcal{M}, C)$.

Proof. Fix $m \in \mathbb{N}_+$ and $X \in \mathcal{E}_{m+1}(\mathcal{M}, C)$. There is $X_1 \in \mathcal{D}_{m+2}(\mathcal{M})$ such that $X = I(X_1, C)$.

$$X_2 = \bigcup \{ \{\overline{a}\} \times (b,c) : \overline{a} \in M^{m+1}, b \in C, c \in M \setminus C \text{ and } \{\overline{a}\} \times (b,c) \subseteq X_1 \}.$$

Clearly, $X = I(X_2, C)$ and $X_2 \in \mathcal{D}_{m+2}(\mathcal{M})$. We claim that $\pi_{m+1}^{m+1}[X] = I(\pi_{m+1}^{m+2}[X_2], C)$. In order to prove that $\pi_{m+1}^{m+1}[X] \subseteq I(\pi_{m+1}^{m+2}[X_2], C)$, fix $\overline{a} \in \pi_{m+1}^{m+1}[X]$. There is $b \in M$ such that $\langle \overline{a}, b \rangle \in X = I(X_2, C)$. So there are $c \in C$ and $d \in M \setminus C$ such that $\{\langle \overline{a}, b \rangle\} \times (c, d) \subseteq X_2$. Hence

 $\{\overline{a}\} \times (c,d) \subseteq \pi_{m+1}^{m+2}[X_2]$ and $\overline{a} \in I(\pi_{m+1}^{m+2}[X_2],C)$. For the reverse inclusion, let $\overline{a} \in I(\pi_{m+1}^{m+2}[X_2],C)$. There are $c \in C$ and $d \in M \setminus C$ such that $\{\overline{a}\} \times (c,d) \subseteq \pi_{m+1}^{m+2}[X_2]$. Let $Z = \{\langle x,y \rangle \in M^2 : \langle \overline{a},y,x \rangle \in X_2 \}$. Clearly, $(c,d) \subseteq \pi_2^2[Z]$. By Lemma 2.3, there are $c' \in C$, $d' \in M \setminus C$ and $e \in M$ such that $(c,d) \times \{e\} \subseteq Z$. Consequently, $\{\langle \overline{a}, e \rangle\} \times (c, d) \subseteq X_2$. The latter implies that $\langle \overline{a}, e \rangle \in X$ and $\overline{a} \in \pi_{m+1}^{m+1}[X]$.

Lemmas 2.4, 2.5 and 2.6 imply that if \mathcal{M} is a weakly o-minimal non-valuational expansion of an ordered group, then

- (a) all intervals in (M, \leq) belong to $\mathcal{E}_1(\mathcal{M}, C)$;
- (b) every set belonging to $\mathcal{E}_1(\mathcal{M}, C)$ is a union of finitely many convex sets;
- (c) $\{\langle x, y \rangle \in M^2 : x < y\} \in \mathcal{E}_2(\mathcal{M}, C);$
- (d) for every $m \in \mathbb{N}_+$, \emptyset , $M^m \in \mathcal{E}_m(\mathcal{M}, C)$ and $(\mathcal{E}(\mathcal{M}, C), \cap, \cup, c)$ is a Boolean algebra;
- (e) if $X \in \mathcal{E}_m(\mathcal{M}, C)$, then $X \times M, M \times X \in \mathcal{E}_{m+1}(\mathcal{M}, C)$;
- (f) if $1 \le i < j \le m$, then $\{\langle x_1, \dots, x_m \rangle \in M^m : x_i = x_j\} \in \mathcal{E}_m(\mathcal{M}, C);$ (g) if $X \in \mathcal{E}_{m+1}(\mathcal{M}, C)$ and $i \in \{1, \dots, m\}$, then $\pi_i^{m+1}[X] \in \mathcal{E}_m(\mathcal{M}, C);$
- (h) $C \in \mathcal{E}_1(\mathcal{M}, C)$.

Therefore, by Remark 1.1, there is a weakly o-minimal structure \mathcal{M}' expanding \mathcal{M} such that a set $X \subseteq M^m$ is definable in \mathcal{M}' iff $X \in \mathcal{E}_m(\mathcal{M}, C)$. In the following lemma, $\mathcal{D}_m(\mathcal{M}, C)$ denotes the family of all subsets of M^m which are definable in the structure (\mathcal{M}, C) .

Lemma 2.7 Let \mathcal{M} be a weakly o-minimal non-valuational expansion of an ordered group. For every $m \in \mathbb{N}_+$, $\mathcal{E}_m(\mathcal{M}, \mathcal{C}) = \mathcal{D}_m(\mathcal{M}, \mathcal{C})$.

Proof. The inclusion \subseteq is obvious. That $\mathcal{D}_m(\mathcal{M}, C) \subseteq \mathcal{E}_m(\mathcal{M}, C)$ follows easily by induction from the above remark.

Corollary 2.8 If M is a weakly o-minimal non-valuational expansion of an ordered group, then (\mathcal{M}, C) is weakly o-minimal.

Lemma 2.9 Let $\mathcal{M} = (M, \leq, +, \ldots)$ be a weakly o-minimal non-valuational expansion of an ordered group $(M, \leq, +)$. Assume that I is a non-empty convex open definable (in \mathcal{M}) set with $I \cap C \neq \emptyset$ and $I \setminus C \neq \emptyset$. Let $f: I \longrightarrow \overline{M}^{\mathcal{M}}$ be a definable strongly continuous and strictly monotone function.

(a) If f is strictly increasing, then

$$\langle \{a \in M : (\exists c \in C)(f(c) > a)\}, \{a \in M : (\exists d \in M \setminus C)(f(d) < a)\} \rangle$$

is a non-definable and non-valuational cut in $(M, \leq, +)$.

(b) If f is strictly decreasing, then

$$\langle \{a \in M : (\exists d \in M \setminus C)(f(d) > a)\}, \{a \in M : (\exists c \in C)(f(c) < a)\} \rangle$$

is a non-definable and non-valuational cut in (M, <, +).

Proof. As both cases are similar, we will only prove (a). Assume that f is strictly increasing and let

$$C' = \{a \in M : (\exists c \in C)(f(c) > a)\} \text{ and } D' = \{a \in M : (\exists d \in M \setminus C)(f(d) < a)\}.$$

It is clear that C' and D' are both convex definable sets with $\inf C' = -\infty$ and $\sup D' = +\infty$. The sets C', D' are disjoint since otherwise we would have f(d) < a < f(c) for some $a \in M$, $c \in C$ and $d \in M \setminus C$.

To show that $C' \cup D' = M$, suppose for a contradiction that there exists an element $a \in M \setminus (C' \cup D')$. This means that $f(c) \le a \le f(d)$ whenever $c \in C$ and $d \in M \setminus C$. Note that if there was a $c \in C$ with f(c) = a, then there would be also a $c' \in C$ with c' > c and f(c') > f(c) = a, a contradiction. So $(\forall c \in C)(f(c) < a)$ and similarly $(\forall d \in M \setminus C)(f(d) > a)$. Now,

$$C = \{x \in M : x \le \inf I\} \cup \{x \in I : f(x) < a\},\$$

which means that C is definable in \mathcal{M} , a contradiction. In this way we have shown that $\langle C', D' \rangle$ is a cut in (M, \leq) . Its non-definability is a consequence of the non-definability of C.

In order to complete the proof, suppose for a contradiction that

$$\inf\{z - y : y \in C', z \in D'\} = \inf\{f(d) - f(c) : c \in C, d \in M \setminus C\} > 0$$

and fix $\varepsilon > 0$, $\varepsilon \in M$, such that $\varepsilon < \inf\{f(d) - f(c) : c \in C, d \in M \setminus C\}$. So clearly $f(x_2) - f(x_1) > \varepsilon$ whenever $x_1 \in I \cap C$ and $x_2 \in I \setminus C$. For $x_0 \in I$ define

$$\delta(x_0) = \min\{\varepsilon, \sup\{d \in M : d > 0 \text{ and } |f(x) - f(x_0)| < \varepsilon \text{ for } x \in (x_0 - d, x_0 + d) \cap I\}\}.$$

By Lemma 2.1, there are an open interval $J \subseteq I$ and an element $\alpha > 0$, $\alpha \in M$, such that $J \cap C \neq \emptyset$, $J \setminus C \neq \emptyset$ and $(\forall x_0 \in J)(\delta(x_0) > \alpha)$. Since the cut $\langle C, M \setminus C \rangle$ is non-valuational, we can choose $x_1 \in J \cap C$ and $x_2 \in J \setminus C$ so that $x_2 - x_1 < \alpha$. In such a situation we have that $\delta(x_1) > \alpha$ and $|f(x_2) - f(x_1)| < \varepsilon$, which contradicts our choice of ε .

Corollary 2.10 Let \mathcal{M} be a weakly o-minimal non-valuational expansion of an ordered group.

- (a) The structure (\mathcal{M}, C) is of non-valuational type.
- (b) $Th(\mathcal{M}, C)$ is weakly o-minimal.

Proof. We already know by Corollary 2.8 that (\mathcal{M}, C) is weakly o-minimal. To demonstrate that (\mathcal{M}, C) is of non-valuational type, fix $\langle D, D' \rangle$, a cut in (M, \leq) which is definable in (\mathcal{M}, C) . We have to show that $\langle D, D' \rangle$ is non-valuational. As there is nothing to do in case $D \in \mathcal{D}_1(\mathcal{M})$, suppose that D is not definable in \mathcal{M} . By Lemma 2.7, there exists a set $X \in \mathcal{D}_2(\mathcal{M})$ such that D = I(X, C). Denote by X' the union of all sets of the form $\{a\} \times (b, c)$, where $a, b, c \in \mathcal{M}, b < c$ and $\{a\} \times (b, c) \subseteq X$. Obviously, X' is definable in \mathcal{M} and I(X', C) = D. Fix \mathcal{C} , a decomposition of M^2 into strong cells partitioning X' and let I_0, \ldots, I_n be an enumeration of all convex sets of the form $\pi_2^2[Y]$ where $Y \in \mathcal{C}$ and $Y \subseteq X'$ such that I_i precedes I_j whenever $i < j \leq n$. Without loss of generality we can assume that the functions appearing in definitions of cells from \mathcal{C} are strictly monotone or constant. Non-definability of D guarantees that there is $k \leq n$ such that

 I_k is a convex open set intersecting both D and $M \setminus D$. There are strongly continuous functions $f_0, g_0, \ldots, f_m, g_m : I_k \longrightarrow \overline{M}^{\mathcal{M}} \cup \{-\infty, +\infty\}$ such that (a) each of $f_0, g_0, \ldots, f_m, g_m$ is either strictly monotone or constant;

- (b) $\overline{f}_i(x) < \overline{g}_i(x)$ for $i \leq m$ and $x \in \overline{I}_k$;
- (c) $\overline{g}_i(x) < \overline{f}_{i+1}(x)$ for i < m and $x \in \overline{I}_k$;
- (d) $X' \cap (I_k \times M) = (f_0, g_0)_{I_k} \cup \ldots \cup (f_m, g_m)_{I_k}$.

There is a unique $i \leq m$ such that $\sup I((f_i, g_i)_{I_k}, C) = \sup D \cap I_k$ and exactly one of the following two conditions holds.

- (1) f_i is strictly increasing and $D \cap I_k = I((f_i, +\infty)_{I_k}, C)$.
- (2) g_i is strictly decreasing and $D \cap I_k = I((-\infty, g_i)_{I_k}, C)$.

Since the reasoning is similar in both cases, we will only consider (1). To simplify notation let $f := f_i$. Fix $a \in C$ such that $a > \inf\{f(x) : x \in I_k\}$ and $b \in M \setminus C$ such that $b < \sup\{f(x) : x \in I_k\}$, and let J = (a, b). For $y \in J$ define

$$h(y) = \sup\{x \in M : \langle x, y \rangle \in (f, +\infty)_{I_k}\}.$$

The function h is strictly increasing and strongly continuous. As

$$D = \{ x \in M : (\exists x' \in C) (h(x') > x) \},\$$

by Lemma 2.9, the cut $\langle D, D' \rangle$ is non-valuational.

The weak o-minimality of $Th(\mathcal{M}, C)$ now follows from the fact that (\mathcal{M}, C) is a weakly ominimal non-valuational structure and from Corollary 2.15 from [We07].

Before formulating the main result, we will introduce so called unary non-valuational predicates. Assume that $\mathcal{M} = (M, \leq, \ldots)$ is a weakly o-minimal non-valuational expansion of an ordered group and let $X \subseteq M$ be a finite union of convex sets. For $a \in X$ denote by R(a,X) the convex component of X containing a. Similarly, for $a \in M \setminus X$, let R(a, X) be the convex component of $M \setminus X$ containing a. For $a \in M$ define

$$D(a,X) = \bigcup_{\alpha \in R(a,X)} (\alpha, +\infty).$$

Clearly, if $D(a, X) \neq M$, then $\langle M \setminus D(a, X), D(a, X) \rangle$ is a cut in (M, \leq) . A cut $\langle C, D \rangle$ in (M, \leq) is said to be determined by X if it is of the form $\langle M \setminus D(a,X), D(a,X) \rangle$ for some $a \in M$.

We say that a set $X \subseteq M$ is a unary non-valuational predicate iff X is a union of finitely many convex sets and all cuts determined by X are non-valuational.

Theorem 2.11 Assume that \mathcal{M} is a weakly o-minimal non-valuational expansion of an ordered group and N is an expansion of M by a family of non-valuational unary predicates. Then N is of non-valuational type.

Proof. There is a family of convex open sets $C_i \subseteq M$, $i \in I$, such that

- for every $i \in I$, C_i is not definable in \mathcal{M} and inf $C_i = -\infty$;
- the structures \mathcal{N} and $(\mathcal{M}, C_i : i \in I)$ have the same definable sets.

Without loss of generality we can assume that I is finite, in which case the theorem follows easily by induction on |I| from Corollary 2.10(b).

Theorem 2.11 actually shows that for weakly o-minimal expansions of ordered groups, the property of a structure having the strong cell decomposition is preserved under expansions by families of unary non-valuational predicates. Having in mind that non-valuational predicates are those which determine non-valuational cuts, one can speak of valuational/non-valuational cuts in an arbitrary weakly o-minimal structure with the strong cell decomposition property, not necessarily expanding an ordered group. More precisely, if $\mathcal{M} = (M, \leq, \ldots)$ is a weakly o-minimal structure with the strong cell decomposition property, then a cut $\langle C, D \rangle$ in (M, \leq) could be called non-valuational if the structure (\mathcal{M}, C) has the strong cell decomposition property. This gives us notions of "being close" and "being far" for the parts of a cut $\langle C, D \rangle$ in (M, \leq) and it would be interesting to further investigate this topic, probably relating it to the canonical o-minimal extension of a weakly o-minimal structure with the strong cell decomposition property constructed in [We07].

References

- [Ar] R. D. Aref'ev, On the monotonicity property for weakly o-minimal models, Algebra and Model Theory (Russian), pp. 8-15, Novosibirsk. Gos. Tekh. Univ., Novosibirsk 1997;
 Model theory in Kazakhstan (Russian), pp. 7-13, Eco Stydy, Almaty 2006.
- [BP] Y. Baisalov and B. Poizat, *Paires de structures o-minimales*, J. Symbolic Logic 63 (1998), 570-578.
- [Bz] B.S. Baizhanov, Expansion of a model of a weakly o-minimal theory by a family of unary predicates, J. Symbolic Logic 66 (2001), 1382-1414.
- [BVT] B.S. Baizhanov, V. Verbovskiy and G. Turehanova, Non-orthogonality of 1-types in weakly o-minimal structures of finite depth, preprint (in Russian).
- [D1] L. van den Dries, **Tame Topology and o-minimal Structures**, London Mathematical Society Lecture Notes Series, vol. 248, Cambridge: Cambridge University Press 1998.
- [D2] L. van den Dries, T-convexity and Tame extensions, II, J. Symbolic Logic 62 (1997), 14-34.
- [DL] L. van den Dries and A.H. Lewenberg, *T-convexity and tame extensions*, J. Symbolic Logic 60 (1995), 74-102.
- [MMS] D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.
- [Sh783] S. Shelah, Dependent first order theories, continued, Israel J. Math., to appear.
- [We06] R. Wencel, Topological properties of sets definable in weakly o-minimal structures, J. Symbolic Logic, submitted.
- [We07] R. Wencel, Weakly o-minimal non-valuational structures, Ann. Pure Appl. Logic 154 (2008), 139-162.

Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, POLAND Mailing address:

rwenc@math.uni.wroc.pl E-mail: