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ABSTRACT

We prove that if M = (M, <,+,...) is a weakly o-minimal non-valuational structure expanding
an ordered group (M, <,+), then its expansion by a family of ‘non-valuational’ unary predicates
remains non-valuational. The paper is based on the author’s earlier work on strong cell decompo-
sition for weakly o-minimal non-valuational expansions of ordered groups.

0 Introduction

Several examples of weakly o-minimal structures are obtained as expansions of o-minimal structures
by predicates interpreted as certain convex sets [MMS]. Among these we have an expansion of a
real closed field by a valuation ring and an expansion of the ordered field of real algebraic numbers
by a predicate interpreted as (—a, «), where « is a transcendental number. Structures of the first
sort were investigated by L. van den Dries and A. H. Lewenberg (see [DL] and [D2]) who showed
for instance that if R is an o-minimal expansion of a real closed field and V is a proper non-empty
convex subring closed under 0-definable continuous functions, then the expansion (R, V) is weakly
o-minimal. The phenomenon occuring in all the mentioned examples was addressed in general by
Y. Baisalov and B. Poizat (see [BP]) who proved that an expansion of any o-minimal structure by a
family of convex predicates has weakly o-minimal theory (so in particular it is a weakly o-minimal
structure). The result of [BP] was generalized by B. Baizhanov (see [Bz]) who proved that an
expansion of a model of a weakly o-minimal theory by a family of convex predicates has weakly
o-minimal theory. It is worth mentioning that Baizhanov’s theorem has also an easy proof when
one uses the fact that weakly o-minimal theories do not have the independence property and the
result of S. Shelah (see [Sh783]) concerning quantifier elimination for the theory of an expansion
of a sufficiently saturated model of a theory without the independence property by all externally
definable sets. The question of G. Cherlin whether an expansion of a weakly o-minimal structure
(not necessarily with weakly o-minimal theory) by a family of convex predicates is also weakly
o-minimal still remains an open problem.

This paper is a sequel to the study of expansions of weakly o-minimal structures by convex
predicates. In [We07] I introduced weakly o-minimal non-valuational expansions of ordered groups
as a natural generalization of weakly o-minimal non-valuational expansions of real closed fields
considered in [MMS]. A weakly o-minimal expansion of a real closed field is said to be non-
valuational iff it does not define a non-trivial valuation. Similarly, a weakly o-minimal expansion
M of an ordered group (M, <,+) is called non-valuational (or of non-valuational type) iff there
is no proper and non-trivial subgroup of (M, +) definable in M. Being of non-valuational type is
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equivalent to several conditions which are discussed in [We07]. One of them says that the distance
between the two parts of a definable cut is zero (the precise definition appears in §1).

Assume that M = (M, <,+,...) is a weakly o-minimal non-valuational expansion of an ordered
group. If P C M is a finite union of convex sets, then P in a natural way determines a finite family
of cuts in (M, <). If the parts of all these cuts are ‘close to’ each other, then P is said to be
non-valuational. Moreover, the expansion (M, P) is interdefinable with some expansion of M by
a family of convex predicates. By [We07], Th(M) is weakly o-minimal. Therefore by [Bz] also
any expansion of M by a family of non-valuational predicates has weakly o-minimal theory. The
main result of this paper is Theorem 2.11, which says that every expansion of M by a family of
non-valuational predicates is of non-valuational type. We also show that the theory of such an
expansion is weakly o-minimal without using Baizhanov’s theorem (cf. Corollary 2.10).

The paper is organized as follows. In §1 we fix our notation and terminology, and recall some
particularly useful results, mainly from [MMS] and [We07]. In §2 we outline the proofs of results
mentioned above.

Last but not least, I would like to thank the referee whose comments allowed me to improve
the quality of the paper.

1 Notation and preliminaries

Let (M, <) be a dense linear ordering without endpoints. A set I C M is called convez in (M, <)
iff for any a,b € I and ¢ € M with a < ¢ < b we have that ¢ € I. If additionally I # @ and
infI,supl € M U{—o00, 400}, then I is called an interval in (M, <). A maximal convex subset of
a non-empty subset of M is called a convex component of it. A pair (C, D) of non-empty subsets
of M is called a cutin (M, <) iff C < D, CUD = M and D has no lowest element. A first order
structure M = (M, <, ...) expanding (M, <) is said to be weakly o-minimal iff every subset of M,
definable in M, is a finite union of convex sets. A complete first order theory is called weakly
o-minimal iff all its models are weakly o-minimal. The following remark characterizes weakly
o-minimal structures in terms of sets definable in them.

Remark 1.1 Assume that (M, <) is a dense linear ordering without endpoints and for m € N,
D, 18 a family of subsets of M™ for which the following conditions are satisfied.

(a) If I C M is an interval, then I € Dy.

(b) If X € D1, then X is a union of finitely many convex sets.

(c) {{z,y) € M? : x <y} € Ds.

(d) D, with the usual set-theoretic operations is a Boolean algebra.

(e) If X € Dy, then X x M, M X X € Dy, y1.

(f) If X € Dypy1 and © : M™T1 — M™ is the projection dropping the last coordinate, then
7[X] € Dy,.

(9) If 1 <i<j<m, then {(x1,...,2m) E M™ :2; = x;} € Dy,.
Then there is a weakly o-minimal structure M expanding (M, <) such that for every X C M™, X
is definable in M iff X € D,,.

Note that if one replaces ‘convex sets’ in (b) with ‘intervals’, then (a)-(g) in Remark 1.1 imply
that there is an o-minimal expansion M of (M, <) such that for every X C M™, X is definable in
M iff X € Dy, (cf. [D1], Chapter 1).

Assume that M = (M, <, ...) is a weakly o-minimal structure. A cut (C, D) in (M, <) is called
definable in M iff the sets C, D are definable in M. The set of all such cuts will be denoted by



MM. The set M can be regarded as a subset of MM by identifying an element a € M with
the cut {(—oo,al, (a,+00)). After such an identification, s naturally equipped with a dense
linear ordering without endpoints extending that of (M, <), and (M, <) is dense in (MM, <). For
a definable set X C M™, a function f : X — M is said to be definable in M iff the set
{{Z,y) € X x M : f(T) >y} is definable in M.

Now assume that M = (M, <,+...) is a weakly o-minimal structure expanding an ordered
group (M, <,+). A cut (C,D) is called non-valuational iff inf{y —z : x € C,y € D} = 0. We
will say that M is non-valuational (or of non-valuational type) iff all cuts definable in M are
non-valuational. If M is non-valuational, then M can be naturally equipped with an ordered
group structure extending that of (M, <,+). The ordered groups (M, <,+) and (HM, <,+) are
divisible, abelian and torsion free. For details we refer the reader to §1 of [We07].

Assume that M = (M, <,...) is a weakly o-minimal structure. Below, for every m € Ny we

inductively define strong cells in M™ and their completionsin (M")™. The completion in (M M)m
of a strong cell C C M™ will be denoted by C.

(1) A one-element subset of M is a strong (0)-cell in M and is equal to its completion.

(2) A non-empty convex open definable subset of M is a strong (1)-cell in M. If C C M is a
strong (1)-cell in M, then C := {x € VR (a,be C)(a <z <b)}.

Assume that m € Ny, i1,...,4, € {0,1} and suppose that we have already defined strong

(11, ... im)-cells in M™ and their completions in (MM)’”.

(3) If C € M™ is a strong (i1,...,4m)-cell in M™ and f : C — M is a continuous definable
function which has a continuous extension f : C — MM, then I'(f), the graph of f, is a
strong (i1, ..., 4m,0)-cell in M™*!. The completion of T'(f) in (HM)m'H is defined as T'(f).

(4) If C € M™ is a strong (i1,...,4m)-cell in M™ and f,g : C — M u {—00, +o0} are
continuous definable functions which have continuous extensions f,5:C — M~ such that
f(T) < g(T) for T € C, then the set

(f,9)c :=={(@b) e Cx M: f(a) <b<g(@}

is called a strong (i1, . .., im, 1)-cell in M™. The completion of (f, g)c in (MM)"H'1 is defined
as

s - _ _ - =M < i

(f;9)c = (f,9)g = {(@,b) e Cx M : f(a) <b<g(a)}

(5) We say that C C M™ is a strong cell in M™ iff there are iy,..., i, € {0,1} such that C is a
strong (i1, ...,4m)-cell in M™.

If C € M™ is a strong cell, then a definable function f : C — e is called strongly
continuous iff f has a continuous extension f : C — WM. In a standard way we define the
notion of decomposition of a definable set into strong cells partitioning a given definable set (for
details we refer the reader to §2 of [We07]). We will say that M has the strong cell decomposition
property iff for any m, k € N and any definable sets Xi,..., X C M™, there is a decomposition
of M™ into strong cells partitioning each of the sets X7, ..., X.



Fact 1.2 [MMS, Ar] Let M = (M, <,...) be a weakly o-minimal structure and AC M. IfU C M

is an infinite A-definable set and f : U — M is an A-definable function, then there is a partition
of U into A-definable sets X, Iy, ..., I, such that X is finite, Iy, ..., L, are non-empty convex open
sets, and for every i < m, f | I; is locally constant or locally strictly increasing or locally strictly
decreasing.

The following fact easily follows from the definition of strong cells.

Fact 1.3 Assume that M = (M, <,...) is a weakly o-minimal structure with the strong cell de-
composition property and A C M. If U C M is a non-empty A-definable set and f : U — ™
is an A-definable function, then there is a partition of U into A-definable sets X, Iy, ..., I, such
that X is finite, Iy, ..., L, are non-empty convexr open sets, and for every i < m, f | I; is strongly
continuous and strictly monotone or constant.

Proof. By assumption, there is a decomposition C of M? into A-definable strong cells partitioning
the set {{z,y) € UXxM : y < f(x)}. This yields a decomposition of U into finitely many A-definable
convex open sets Jy, ..., Ji and a finite set X such that

{Joy ..., JkpU{{a}:a € X} ={x[C]: C € C},

where 7 : M? — M is the projection dropping the second coordinate. By our definition of strong
cells, f [ J; is strongly continuous for ¢ < m. In such a situation, weak o-minimality of M implies
that each of the J;’s could be decomposed into finitely many A-definable convex open sets and
some finite set so that on each of the open sets, f is strictly monotone or constant. This finishes
the proof. [ |

Theorem 1.4 [We07] Let M = (M,<,+,...) be a weakly o-minimal structure expanding an
ordered group (M, <,+). Then M is of non-valuational type iff M has the strong cell decomposition

property.

2 The main result

Throughout this section we shall work in a weakly o-minimal structure M = (M, <,...), usually
assuming that M has the strong cell decomposition property or is a non-valuational expansion of an
ordered group. By C we will denote a non-empty, convex and non-definable (in M) proper subset
of M such that inf C' = —oo. Then (C, M \ C) is a cut in (M, <) (according to the terminology of
[Bz] and [BVT] such cuts are called irrational). By Corollary 2.15 from [We07], we know that if
M is a non-valuational expansion of an ordered group, then Th(M) is weakly o-minimal. Hence,
by [Bz], also Th(M, C) is weakly o-minimal. In a series of lemmas below we will show that if M
is a weakly o-minimal non-valuational expansion of an ordered group and the cut (C, M \ C) is
non-valuational, then also the expansion (M, C) is of non-valuational type. Moreover, we will give
a direct proof of the weak o-minimality of Th(M, C).

Form e Ny andi € {1,...,m+1}, by 7Tim+1 we will denote the projection from M™+! to M™

dropping the i-th coordinate and by D,,(M) the family of all subsets of M™ definable in M.

Lemma 2.1 Assume that M = (M, <,...) is a weakly o-minimal structure and I C M is a convex

open definable set such that INC # @ and INC #0. If f : [ — M s a definable function
such that (Vx € I)(f(z) > ¢) [(Vx € I)(f(x) < ¢)] for some ¢ € M, then there are an open interval



JCTanda>cla<cl, «a € M, such that JNC # 0, J\C # 0 and (Vz € J)(f(z) > «)
[(Vz € J)(f(z) < a)].

Proof. Let f: 1 — ™ be a definable function such that (Ve € I)(f(z) > ¢), where c € M.
By Fact 1.2 and the non-definability of C, there is an open interval I; C I such that I; N C # (),
L\C # 0 and f | I is either strictly monotone or constant. Fixa € [ NC,be 1\ C and a € M
such that ¢ < a < min{f(a), f(b)}. It is clear that f(z) > a whenever = € (a,b). The other case
is proved in a similar way.

Lemma 2.2 Let M = (M, <,...) be a weakly o-minimal non-valuational expansion of an ordered
group. Assume that I C M is a non-empty convex open definable set such that INC # 0 and
INC#0, and f,g: I — ™ are definable functions such that (Vx € I)(f(x) < g(x)). There are
an element a € M and an open interval J C I such that JNC £ 0, J\C # 0 and f(z) < a < g(x)
forxz e J.

Proof. By Theorem 1.4 and Fact 1.3, without loss of generality we can assume that the functions
f,g are strongly continuous. By Lemma 2.1, there are an open interval I; C I and an element
a€M,a>0,suchthat 1 NC #0, ;1 \C # 0 and (Vx € I1)(g(z) — f(z) > a). Fixe >0, € M,
such that 2¢ < a. For xg € I; define

d¢(zo) = min(e,sup{de M :d >0, (Vz € (xo —d,zo +d)N11)(|f(z) — f(z0)] <e)})
dg(xo) = min(e,sup{d € M :d >0, (Vz € (xg — d,z0 +d) N 11)(|g(z) — g(z0)| < &)}).

Again, by Lemma 2.1, there are an open interval Is C I; and an element 3 € M, 8 > 0, such that
ILNnC 7é @, Iy \ C 7é 0 and min(éf(xo),ég(xo)) > 6 for xo € I5. Fix ¢ € Is N C and ¢y € I \C
such that co — ¢1 < 8. For x1,x2 € (c1,c2) we have that

g(x2) = f(21) = (9(z2) — g(21)) + (9(z1) = f(21)) > —e + 2e =&

Consequently,
inf{g(z) : x € (c1,c2)} —sup{f(z) : x € (c1,¢2)} > €.

If a € M is such that sup{f(z) : € (c1,¢2)} < a < inf{g(z) : © € (¢1,c2)}, then for z € (c1,c2)
we have that f(z) < a < g(z).

Lemma 2.3 Let M be a weakly o-minimal non-valuational expansion of an ordered group. Assume
that X C M? is a set definable in M such that for any a,b € M, if (a,b) € X, then there are
ay,as € M such that a; < a < ag and (ay,a2) X {b} C X. The following conditions are equivalent.
(a) There are a1 € C, ag € M\ C and b € M such that (a1,a2) x {b} C X.
(b) There are a1 € C and az € M \ C such that (a1,az2) C 73[X].

Proof. The implication from (a) to (b) is obvious, so assume that (b) holds. Let C be a decom-
position of M? into strong cells in M? partitioning the set X. There is a convex open definable
set I C M such that INC # 0, I\ C # 0 and for every D € C, we have that either I = 73[D] or
73[D] N I = (). Below we consider two cases.

Case 1. The set (I x M)NX has empty interior. The following claim is a consequence of Lemma
2.1 from [We06] but for the sake of completeness we give a proof in our particular situation.

Claim. For every z € I, the set {y € M : (z,y) € X} is finite.



Proof of the Claim. Suppose for a contradiction that for some a € I, the set {y € M : {(a,y) € X}
is infinite, so it contains an open interval J. For b € J define

f(b)=sup{ce M :c>aand {a} x (b,c) C(I x M)NX}.

The function f assumes values greater than a in VRS {+0}. By Fact 1.3, there is an open
interval J’ C J such that f | J’ is strongly continuous and strictly monotone or constant. It is
clear that the set {(z,y) : a <z < f(y),y € J'} is contained in (I x M) N X and contains an open
box itself. This means that (I x M) N X has non-empty interior, a contradiction.

Using the Claim, for z € I, we can define f(z) = min{y € M : (z,y) € X}. Our assumptions
guarantee that f is constant (say f(x) = b whenever « € I), so for any a; € INC and ax € I\ C,
we have that (a1, a2) x {b} C X.

Case 2. There are definable strongly continuous functions f : I — Y U{—oc}andg: I —

VR {+00} such that f(a) < g(a) for a € T and D := (f,g);1 € X N (I x M). By Lemma 2.2,
there are a1 € INC, ag € I'\ C and b € M such that (a1,a2) x {b} C D C X. [

For a weakly o-minimal structure M and a set X € Dy, 41 (M) let
I(X,C)={aeM™:(IeC)(Fce M\ C){a} x (b,c) C X)}.

Define also £,(M,C) = {I(X,C) : X € Dy41(M)}. Below we will show that if M is a non-
valuational expansion of an ordered group, then &,,(M, C) is exactly the family of subsets of M™
definable in (M, C).

Lemma 2.4 Let M be a weakly o-minimal structure with the strong cell decomposition property.
(a) If X € Da(M) is a strong cell, then I({{z,y) € M?: (y,z) € X},C) is a convex set.
(b)) If Y € &(M,C), then Y s a finite union of convex sets.
(c) C € &E(M,C).

Proof. (a) is obvious from the definition of strong cells. (b) follows from (a) and the strong cell
decomposition property of M. For the proof of (c), note that

C=I{{x,y) € M?:y>x},0).
Here the strong cell decomposition property in not needed. [ |

Lemma 2.5 Assume that M is a weakly o-minimal structure and m € N_.
(a) Dpy(M) C (M, C).
(b) Em (M, C) is closed under Boolean operations.
(c) If X € En(M,C), then X x M, M x X € Epp1(M,C).

Proof. (a) If m € Ny and X € D,,(M), then X = I[(X x M,C).

(b) Fix m € Ny and X,Y € &, (M, C). There are X;,Y] € Dy41(M) such that X = I(X;,C)
and Y = I(Y;,C). Clearly, X UY = [(X, UY;,C), XNY = I[(X; NY;,C) and M™ \ X =
I(M™N\ X4, 0).

(¢c) Let m € Ny and X € &,,(M,C). Then X = I(X;,C) for some X; € D,,+1(M). Hence
Mx X =I(MxX;,0) and X x M = [({{,y,2) € M™ 1 : (7,2) € X},0). ]



Lemma 2.6 Let M be a weakly o-minimal expansion of an ordered group. If X € Epi1(M,C),
then Tt 1[X] € En(M, C).

Proof. Fix m € Ny and X € &,,1.1(M,C). There is X; € Dy, 12(M) such that X = I(X;,C).
Let
Xo = J{{@} x (b,c) :ae M™ ' be Cice M\ C and {a} x (b,c) € X1}.

Clearly, X = I(X>,C) and X € Dy i2(M). We claim that 711 [X] = I(7/T7[X5], O).

In order to prove that 7/ f1[X] C I(m' 7 [Xo], C), fix @ € m)T1[X]. There is b € M such that
(a,by € X = I(X2,C). So there are ¢ € C and d € M \ C such that {(@,b)} x (¢,d) C X5. Hence
{a} x (c,d) C 717 [Xs] and @ € I(m) 17 [Xs], O).

For the reverse inclusion, let @ € I(Wﬁif[Xg], (). There are ¢ € C' and d € M \ C such that
{a} x (c,d) C mnt3[Xa]. Let Z = {(z,y) € M?: (@,y,z) € Xo}. Clearly, (c,d) C 73[Z]. By
Lemma 2.3, there are ¢ € C, d' € M \ C and e € M such that (¢,d) x {e} C Z. Consequently,
{(@.e)} x (¢,d) C Xo. The latter implies that (@,e) € X and @ € T/ [X].

Lemmas 2.4, 2.5 and 2.6 imply that if M is a weakly o-minimal non-valuational expansion of
an ordered group, then

(a) all intervals in (M, <) belong to £ (M, C);

b) every set belonging to £ (M, C) is a union of finitely many convex sets;

c) {{z,y) € M?: 2 <y} € E3(M, O);

d) for every m € Ny, 0, M™ € &,,(M, C) and (£(M,C),N,U,°) is a Boolean algebra;
e) if X € £,(M,C), then X x M, M x X € Epy1(M,C);

f)if1<i<j<m,then {(z1,...,2p) € M™ :2; = x,;} € En(M,C);

g)if X € Emy1(M,0) and i € {1,...,m}, then 7" [X] € £,(M, C);

(
(
(
(
(
(
(h) C € &M, C).
Therefore, by Remark 1.1, there is a weakly o-minimal structure M’ expanding M such that a set
X C M™ is definable in M’ iff X € &,,(M,C). In the following lemma, D,,,(M, C) denotes the

family of all subsets of M™ which are definable in the structure (M, C).

Lemma 2.7 Let M be a weakly o-minimal non-valuational expansion of an ordered group. For
every m € Ny, £, (M,C) = Dy, (M, C).

Proof. The inclusion C is obvious. That D,,,(M, C) C &, (M, C) follows easily by induction from
the above remark. [ |

Corollary 2.8 If M is a weakly o-minimal non-valuational expansion of an ordered group, then
(M, C) is weakly o-minimal.

Lemma 2.9 Let M = (M,<,+,...) be a weakly o-minimal non-valuational expansion of an or-
dered group (M,<,+). Assume that I is a non-empty convexr open definable (in M) set with

INC #0and INC # 0. Let f : I — Y be a definable strongly continuous and strictly
monotone function.
(a) If f is strictly increasing, then

({aeM:EFceC)(f(c)>a),{aeM:(3de M\C)(f(d) <a)})

is a non-definable and non-valuational cut in (M, <, +).



(b) If f is strictly decreasing, then
{aeM:3de M\C)(f(d) >a)},{aeM:(3ceC)(f(c) <a)})
is a non-definable and non-valuational cut in (M, <, +).

Proof. As both cases are similar, we will only prove (a). Assume that f is strictly increasing and
let
C'={aeM:(FceC)(f(c)>a)}and D'={ae M:(Ide M\ C)(f(d) < a)}.

It is clear that C’ and D’ are both convex definable sets with inf ¢’ = —co and sup D’ = +co0.
The sets C’, D’ are disjoint since otherwise we would have f(d) < a < f(c) for some a € M, c € C
andde M\ C.

To show that C' U D' = M, suppose for a contradiction that there exists an element a €
M\ (C'"UD’). This means that f(c) < a < f(d) whenever ¢ € C and d € M\ C. Note that if there
was a ¢ € C with f(¢) = a, then there would be also a ¢’ € C with ¢/ > c and f(¢/) > f(c) =a, a
contradiction. So (Ve € C)(f(¢) < a) and similarly (Vd € M \ C)(f(d) > a). Now,

C={zeM:z<inflI}U{zel: f(z)<a},

which means that C' is definable in M, a contradiction. In this way we have shown that (C’, D’)
is a cut in (M, <). Its non-definability is a consequence of the non-definability of C.
In order to complete the proof, suppose for a contradiction that

inf{z—y:yeC,zeD'}=inf{f(d) — f(c):ceC,de M\ C} >0

and fixe > 0,e € M, such that e < inf{f(d)—f(c): c € C,d € M\C}. Soclearly f(x2)— f(x1) > ¢
whenever 1 € INC and 22 € I\ C. For xy € I define

§(zo) = min{e,sup{d € M : d > 0 and |f(z) — f(zo)| < e for z € (xg — d,xo +d) N I}}.

By Lemma 2.1, there are an open interval J C I and an element « > 0, o € M, such that JNC # 0,
J\C # (@ and (Vzg € J)(6(zp) > «). Since the cut (C, M \ C) is non-valuational, we can choose
1 € JNC and z3 € J\ C so that z2 — 1 < . In such a situation we have that d(z1) > « and
|f(z2) — f(z1)] < &, which contradicts our choice of .

Corollary 2.10 Let M be a weakly o-minimal non-valuational expansion of an ordered group.
(a) The structure (M, C) is of non-valuational type.
(b) Th(M, C) is weakly o-minimal.

Proof. We already know by Corollary 2.8 that (M, C) is weakly o-minimal. To demonstrate
that (M, C) is of non-valuational type, fix (D, D'}, a cut in (M, <) which is definable in (M, C).
We have to show that (D, D’) is non-valuational. As there is nothing to do in case D € D1(M),
suppose that D is not definable in M. By Lemma 2.7, there exists a set X € Ds(M) such that
D =I(X,C). Denote by X’ the union of all sets of the form {a} x (b,c), where a,b,c € M, b < ¢
and {a} x (b,¢) € X. Obviously, X’ is definable in M and I(X’,C) = D. Fix C, a decomposition
of M? into strong cells partitioning X’ and let Iy, ..., I, be an enumeration of all convex sets of
the form 72[Y] where Y € C and Y C X’ such that I; precedes I; whenever i < j < n. Without
loss of generality we can assume that the functions appearing in definitions of cells from C are
strictly monotone or constant. Non-definability of D guarantees that there is & < n such that



Ij; is a convex open set intersecting both D and M \ D. There are strongly continuous functions

f0,905 s s Gm = Iy — M u {—00, +00} such that

(a) each of fo, 9o, ., fm,gm is either strictly monotone or constant;

(b) fi(x) <g;(z) for i <m and x € Iy;

(c) gs(x) < fipq(z) for i <m and x € Iy;

(d X'n (IkXM):(foago)IkU"'U(fM7gm)Ik'
There is a unique i < m such that sup I((fi, gi)1,, C) = sup DN I} and exactly one of the following
two conditions holds.

(1) f; is strictly increasing and D N I, = I((f;, +0)1,,, C).

(2) g; is strictly decreasing and D NI, = I((—o0, gi)1,,C).
Since the reasoning is similar in both cases, we will only consider (1). To simplify notation let
f:=fi. Fixa € Csuch that a > inf{f(z) : € I} and b € M\C such that b < sup{f(x) : x € I};},
and let J = (a,b). For y € J define

h(y) = sup{x € M : (z,y) € (f,+00)1, }.

The function h is strictly increasing and strongly continuous. As
D={zeM: (32 € C)(h(z') > z)},

by Lemma 2.9, the cut (D, D’) is non-valuational.
The weak o-minimality of Th(M,C) now follows from the fact that (M, C) is a weakly o-
minimal non-valuational structure and from Corollary 2.15 from [We07]. |

Before formulating the main result, we will introduce so called unary non-valuational predicates.
Assume that M = (M, <,...) is a weakly o-minimal non-valuational expansion of an ordered
group and let X C M be a finite union of convex sets. For a € X denote by R(a, X) the convex
component of X containing a. Similarly, for a € M \ X, let R(a, X) be the convex component of
M\ X containing a. For a € M define

D(a,X) = U (o, +00).
a€R(a,X)

Clearly, if D(a, X) # M, then (M \ D(a,X), D(a, X)) is a cut in (M, <). A cut (C, D) in (M, <)
is said to be determined by X if it is of the form (M \ D(a, X), D(a, X)) for some a € M.

We say that a set X C M is a unary non-valuational predicate iff X is a union of finitely many
convex sets and all cuts determined by X are non-valuational.

Theorem 2.11 Assume that M is a weakly o-minimal non-valuational expansion of an ordered
group and N is an expansion of M by a family of non-valuational unary predicates. Then N is of
non-valuational type.

Proof. There is a family of convex open sets C; C M, i € I, such that
e for every i € I, C; is not definable in M and inf C; = —oc;

e the structures N and (M, C; : i € I) have the same definable sets.



Without loss of generality we can assume that [ is finite, in which case the theorem follows easily
by induction on |I| from Corollary 2.10(b). |

Theorem 2.11 actually shows that for weakly o-minimal expansions of ordered groups, the
property of a structure having the strong cell decomposition is preserved under expansions by
families of unary non-valuational predicates. Having in mind that non-valuational predicates are
those which determine non-valuational cuts, one can speak of valuational /non-valuational cuts in an
arbitrary weakly o-minimal structure with the strong cell decomposition property, not necessarily
expanding an ordered group. More precisely, if M = (M, <,...) is a weakly o-minimal structure
with the strong cell decomposition property, then a cut (C, D) in (M, <) could be called non-
valuational if the structure (M, C) has the strong cell decomposition property. This gives us
notions of "being close” and ”being far” for the parts of a cut (C,D) in (M, <) and it would
be interesting to further investigate this topic, probably relating it to the canonical o-minimal
extension of a weakly o-minimal structure with the strong cell decomposition property constructed
in [We07].

References

[Ar] R. D. Aref’ev, On the monotonicity property for weakly o-minimal models, Algebra and
Model Theory (Russian), pp. 8-15, Novosibirsk. Gos. Tekh. Univ., Novosibirsk 1997;
Model theory in Kazakhstan (Russian), pp. 7-13, Eco Stydy, Almaty 2006.

[BP] Y. Baisalov and B. Poizat, Paires de structures o-minimales, J. Symbolic Logic 63 (1998),
570-578.

[Bz] B.S. Baizhanov, Expansion of a model of a weakly o-minimal theory by a family of unary
predicates, J. Symbolic Logic 66 (2001), 1382-1414.

[BVT] B.S. Baizhanov, V. Verbovskiy and G. Turehanova, Non-orthogonality of 1-types in weakly
o-minimal structures of finite depth, preprint (in Russian).

[D1] L. van den Dries, Tame Topology and o-minimal Structures, London Mathematical
Society Lecture Notes Series, vol. 248, Cambridge: Cambridge University Press 1998.

[D2] L. van den Dries, T-convexity and Tame extensions, II, J. Symbolic Logic 62 (1997), 14-34.

[DL] L. van den Dries and A.H. Lewenberg, T-convezxity and tame extensions, J. Symbolic Logic
60 (1995), 74-102.

[MMS] D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal structures and real closed
fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.

[Sh783] S. Shelah, Dependent first order theories, continued, Israel J. Math., to appear.

[We06] R. Wencel, Topological properties of sets definable in weakly o-minimal structures, J. Sym-
bolic Logic, submitted.

[We07] R. Wencel, Weakly o-minimal non-valuational structures, Ann. Pure Appl. Logic 154
(2008), 139-162.

10



Mailing address: Mathematical Institute, University of Wroctaw,
pl. Grunwaldzki 2/4, 50-384 Wroctaw, POLAND
E-mail: rwenc@math.uni.wroc.pl

11



