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Abstract. If E ⊆ Rn is closed and the structure (R,+, ·, E) is d-minimal (that is, in
every structure elementarily equivalent to (R,+, ·, E), every unary definable set is a disjoint
union of open intervals and finitely many discrete sets), then for each p ∈ N, there exist
Cp functions f : Rn → R definable in (R,+, ·, E) such that E is the zero set of f .

Throughout, p denotes a positive integer and E a closed subset of some Rn.
We recall a result attributed to H. Whitney: There is a C∞ function f : Rn → R such

that E = Z(f) := {x ∈ Rn : f(x) = 0 }; see, e.g., Krantz and Parks [12, 3.3.6] for a proof.
The construction can produce f that is rather far removed from how E arose. To illustrate:
If E = {0} ⊆ R, then E is the zero set of the squaring function, but the zero set of the
derivative of the function produced by Whitney’s method has infinitely many connected
components. The loose question arises: If E is well behaved in some prescribed sense, can f
be chosen to be similarly well behaved? In order to make this question precise we employ a
notion from mathematical logic, namely, definability in expansions of R := (R,+, ·, (r)r∈R),
the real field with constants for all real numbers; readers not familiar with this notion may
consult van den Dries and Miller [3, Sections 2 and 4] for an introduction. Let R denote
(R, E), the structure on R generated by E. Unless indicated otherwise, “definable” means
“definable in R”. The question arises: Is there a definable C∞ function f : Rn → R such
that E = Z(f)? While visibly true for some E (say, if E is finite), it is known to be false for
some very simple cases such as E = [0, 1] ⊆ R. But often what is needed for applications is
only that, for each k ∈ N, there is a Ck function fk : Rn → R such that E = Z(fk). Hence,
we shall modify the question.

Given open U ⊆ Rn, let C(U) denote the collection of all definable Cp functions U → R.
Our main question: Is there f ∈ C(Rn) such that E = Z(f)? If R defines the set Z of
all integers, then yes, because (R,Z) defines all closed subsets of Rn (see, e.g., van den
Dries [2, 2.6] or Kechris [11, 37.6]), and so the result of Whitney applies. (Thus, the case
that R defines Z is of no further interest.) If R is o-minimal (that is, every definable
subset of R either has interior or is finite), then again yes, by [3, 4.22]. There are some
situations where we know the answer under further assumptions on E alone; here are two:

Proposition A. If E ⊆ R (that is, if n = 1), then there exist f ∈ C(R) such that E = Z(f).

(The proof is straightforward; see 1.1 below.)

Proposition B. If E is a finite union of discrete sets (equivalently, countable and of finite
Cantor-Bendixson rank), then there exist f ∈ C(Rn) such that E = Z(f).
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(See 1.5.)
Taken in conjunction with the o-minimal case, these results suggest that our question

might have a positive answer if every definable subset of R either has interior or is a finite
union of discrete sets. We do not know if this is true, but we show that it is under a further
assumption of uniformity. Following [15],∗ we say that R is d-minimal (short for “discrete
minimal”) if for every m and definable A ⊆ Rm+1 there exists N ∈ N such that for every
x ∈ Rm the set { y ∈ R : (x, y) ∈ A } either has interior or is a union of N discrete sets
(equivalently, by model-theoretic compactness, every unary set definable in any structure
elementarily equivalent to R is a disjoint union of open intervals and finitely many discrete
sets). For context, history, and examples of d-minimal structures that are not o-minimal,
see Friedman and Miller [6, 7], Miller and Tyne [18], and [15, 16]. Here is the main result
of this paper:

Theorem A. If R is d-minimal, then there exist f ∈ C(Rn) such that E = Z(f).

Corollary. If R is d-minimal and A ⊆ Rm is definable, then A is a finite union of sets of
the form {x ∈ Rm : f(x) = 0, g1(x) > 0, . . . , gN(x) > 0 }, where N ∈ N and f, g1, . . . , gN ∈
C(Rm).

Proof. By [15, Theorem 3.2] and Dougherty and Miller [1], A is a boolean combination of
closed definable subsets of Rm. Apply Theorem A. �

We defer further discussion of corollaries, variants and optimality until after the proof.

1. Proofs

Given A ⊆ Rm, let intA denote the interior of A and clA the closure of A. (We
tend to omit parentheses in circumstances where they might proliferate so long as any
resulting ambiguity is resolved by context.) We put frA = clA \A, the frontier of A, and
lcA = A\cl frA, the locally closed points of A (that is, the relative interior of A in clA).
Note that frA = ∅ if and only if A is closed, and frA is closed if and only if A = lcA if
and only if A is locally closed (that is, open in its closure). We tend to write ∼A instead of
Rm\A whenever m is clear from context. For a ∈ Rm, we let d(x, a) denote the distance (in
the euclidean norm) of a to A. If A is regarded as a subset of some cartesian product X×Y
and x ∈ X, then Ax denotes the fiber of A over x, that is, Ax = { y ∈ Y : (x, y) ∈ A }.

We make no distinction between maps (or functions) and their graphs (that is, we regard
functions as purely set-theoretic objects).

Let I = [0, 1]. Given U ⊆ Rm, put CI(U) = { f ∈ C : f(U) ⊆ I }.
We define an auxiliary function ~ ∈ CI(R) for use in several places by ~�I = x2p(3−2x)p,

~�(−∞, 0) = 0 and ~�(1,∞) = 1. Note that ~ is strictly increasing on I.

1.1. Proof of Proposition A. Suppose that ∅ 6= E ( R. We find f ∈ C(R) such that
E = Z(f). Define α, β : R \ E → R ∪ {±∞} by α(x) = sup

(
E ∩ (−∞, x)

)
and β(x) =

∗This is a paper in a conference proceedings that is generally unavailable electronically, but there is a
version posted at https://people.math.osu.edu/miller.1987/tameness.pdf.
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inf
(
E ∩ (x,+∞)

)
. Define g ∈ CI(R) by g�I = x2p(x− 1)2p and g�∼I = 0, and f : R→ R by

f(t) =



0, if t ∈ E
~(t−maxE), if E ∩ [t,+∞) = ∅
~(minE − t), if E ∩ (−∞, t] = ∅

(β(t)− α(t)) · g
(

t− α(t)

β(t)− α(t)

)
, otherwise.

It is routine to check that f is as required. �

Let Φ denote the set of all φ ∈ C(R) that are odd, increasing, bijective and p-flat at 0
(that is, all derivatives of φ of order at most p vanish at 0). Note that, given φ1 ∈ Φ, there
exist φ2 ∈ Φ and ε > 0 such that φ2(1) = 1 and φ2(t) ≤ φ1(t) for all t ∈ [0, ε).

1.2 (cf. [3, C.5]). Let f : (0, 1] → (0,∞) be definable such that 1/f is locally bounded.
Then there exist φ ∈ Φ and ε > 0 such that φ(1) = 1 and φ(t) ≤ f(t) for all t ∈ (0, ε).

Proof. If R defines no infinite discrete closed subsets of R, then it is o-minimal by Hi-
eronymi [8, Lemma 3] and Miller and Speissegger [17, Theorem (b)]. Hence, the result
follows from [3, 4.1 and C.5].

Let 1 ∈ D ⊆ [1,∞) be infinite, closed, discrete and definable. Put D−1 = { 1/t : t ∈ D }.
Define β : R>0 → R by β(t) = inf

(
D−1 ∩ (t,∞)

)
if 0 < t < 1 and β(t) = 2 if t ≥ 1. Define

functions α, g : R>0 → R by α(t) = sup
(
D−1 ∩ (−∞, t]

)
and

g(t) = min
(
tp, inf(β − α)p�[t,∞), inf f�[t, 1]

)
.

Since 1/f is locally bounded on (0, 1], we have g > 0. Define φ piecewise by φ(0) = 0,

φ�R>0 = g ◦ α ◦ α +
(
g ◦ α− g ◦ α ◦ α

)
· ~ ◦

(
(x− α)/(β − α)

)
;

and φ(t) = −φ(−t) for t < 0. Note that φ is bounded above by f , increasing, continuous,
and Cp off {0}. It suffices now to show that φ is p-flat at 0. Let k ∈ {1, . . . , p}. We have
Z(φ(k)) ⊆ D−1 and

φ(k)�R>0 \D−1 =
(
g ◦ α− g ◦ α ◦ α

)
·
(
β − α

)−k · ~(k) ◦
(
(x− α)/(β − α)

)
.

Since g ◦ α ◦ α ≤
(
β − α

)p
and ~(k) is bounded, we have limt→0 φ

(k)(t) = 0. Hence, φ is
p-flat at 0. �

1.3 (cf. [3, C.8]). Let A ⊆ Rn be locally closed, g : A→ R be definable and continous, and
F be a finite set of definable locally bounded functions A \ Z(g) → R. Then there exist
φ ∈ Φ such that φ(1) = 1 and limx→y φ(g(x))f(x) = 0 for all y ∈ Z(g) and f ∈ F .

Proof. It suffices to consider the case that F is a singleton {f} such that f ≥ 0 and there
exist y ∈ Z(g) such that limx→y f(x) > 0. For t > 0, put

A(t) = {x ∈ A : |x| ≤ 1/t & |g(x)| = t & d(x, fr(A \ Z(g)) ≥ t }.
Each A(t) is compact, the sequence (A(t))t>0 is decreasing, and there exists b > 0 such
that A(t) \ Z(f) 6= ∅ for every t ∈ (0, b]. Hence, the function

t 7→ 1/(sup f�A(t)) : (0, b]→ R
3



is definable and increasing. By 1.2, there exists φ0 ∈ Φ such that φ0(t)f(t) ≤ 1 for all
t ∈ (0, b]. Put φ1 = φ3

0; then |φ1 ◦ g| = φ1 ◦ |g|. The result follows. �

Some routine, but very useful, consequences:

1.4. Let U ⊆ Rn be open and g : U → R be definable.

(1) If g is continuous and Cp on U \ Z(g), then there exist φ ∈ Φ such that φ ◦ g is Cp

and Z(1− φ ◦ g) = Z(1− g).
(2) If g is Cp, then there exist f ∈ C(U) such that Z(f) = Z(g) and f is p-flat on Z(f).
(3) If g is Cp and Z(g) = (E \ intE) ∩ U , then there exist f ∈ C(U) such that Z(f) =

E ∩ U .
(4) Gluing. If g is Cp and h ∈ C(U \ Z(g)), then there exist f ∈ C(U) such that

Z(f) = Z(g) ∪ Z(h) and Z(f) ⊇ Z(1− g) ∩ Z(1− h).

We are now ready to establish Proposition B.

1.5. Let A ⊆ U ⊆ Rn be definable such that A is a finite union of discrete sets and U is
open. Then there exist f ∈ CI(∼ cl frA) such that Z(f) = lcA and Z(1−f) ⊇ ∼U \ cl frA.

(Proposition B is the case that A is closed and U = Rn. The more technical statement
arises from inductive needs.)

Proof. We proceed by induction on the minimal number of discrete sets that comprise A
(that is, on the Cantor-Bendixson rank of A regarded as a subspace of Rn).

Suppose that A is discrete. Define ρ : A→ R by

ρ(a) = min
(
1, d(a,A \ {a}), d(a, frU)

)
.

Put V =
⋃
a∈A{ v ∈ Rn : 3 d(v, a) < ρ(a) }. Define σ : V → Rn by letting σ(v) be the center

of the ball containing v; observe that σ(v) is the unique a ∈ A such that 3 d(v, a) < ρ(a).
For v ∈ V , put f(v) = ~(10 d2(v, σ(v))/ρ2(σ(v)). For v /∈ V , put f(v) = 1. As A is locally
closed, frA is closed. It is routine to check that the restriction of f to ∼ frA is as desired.

More generally, let A1 be the set of isolated points of A. By the preceding paragraph,
there exists f1 ∈ CI(∼ frA1) such that Z(f1) = A1 and Z(1 − f1) ⊇ ∼U \ frA1. Put
A2 = A\A1. Inductively, there exists f2 ∈ CI(∼ cl frA2) such that Z(f2) = A2 \ cl frA2 and
Z(1− f2) ⊇ ∼U \ cl frA2. The result now follows by gluing. �

It is natural to next consider the case that 0 < m < n and every fiber of E over Rm

is a finite union of discrete sets, but we do not yet know how to deal with this level of
generality, even if every fiber of E over Rm is discrete. Thus, we shall assume a tameness
condition on R and a uniform bound on the Cantor-Bendixson rank of the fibers.

As noted earlier, we are done if R defines Z. It is suspected that if R does not define Z,
then every definable set either has interior or is nowhere dense (see Hieronymi and Miller [9]
for some evidence). This condition holds if R is d-minimal—by [15], it is enough to show
that every definable subset of R has interior or is nowhere dense—but the converse fails
(see 2.1 below). Next is a key technical lemma.

1.6. Suppose that every definable set either has interior or is nowhere dense. Let m ∈
{0, . . . , n} and π denote projection on the first m coordinates. Let N ∈ N and A ⊆ U ⊆ Rn
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be definable such that U is open and every Ax is a union of N discrete sets (x ∈ Rm).
Then there exist a definable open and dense W ⊆ Rm and f ∈ CI(π−1W \ cl frA) such that
Z(f) = π−1W ∩lcA and Z(1−f) ⊇ ∼U∩π−1W \cl frA. If every Ax is discrete, then W can
be taken such that f ∈ CI(π−1W \frA), Z(f) = π−1W∩A and Z(1−f) ⊇ ∼U∩π−1W \frA.

Proof. The case m = 0 is just 1.5, so we take m > 0. As πA \ intπA is nowhere dense, we
reduce to the case that πA is nonempty and open. For each d ∈ N, the set of x ∈ Rm such
that Ax has Cantor-Bendixson rank d is definable. Thus, we reduce to the case that N ≥ 1
and every fiber of A over πA has Cantor-Bendixson rank N . We proceed by induction.

Let N = 1, that is, Ax is discrete for every x ∈ πA. Define ρ : A→ R by

ρ(x, y) = min
(
1, d(y, Ax \ {y}), d(y, frUx)

)
.

Let π̃ : Rn+1 → Rm be projection on the first m variables. Let C be the set of all a ∈
A for which there exist an open box B(a) ⊆ Rn+1 centered at (a, ρ(a)) and a Cp map
γa : π̃B(a)→ Rn−m such that γa = A∩B′(a), where B′(a) is the projection of B(a) on the
first n variables, and

x 7→ ρ(x, γa(x)) : π̃B(a)→ R
is Cp. It is an exercise to see that C is definable. We now reduce to the case that A = C by
showing that π(A\C) has no interior (and thus is nowhere dense). Suppose to the contrary
that π(A \C) has interior; then we can reduce to the case that C = ∅. As every fiber of A
over Rm is discrete, so is every fiber of ρ over Rm. By the Baire Category Theorem, there
is an open box B ⊆ Rn+1 such that the set {x ∈ Rm : card(B ∩ ρ)x = 1 } is somewhere
dense, and thus has interior. By shrinking B, we reduce to the case that there is a definable
map ϕ : π̃B → ρ. By [15, Theorem 3.3], we may shrink B so that ϕ is Cp. But then the
projection of ϕ on the first n coordinates is contained in C, contradicting that C = ∅.

We have now reduced to the case that A = C. Note that A is locally closed, so frA is
closed. Put

V =
⋃

(x,ξ)∈A

{ (x, y) ∈ Rn : 3 d(y, ξ) < ρ(x, ξ) }.

Define ξ : V → Rn−m by letting ξ(x, y) be the unique ξ ∈ Ax such that 3 d(y, ξ) < ρ(x, ξ).
Let (x0, y0) ∈ V and put a = (x0, ξ(x0, y0)). Let B(a) and γa be as in the definition of C.
Put

S = { (x, y) ∈ π̃B(a)× Rn−m : 3 d(y, γa(x)) < ρ(x, γa(x)) };
then S is open, (x0, y0) ∈ S ⊆ V , and ξ(x, y) = γa(x) for all (x, y) ∈ S. Hence, S is open,
ξ�S is Cp, and the function

(x, y) 7→ ~(10 d2(y, ξ(x, y))/ρ2(x, ξ(x, y))) : S → R
is Cp. It follows that

(x, y) 7→ ~(10 d2(y, ξ(x, y))/ρ2(x, ξ(x, y))) : V → R
is definable and Cp; extend it to f ∈ CI(∼π−1 frπA \ frA) by setting f = 1 off V . (This
concludes the proof for the case N = 1.)

As the union of the set of isolated points of the fibers of A over πA is definable, the rest
of the induction is a routine modification of the argument for 1.5. �
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Let Π(n,m) denote the collection of all coordinate projection maps

(x1, . . . , xn) 7→
(
xλ(1), . . . , xλ(m)

)
: Rn → Rm,

where λ : {1, . . . ,m} → {1, . . . , n} is strictly increasing. For A ⊆ Rn, let dimA be the
supremum of all m ∈ N such that πA has interior for some π ∈ Π(n,m).

Proof of Theorem A. Assume that R is d-minimal. We must find f ∈ C(Rn) such that
Z(f) = E. It suffices to let A ⊆ U ⊆ Rn be definable and U be open, and find f ∈
CI(∼ cl frA) and g ∈ CI(Rn) such that Z(f) = lcA ⊆ ∼Z(g) ⊆ U (consider A = E and
U = Rn). The result is trivial if A = ∅. We proceed by induction on d = dimA ≥ 0 and
n ≥ 1.

Suppose that d = 0. By d-minimality, A is a finite union of discrete sets. Let f be
as in 1.5. Also by d-minimality and 1.5, there exist h ∈ C(Rn) such that Z(h) = cl frA.
Obtain g as desired by gluing h and 1− f .

It suffices now by 1.4.3 to consider the case that 0 < d < n and the result holds for all
lesser values of n and d.

We first produce f (with no dependence on U). Let π ∈ Π(n, d). By [15, Lemma 8.5],
there exists N ∈ N such that for all x ∈ Rd, either dim(A ∩ π−1x) > 0 or A ∩ π−1x is a
union of N discrete sets. As d = dimA, the set {x ∈ Rd : dim(A ∩ π−1x) > 0 } has no
interior, and thus is nowhere dense. By 1.6, there exist dense open definable Wπ ⊆ Rd and
α ∈ CI(π−1Wπ \cl frA) such that Z(α) = lcA∩π−1Wπ and Z(1−α) ⊇ ∼U∩π−1Wπ \cl frA.
Inductively, there exist β ∈ CI(Rd) such that Z(β) = ∼Wπ, hence also γ ∈ CI(Rn) such
that Z(γ) = ∼π−1Wπ. By gluing α and γ there exist fπ ∈ CI(∼ cl frA) such that Z(fπ) =
lcA ∪ ∼π−1Wπ. Put

X = lcA ∪
⋂

π∈Π(n,d)

∼π−1Wπ

and Y = X \ clA. Observe that clY ⊆
⋂
π∈Π(n,d)∼π−1Wπ (so dimY < d), Y ⊆ ∼ clA, and

Y is locally closed. Inductively, there exist g0 ∈ CI(Rn) such that Y ⊆ ∼Z(g0) ⊆ clA. Put
g1 = g0�∼ cl frA and f = (g1 +

∑
π∈Π(n,d) fπ)/(1 + card Π(n, d)). It is routine to check that

f is as desired.
We now produce g ∈ CI(Rn) such that lcA ⊆ ∼Z(g) ⊆ U . It suffices to consider the

case that A is locally closed. With data as in the preceding paragraph, ∼π−1Wπ ∪ frA is
closed and has dim ≤ d. By the result of the preceding paragraph, there exist δ ∈ CI(Rn)
such that Z(δ) = ∼π−1Wπ ∪ frA. By gluing δ and 1−α, there exist gπ ∈ CI(Rn) such that
A ∩ π−1Wπ ⊆ ∼Z(gπ) ⊆ U . Inductively, there exist g2 ∈ CI(Rn) such that

A ∩
⋃

π∈Π(n,d)

∼π−1Wπ ⊆ ∼Z(g2) ⊆ U.

Put g = (g2 +
∑

π∈Π(n,d) gπ)/(1 + card Π(n, d)) to finish. �

2. Remarks

2.1. Theorem A does not settle our main question. Suppose that E ⊆ R2 is compact, has
no isolated points, dimE = 0, and R does not define Z. In this generality, we do not
know if there exist f ∈ C(R2) such that Z(f) = E (we do not even know if there exist

6



Cp functions f : R2 → R such that E = Z(f) and (R, f) does not define Z). There are
examples of Cantor subsets K of R such that the expansion of R by all subsets of each Km

satisfies the “interior or nowhere dense” condition; see Friedman et al. [5].

Some of our proofs do suggest more general results. We give one example, beginning
with a result about o-minimality.

2.2. Let S ⊆ Rm+n be such that (R, S) is o-minimal and every fiber of S over Rm is closed.
Then there exist F : Rm ×R>0 ×Rn → R definable in (R, S) such that for all u ∈ Rm and
r > 0:

— F (u, r,Rn) ⊆ I
— v 7→ F (u, r, v) : Rn → R is Cp

— if v ∈ Rn, then F (u, r, v) = 0 if and only if v ∈ Su
— if v ∈ Rn and d(v, Su) ≥ r, then F (u, r, v) = 1.

Proof. Let u ∈ Rm and r > 0. By [3, C.12], there is a Cp function Fu,r : Rn → [0, 1]

definable in (R, S) such that Z(Fu,r) = Su and Z(1 − Fu,r) = { v ∈ Rn : d(v, Su) ≥ r }.
Put F (u, r, v) = Fu,r(v) for v ∈ Rn. An examination of the proof of [3, C.12] (including all

supporting results) yields that F is definable in (R, S). �

2.3. With all data as in 2.2, assume moreover that S is definable (in R). Let A ⊆ U ⊆ Rn

be definable such that U is open and there is a definable B ⊆ Rm such that A =
⋃
b∈B Sb

and d(Sb, A \ Sb) > 0 for all b ∈ B. Then frA is closed and there exist f ∈ CI(∼ frA) such
that Z(f) = A and Z(1− f) ⊇ ∼U \ frA.

Proof. It is immediate from assumptions (and o-minimality) that A is locally closed, so
frA is closed. For u ∈ Rm, put

ρ(u) = min
(
1, d(Su, A \ Su), d(Su,∼U)

)
.

Put V =
⋃
b∈B{ v ∈ Rn : 3 d(v, Sb) < ρ(b) }. For v ∈ V , let σ(v) = b where Sb ∈ Rn is the

fiber of S such that d(v, Sb) < ρ(b), and put f(v) = F (σ(v), ρ(σ(v)), v). For v /∈ V , put
f(v) = 1. The restriction of f to ∼ frA is as desired. �

If A is discrete, then we recover the conclusion of 1.5 from 2.3 by setting S = {(x, x) :
x ∈ R} and B = A. While this might sound promising, a moment’s thought reveals that
any straightforward attempt to extend 2.3 so as to recover the full conclusion of 1.5 would
seem to require a rather tedious (albeit fairly obvious) hypothesis. The assumptions of 2.3
are essentially about the form of A rather than a tameness property of R. One can imagine
more results along these lines, but again with assumptions that tend to become tedious
and disconnected from tameness of R.

2.4. As mentioned earlier, the C∞ version of Theorem A does not hold in general, indeed,
it fails if R is o-minimal and does not define the function ex : R→ R (an easy consequence
of results from [13, 14]). On the other hand, if ex is definable, then the C∞ version holds
for at least some o-minimal R (indeed, for most of the expansions of (R, ex) that are known
to be o-minimal); see Jones [10]. By [18], the expansion of (R, ex) by the set of “towers”
{e, ee, eee , . . . } is d-minimal; we suspect that the C∞ version of Theorem A holds for any
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closed set definable in this structure (but, as yet, it is unclear to us whether it would be
the effort to prove it).

Our remaining remarks are more of model-theoretic interest. First, Theorem A is inde-
pendent of parameters, that is,

2.5. If (R,+, ·, E) is d-minimal, then there exist f ∈ Cp(Rn,R) such that Z(f) = E and f
is ∅-definable in (R,+, ·, E).

This can be established by tracking parameters throughout the proof (including all sup-
porting results from elsewhere), but here is another approach of potentially independent
interest:

Proof. As every rational number is ∅-definable in (R,+, · ), every nonempty ∅-definable (in
(R,+, ·, E)) subset of R contains a ∅-definable point. An easy induction then yields that
every nonempty ∅-definable set contains a ∅-definable point. By Theorem A, there exist
m ∈ N, a ∈ Rm and ∅-definable f : Rm+n → R such that x 7→ f(a, x) is Cp with zero set
equal to E. The set of all u ∈ Rm such that x 7→ f(u, x) is Cp with zero set equal to E
is ∅-definable and nonempty, so there is a ∅-definable b ∈ Rm such that x 7→ f(b, x) is Cp

with zero set equal to E. �

An example of consequences:

2.6. If S is a d-minimal expansion of (R,+, · ), then the expansion in the syntactic sense
of (R, <) by all Cp functions that are ∅-definable in S admits elimination of quantifiers.

Proof. By [15, Theorem 3.2] and [1], every ∅-definable set is a boolean combination of
∅-definable closed sets. Apply 2.5. �

It can be shown that Theorem A holds over arbitrary ordered fields provided that an
appropriate definition of d-minimality is given:

2.7. Let M be an expansion of an ordered field such that, for every M′ ≡M, every unary
set definable in M′ is a disjoint union of open intervals and finitely many discrete sets.
Then every closed set definable in M is the zero set of some definable (total) Cp function.

A modification of our proof over R can be obtained via the emerging subject of “definably
complete” expansions of ordered fields (see, e.g., Fornasiero and Hieronymi [4] and its
bibliography). We leave details to the interested reader.
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