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Abstract

We point out how suitable algebraic n-valued groups (in the sense
of Buchstaber) give rise, in a reasonably canonical manner, to al-
gebraic groups. This is proved using the “group configuration theo-
rem” of Hrushovski. In particular this applies to all algebraic 2-valued
groups.

1 Introduction and statement of results

Given a set X, (X)n denotes the family of n-element subsets of X, modified
so that we allow elements to have multiplicity > 1. So a typical element of
(X)n could be written as a formal sum k1x1 + ... + krxr or as {k1x1, .., krxr}
where x1, .., xr are distinct elements of X and k1, .., kr are positive integers
whose sum is n. We will say that y ∈ (X)n contains x ∈ X if x appears in y
with multiplicity ≥ 1.

The notion of an n-valued group developed from work of Buchstaber and
Novikov in the 1970’s. Soon afterwards Buchstaber developed the theory of
formal, or local, n-valued Lie groups and introduced the notion of n-valued
algebraic group. Since 1993 Buchstaber and E. Rees have collaborated on
the topological and algebraic theory of n-valued groups. As defined in [1]
an n-valued group is a set X equipped with a distinguished element e, and
operations ∗ from X ×X to (X)n and inv from X to X such that:
(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for any x, y, z ∈ X.
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(ii) e ∗ x = x ∗ e = nx for any x ∈ X,
(iii) Both x ∗ inv(x) and inv(x) ∗ x contain e.

Possibly (i) (associativity) needs some explanation: by x ∗ (y ∗ z) we mean
the obvious element of (X)n2

, and likewise for (x ∗ y) ∗ z. So (i) says that
these elements of (X)n2

are equal.

Note that a 1-valued group (G, ·, inv) is the same thing as a group, and can
also be considered as an n-valued group (G, ∗) by writing a ∗ b = n(a · b).
There are reasonably obvious notions of an algebraic n-valued group. Note
that if X is an (irreducible) algebraic variety, then so is (X)n = Xn/Sn

(where Sn is the symmetric group acting naturally on Xn). So we could view
an algebraic n-valued group as an algebraic variety, equipped with morphisms
µ : X ×X → (X)n and inv : X → X and distinguished element e such that
writing µ(x, y) as x ∗ y, (X, ∗, inv, e) is an n-valued group. Alternatively we
could view the operation ∗ as given by a subvariety Γ of X×X×X; namely
for a, b ∈ X, Γ(a, b, z) is a 0-dimensional subvariety of X whose set of points,
counted with multiplicities, is precisely a ∗ b. In fact even assuming only ∗
to be definable would be enough for our purposes.
We will just consider the case where the underlying X is (absolutely) irre-
ducible.

From now on, (X, ∗, inv, e) is an irreducible algebraic n-valued group,
defined over (in the obvious sense) a field k and we will identify X with
its set X(K) of K-points for some algebraically closed field K of infinite
transcendence degree over k. Let m = dim(X).

We will also be assuming:
(iv) inv is generically finite-to-one, or equivalently the regular map inv :
X → X is dominant (the image of inv is Zariski dense).

For A any finite set of finite tuples from K, by dim(A/k) we mean the
transcendence degree of k(A) over k. A point a ∈ X(K) is said to be generic
over k if dim(a/k) = m (the dimension of the algebraic variety X). Similarly
for mutually generic etc. By kalg we mean the algebraic closure of k (inside
some fixed given algebraically closed field).

We will say that X is generically of type (k1, .., kr) if for some, equivalently
any, a, b ∈ X, which are mutually generic over k, a∗b = {k1x1, ..., krxr} (with
the xi distinct). Our main result is:

Proposition 1.1. Suppose that X is generically of type (1, 1, ..., 1) Then
there is a connected algebraic group (G, ·, e′) of dimension m, and a con-
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structible subset R of X ×G, such that
(a) R projects dominantly onto both X and G,
(b) for any x ∈ X there are at most finitely many g ∈ G such that (x, g) ∈ R
and dually (so in particular the dimension of the Zariski closure of R is m),
(c) (e, e′) ∈ R,
(b) for mutually generic (x, g) and (y, h) in R then there is z ∈ x ∗ y such
that (z, g · h) ∈ R,
(c) for generic (x, g) ∈ R, (inv(x), g−1) ∈ R.

Remark 1.2. (i) So R is the graph of a correspondence between X and
G, and is generically closed under inversion and “multiplication”. Can one
improve this?
(ii) The proposition is proved in the next section using Lemma 2.1 and the
“group configuration theorem”. Lemma 2.1 holds trivially if X is of type (n),
hence the proposition holds for all algebraic 2-valued groups.
(iii) With appropriate definitions the proposition is valid for stable n-valued
groups.
(iv) G will be unique “up to isogeny”.
(v) If G is a connected algebraic group and A a finite group of (rational)
automorphisms of G of cardinality n then we obtain an algebraic n-valued
group structure on X = G/A (called a coset group by Victor Buchstaber) in
the obvious way, and note that it is generically of type (1, .., 1). Hence the
proposition applies and recovers G, up to isogeny.
(vi) For which other generic types can one prove the Proposition?

We use mainly the naive language of algebraic geometry, but sometimes
also model-theoretic terminology for which the reader is referred to [2].

Thanks to Victor Buchstaber for suggesting that these observations be
written up for publication.

2 Proofs.

An important ingredient is the following:

Lemma 2.1. Under the assumptions of the proposition (X is an irreducible
m-dimensional algebraic n-valued group over k of type (1, .., 1) satisfying also
(iv)) , let a, b ∈ X be mutually generic over k, and let c ∈ a ∗ b. Then
(i) a ∈ c ∗ inv(b), b ∈ inv(a) ∗ c, and
(ii) dim(a, b, c/k) = dim(a, b/k) = dim(b, c/k) = dim(a, c/k) = 2m.
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Proof. Let a ∗ b = {c1, .., cn}. Consider a ∗ (b ∗ inv(b)). It contains
a ∗ e = na (a with multiplicity n). By associativity a appears with multi-
plicity at least n in (a ∗ b) ∗ inv(b). So a ∈ ci ∗ inv(b) for some i = 1, .., n.
By assumption (iv), k(b)alg = k(inv(b)alg, hence k(a, b)alg = k(ci, inv(b))alg

whereby dim(ci, inv(b)/k) = 2m from which it follows that ci and inv(b) are
mutually generic (over k) elements of X. So a appears with multiplicity 1 in
ci ∗ inv(b). Hence a ∈ cj ∗ inv(b) for some j 6= i. Repeating the argument, we
conclude that cj and inv(b) are mutually generic, and a appears with multi-
plicity 1 in cj ∗ inv(b). Continuing (using the fact that na ∈ (a∗ b)∗ (inv(b)))
we conclude that for each i = 1, .., n, a ∈ ci ∗ inv(b) and ci and inv(b) are
mutually generic elements of X.
Considering instead (inv(a) ∗ a) ∗ b and repeating the argument, we see that
for each i = 1, .., n, b ∈ inv(a) ∗ ci, and ci and inv(a) are mutually generic.

So we obtain (i), and using also that k(a)alg = k(inv(a))alg and k(b) =
k(inv(b))alg we obtain (ii). Lemma 2.1 is proved.

We now prove Proposition 1.1. Let a, b be mutually generic in X over k and
let c ∈ a∗b. The first step is to recover from X the “group configuration”. Let
x ∈ X be chosen generic over k(a, b). By associativity a ∗ ((x ∗ inv(x)) ∗ b) =
(a∗x)∗ (inv(x)∗ b). Now c is in the left hand side. So there are d ∈ a∗x and
f ∈ inv(x) ∗ b such that c ∈ d ∗ f . Our configuration consists of the points
a, b, c, x, d, f and the “lines” {a, b, c}, {a, x, d}, {x, b, f}, {d, f, c}. Note that
k(x)alg = k(inv(x))alg (by (iv)).

By Lemma 2.1, we have
(*) each noncollinear triple from {a, b, c, x, d, f} is independent over k, and
each element of each collinear triple is in the algebraic closure of the other
two.

So (*) says precisely that the set of points {a, b, c, d, f, x} forms a group
configuration over k in the algebraically closed field K. We can then ap-
ply a fundamental theorem of Hrushovski which produces from this data a
definable (and thus algebraic) group closely related to X. We refer to The-
orem 5.4.5 of [2] for a statement and proof in the case of arbitrary stable
theories. In any case, after possibly replacing k by a larger k1 algebraically
independent from {a, b, c, d, f, x} over k) we have:

Lemma 2.2. There is a connected m-dimensional algebraic group (G, ·,−1 , e′)
defined over k and generic points a′, b′, c′ of G over k such that a′ · b′ = c′

and k(a)alg = k(a′)alg, k(b)alg = k(b′)alg and k(c)alg = k(c′)alg.
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We now find the R from Proposition 1.1. We may use some model-
theoretic language later in the proof. First there is no harm in assuming
k to be algebraically closed. We can find an automorphism α of K over k
which fixes (c, c′) and takes (a, a′) to (a1, a

′
1) where (a1, a

′
1) is independent

from (a, a′, b, b′, c, c′) over k.
(Namely dim(a1, a

′
1/k(a, a′, b, b′, c, c′)) = m). Let (b1, b

′
1) = α(b, b′).

So
(a) a′ · b′ = c′ and a′1 · b′1 = c′, hence ((a′1)

−1 · a′) · b′ = b′1.
Put a′2 = (a′1)

−1 · a′.
Also
(b) c ∈ a ∗ b and c ∈ a1 ∗ b1.
By Lemma 2.1, b1 ∈ inv(a1) ∗ c, so by associativity there is a2 ∈ inv(a1) ∗ a
such that b1 ∈ a2 ∗ b.
So we have:
(c) b′1 = a′2 · b′ and b1 ∈ a2 ∗ b.

Lemma 2.3. dim(a2/k) = dim(a′2/k) = dim(a2, a
′
2/k) = m, and (a2, a

′
2) is

independent from each of (b, b′) and (b1, b
′
1) over k.

Proof. It is clear from Lemma 2.1 that dim(a2/k) = dim(a′2/k) = m. Now
(a2, a

′
2) ∈ k(a, a′, a1, a

′
1)

alg and (a, a′, a1, a
′
1) is independent from (b, b′) over k.

So (a2, a
′
2) is independent from (b, b′) over k. But (a2, a

′
2) ∈ k(b, b′, b1, b

′
1)

alg,
and dim(b1, b

′
1/k(b, b′)) = m. This forces dim(a2, a

′
2/k) to be at most m, so

exactly m. The rest of the lemma follows.

Let V ⊆ X×G be the irreducible algebraic variety over k whose generic point
is (b, b′). So (as (b1, b

′
1) = α(b, b′)) (b1, b

′
1) is also a generic point of V over k.

Note that dim(V ) = m. Using model-theoretic notation let p = tp(b, b′/k),
the “generic type” of V , and so a “realization” of p is precisely a generic
point (over k) of V . R will be a kind of “stabilizer” of V or p.

More precisely let R ⊂ X × G be the set of (y, y′) such that for some
(any) realization (d, d′) of p independent from (y, y′) over k there is (d1, d

′
1)

realizing p such that d′1 = y′ ·d′, d1 ∈ y∗d, d ∈ inv(y)∗d1 and y ∈ d1∗ inv(d).
Then R is definable (or constructible) over k.

Lemma 2.4. (i) (a2, a
′
2) ∈ R.

(ii) For any y ∈ X there are at most finitely many y′ ∈ G such that
(y, y′) ∈ R, and dually. (Hence using (i) R has dimension m.)
(iii) If (y, y′) ∈ R is generic over k, namely dim(y, y′/k) = m, then (inv(y), y′−1) ∈
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R,
(iv) If (y, y′) ∈ R and (y1, y

′
1) ∈ R are mutually generic over k, then there is

z ∈ y ∗ y1 such that (z, y′ · y′1) ∈ R.

Proof. . (i) is clear by Lemma 2.3 and Lemma 1.1.
(ii) Suppose for a contradiction that (y, y′) ∈ R and y /∈ k(y′)alg. So
dim(y, y′/k) > dim(y′/k). Let (d, d′) realize p, independently from (y, y′)
over k. So
(**) dim(y, y′, d/k) > m + dim(y′/k).
Let (d1, d

′
1) be a realization of p given by the definition above of (y, y′) being

in R. Hence dim(y′, d, d′, d1, d
′
1/k) = m + dim(y′/k). But y ∈ k(d, d1)

alg, so
dim(y, y′, d, d′, d1, d

′
1/k) = m + dim(y′/k), contradicting (**).

(iii) follows from Lemma 1.1.
(iv). Let (y, y′) and (y1, y

′
1) be mutually generic generic elements of R. This

means that dim(y, y′, y1, y
′
1/k) = 2m. Let (d, d′) realize p independently

of (y, y′, y1, y
′
1) over k. Let (d1, d

′
1) be a realization of p witnessing that

(y, y′) ∈ R (namely d′1 = y′ · d′, d1 ∈ y ∗ d etc.). Then (d1, d
′
1) is independent

of (y, y′, y1, y
′
1) over k so again we find (d2, d

′
2) realizing p witnessing that

(y1, y
′
1) ∈ R (namely y′2 = y′1 · d′1 etc..). It is easy to see that (d, d′) and

(d2, d
′
2) are independent over k. Note that (y′1 · y′) · d′ = d′2. Also by associa-

tivity of ∗, there is z ∈ y1 ∗ y such that d2 ∈ z ∗ d. The same argument as
in the proof of Lemma 2.3 shows that (z, y′1 · y′) is independent from (d, d′)
over k. Hence (z, y′1 · y′) ∈ R, as required.

Lemma 2.4 finishes the proof of Proposition 1.1. Note that as a2, a′2 are
generic points of X, G respectively over k, then part (i) of Lemma 2.4 gives
that R projects dominantly to both X and G. Also it is immediate that
(e, e′) ∈ R.
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