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Abstract. We characterize those functions f : C→ C definable in o-minimal

expansions of the reals for which the structure (C, +, f) is strongly minimal –
such functions must be complex constructible, possibly after conjugating by a

real matrix. In particular we prove a special case of the Zilber Dichotomy –

an algebraically closed field is definable in certain strongly minimal structures
which are definable in an o-minimal field.

1. Introduction

This paper is concerned with recognizing algebraicity in model theoretic terms.
This line of research is motivated by a conjecture of Zilber in [28] suggesting that
certain combinatorial geometries arising naturally in model theory must be either of
linear type (locally modular) or coincide with the Zariski geometry coming from an
(irreducible) algebraic curve over an algebraically closed field. Although in general
false ([7]) Zilber’s conjecture has been proved under additional assumptions in [10]
and played a crucial role in several applications outside model theory, the first and
arguably the best known of which is [8].

Aside from [10] there are several other instances under which Zilber’s conjecture
has been proved (usually, but not always, by reducing the problem to one close
enough to the context treated in [10]). In [9] Hrushovski and Sokolovic prove the
conjecture for differentially closed fields of characteristic 0; in [8] the same is done for
separably closed fields, and in [4] for difference fields. In [24] Zilber’s conjecture has
been proved for those combinatorial geometries interpretable in algebraically closed
fields (under the additional assumption that the interpretation is rank preserving).

Loosely speaking, these results suggest that Zilber’s conjecture tends to be true
in contexts of geometrical flavor. It seems therefore natural to look for a proof of
Zilber’s conjecture for o-minimal structures. This question has been formulated by
Y. Peterzil as:

Problem 1.1. Let D be a strongly minimal, non-locally modular structure inter-
pretable in an o-minimal structure. Does D interpret an algebraically closed field?

The combinatorial geometries referred to in Zilber’s conjecture are precisely those
associated with strongly minimal structures. In [19] Peterzil and Starchenko prove
a complementary result. They show that if R is an o-minimal expansion of a real
closed field and K = R(

√
−1) then K has no proper expansions which are strongly

minimal (or stable). In the present paper we make a first step toward proving
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a generalization of Peterzil and Starchenko’s result and give a positive answer to
problem 1.1 in a special case. Our main result is:

Theorem 1.2. Let f : C→ C be definable in an o-minimal expansion of the reals
and such that Cf := (C; +, f) is strongly minimal and non-locally modular. Then
there is M ∈ GL2(R) such that CMfM−1 is interdefinable with the complex field.
In particular, Cf is biinterpretable with the complex field.

Note that the assumptions of the theorem are a special case of the assumptions
in 1.1, but our conclusion is sharper than the one in 1.1. Not only do we find a
Cf -definable field, but also show that the entire structure of Cf comes from that
field. One can not expect such a strengthening of the conclusion of 1.1 in general,
see the remark on page 9 of [29].

Proving Zilber’s conjecture for o-minimal expansions of the additive group of
the complex field reduces by standard model theoretic arguments to proving it
for (C; +, X) for arbitrary strongly minimal X ⊆ C2 definable in an o-minimal
expansion of the reals such that (C; +, X) is strongly minimal. Hence, our theorem
deals with the special case where X is the graph of a function. Some additional
comments regarding the assumptions of the theorem are in place. First, note that if
f is conjugate to a complex rational function by a real matrix then Cf is a strongly
minimal structure and by [14] is interdefinable with the complex field. However,
examples due to Hrushovski (essentially along the lines of [7]) show that in general
if f : C → C is a set theoretic function such that Cf is strongly minimal no field
need be interpretable in the structure even if it is non-locally modular. In view of
the above discussion the o-minimality assumption is quite natural. It is also clear
that o-minimality is a natural assumption in the (less natural) case of an arbitrary
real closed field, since the natural topology in such fields is usually not good enough
for any arguments.

Generally speaking, our proof of Theorem 1.2 uses mild consequences of o-
minimality, which suggests that considerable parts of the proof may be generalized
to weaker contexts. One possible such context is weak o-minimality. Another one
(perhaps more natural and challenging) would be to assume only that f is continu-
ous (or C1). For example, if we assume f to be holomorphic, we get an immediate
proof, since strong minimality forbids any essential singularities (infinity included),
hence f must be rational.

The idea for our proof is based on a theorem of Marker and Pillay in [13] where
they prove - as a special case - the same result as that of our theorem under the
assumption that f is definable in the complex field. A key feature in their proof is
that f is meromorphic, hence

(∗) f ′(c) = 0 ⇐⇒ f is not a local homeomorphism at c.

The main part of the paper is aimed at proving (∗) in our setting. Once this is
achieved we can, more or less, follow the steps of [13].

The paper is structured as follows. In Section 2 we give the (rather soft) model
theoretic background we need and gather a few easy, though useful, facts concerning
our function f . Section 4 is dedicated to the study of the topological properties
of our function. We show that (up to finitely many corrections) f is a continuous,
open ramified covering of the Riemann sphere. In order to prove these properties of
f we use ideas of Peterzil and Starchenko (§3 in [19]) to show that strongly minimal
subsets of C2 are closed (up to possibly finitely many corrections), which is the main
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result of Section 3. This readily gives us the continuity of f , its properness and its
openness. In the second part of Section 4 we use ideas from topological analysis to
conclude that f is a ramified covering. We then show that f admits a topological
degree and the remainder of the section is dedicated to the investigation of the local
behavior of this degree in definable families of definable functions. In Section 5 we
extend yet further our use of topological analysis to obtain a weak version of the
Cauchy-Riemann equation for f , namely the right-to-left implication in (∗): if f
is not a local homeomorphism at c and c is a smooth point of f then f ′(c) = 0.
Finding such a point c turned out, unexpectedly, to be a major difficulty.

In Section 6 we prove a local version of the left-to-right implication in (∗). The
proof makes extensive use of the results of Section 5, and goes through local Lie
group theory and the classification of maximal solvable Lie subgroups of GL2(R).
This allows us to return to the line of proof of [13] in order to produce in Sec-
tion 7 a certain combinatorial configuration, which by a well known variant of
the Hrushovski-Weil group configuration theorem assures the existence of an inter-
pretable field in Cf . Sections 8 and 9 are dedicated to generalizing the proof to
o-minimal expansions of arbitrary real closed fields.

Acknowledgment: We would like to thank Y. Peterzil for suggesting the
problem to us, and for his helpful remarks and ideas; G. Cherlin for directing us
to some useful references; C. Mora-Corral for saving us from trying to re-invent
degree theory and directing us to the right books; K. Dymara and J. Dymara for
supplying us with examples which kept us off wrong tracks; and the Oxford Logic
Group for many tea time discussions.

2. Model theoretic background and preliminaries

In this section we give the formal definitions required for an understanding of
Problem 1.1 and the statement of Theorem 1.2. We also gather some basic facts
concerning strongly minimal and o-minimal structures which we will use throughout
the paper, and prove some immediate implications to our function f , which will be
useful later on.

The key to all the definitions that follow are the notions of structure and de-
finability. Roughly, a structure is a non empty set M with a collection M of
distinguished functions and relations (possibly on powers of M) and a set S ⊆Mk

is definable if it can be obtained from M by applying logical operations. More
formally:

Definition 2.1. Let M be an non-empty set. A structure S on M is a sequence
{Sn : n > 0} of subsets of P(Mn) satisfying:

(1) Each Sn is a boolean algebra of sets (i.e. closed under finite unions inter-
sections and under taking complements).

(2) S is closed under cartesian powers (i.e. If A ∈ Sn and B ∈ Sm then
A×B ∈ Sn+m).

(3) For all n the diagonal ∆n
i,j ⊆Mn given by xi = xj is a set in Sn.

(4) S is closed under projections (i.e. if A ∈ Sn+1 and π : Sn+1 → Sn is the
projection map on the first n coordinates then π(A) ∈ Sn).

A set A ⊆Mn will be called ∅−definable if A ∈ Sn. A is definable if it is a fiber of
some ∅−definable set. A function f : Mn →Mk is definable if its graph is.
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For basic properties of structures we refer the reader to [25]. By the Tarski-
Seidenberg theorem the field of real numbers equipped with the semi-algebraic
sets is a structure which we will refer to as the reals. Similarly, by a theorem
of Chevalley’s the projection of an algebraically constructible set is constructible,
whence any algebraically closed field K equipped with the K−constructible sets is a
structure. If K = C we will call the resulting structure the complex field. To simplify
the notation we will usually refer to ”a structure M” without denoting explicitly
the pair (M ;S). With this notation, for a structure M the underlying set will be
denoted M . We will have two exceptions, R and C will denote the (structures of)
the real and complex fields, as well as their underlying sets. To get a better feeling
of (non-)definability, it is worth remarking that the Sn appearing in the definition,
are usually not σ-algebras. For example, the integers are not definable in neither
the reals nor the complex field but any finite subset thereof is.

Given a non-empty set M and some S ⊆
⋃
n>0 P(Mn) we denote (M ;S) the

smallest structure in which every S ∈ S is definable. Note that if S is countable
then the class of definable subsets in (M ;S) is countable. Identifying functions
with their graphs, it is clear by what we have just said that, e.g., R = (R; +, ·).

To simplify the exposition in this section, it will be very useful for us to assume
that we consider only such structures (M ;S) for which S is countable and M
uncountable. This assumption is not reduce the generality of our discussion – the
structure Cf clearly satisfies it and we can always replace the ambient structure on
the reals by (R,+, ·, f).

Whereas the notion of definability is essential to the understanding of the proofs
in this papers, the remaining model theoretic concepts are - on the technical level -
of less importance. Readers who feel uncomfortable with this sort of concepts can
skip the next set of definitions and be content with Facts 2.8 and 2.9 which sum
up all the consequences of the model theoretic assumptions which will be used in
this paper (at least up to Section 8).

The following definition will not be of great importance in this paper, but since
it appears in the statement of Problem 1.1 we give it nonetheless:

Definition 2.2. The structure (N,R) is definable in the structure (M,S) if there
exist an injection f : R → S which preserves projections and boolean operations.
(M,S) is a an expansion of (N,R) if N = M and S ⊇ R.

We will be mostly interested in structures (M,S) for which a structure is in-
terpretable in (M,S) if and only if it is definable there. To avoid technicalities we
omit the definition of the former. Section 7 is the only place in the text where a
short excursion into the interpretable, rather than the definable, realm seems un-
avoidable. Roughly, a structure (N,R) is interpretable in the structure (M,S) if
it is definable in a (canonical) expansion of (M,S) in which every class of every
∅-definable equivalence relation is given a name. We refer the reader to 1.1 of [21]
or 4.3 of [6] for more details.

Note that if (R,S) is any structure expanding the reals then the complex numbers
are naturally definable in (R,S). In fact, as in this example, in the present paper
a structure (N,R) will be definable in (M,S) if and only if N ∈ S and R ⊆ S.

We are now able to introduce the two main model theoretic notions which will
be used in this paper:

Definition 2.3. Let M be a structure:
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(1) M is minimal if every definable subset of M is either finite or co-finite.
(2) M is strongly minimal if it is minimal and every definable family of finite

subsets of M is uniformly bounded, i.e. for all definable X ⊂ Mn+1 such
that for all ā ∈Mn

Xā := {b ∈M : (b, ā) ∈ X}.
is finite, there exists N ∈ N such that |Xā| < N for all ā ∈Mn.

(3) If < is a dense linear definable ordering on M , we say that (M,<) is o-
minimal if the definable subsets of M are precisely those definable using
the ordering alone (i.e. S1 is precisely the boolean algebra generated by
intervals and points in M).

Let M be any structure and A ⊆ M any set. Define the algebraic closure of A
to be the union of all finite sets definable with parameters from A. Formally,

acl(A) := {a ∈M : (∃b̄ ⊆ A,S ∈ S1+|b̄|)((a, b̄) ∈ S ∧ |S(x, b̄)| <∞}
Definition 2.4. Let M be a structure and A ⊆ M . a ∈ M is algebraic over A if
a ∈ acl(A).

Note that if, e.g. M is the reals or the complex field then a is algebraic over A
in the above sense if and only if it is algebraic over A in the usual sense. In general
if M expands the reals, say, then the model theoretic algebraic closure contains the
standard algebraic closure. In this paper we will only be interested in the former
notion, so no confusion can arise.

Since, when M is either a strongly minimal or an o-minimal structure, acl is a
closure operator (in the sense of Steinitz) we can define for any A ⊆M:

rkA := min{|a| : a ⊆ A ∧ acl(a) ∩A = A}
which gives a notion of independence in M in the following way:

Definition 2.5. Let (A,Cl) be a combinatorial pre-geometry and rk the associated
rank.

(1) If B,C ⊆ A are finite we write rk(C/B) = rk(BC)− rk(B). For arbitrary
B we define rk(C/B) = min{rk(C/B′) | B′ ⊆ B finite}.

(2) B,C ⊆ A are independent over D ⊆ A if rk(C/BD) = rk(C/D).
(3) (A,Cl) is locally modular, if there is a finite set F ⊂ A such that for each

pair of finite sets B,C ⊂ A, Cl(B ∪F ) is independent from Cl(C ∪F ) over
Cl(B ∪ F ) ∩ Cl(C ∪ F ).

Definition 2.6. We assume now that a combinatorial geometry comes from a
strongly minimal structure or an o-minimal structure.

(1) A strongly minimal structure is locally modular if its associated pre-geometry
is.

(2) If X is a D-definable set we define

rk(X) = max{rk(d/D) | d ∈ X}.
(3) For a D-definable set X and D ⊆ D′ an element d̄ ∈ X is D′-generic if

rk(d̄/D) = rk(X).
(4) For definable sets X,Y we denote X ∼ Y if rk(X M Y ) < rk(X ∪ Y ).
(5) If P is any property (not necessarily definable) a definable set X almost

satisfies property P if there exists a definable Y such that X ∼ Y and Y
satisfies property P.
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(6) If M is strongly minimal rk is known as Morley rank and is denoted RM.
(7) If M is o-minimal rk is known as o-minimal dimension and is denoted dim.
(8) A strongly minimal set in a strongly minimal structure M is a definable

set X with RM(X) = 1 such that for every definable Y ⊆ X either Y is
finite or X ∼ Y .

Remark 2.7. We collect some observations regarding the above definitions.
(1) Throughout this paper our usage of the term ”almost” will be reserved

exclusively to the one given in the above definition. Thus, an almost con-
tinuous (definable) function is one all of whose discontinuities are removable
(and not, e.g., one which is continuous outside a set of measure 0).

(2) For a finite set X, a possible confusion may arise – when we write e.g.
dim(X) it could mean either its dimension as a definable set (which is
always 0) or its rank as a tuple (which is usually not 0). To prevent this
confusion, from now on we distinguish between finite tuples, denoted by
lowercase letters a, b, c, . . . and definable (possibly finite) sets denoted by
uppercase letters A,B, . . . ,X, Y, . . . .

(3) Usually, the Morley rank and o-minimal dimension for definable sets are
defined otherwise, using properties of definable sets rather then the combi-
natorial geometry on the universe (see, e.g. [3] and [12], [25] respectively).
Then it is shown (see same references) that in particular under our as-
sumptions (uncountable structure, countably many ∅-definable sets) our
definition coincides with the standard one.
Our countability assumption is also used for 2.8(5), 2.8(6) and 2.9(2) below.

(4) It may be worth mentioning that locally modular strongly minimal struc-
tures (in any context) are well characterized as, essentially, covers of linear
spaces. Hence the assumption of non-local modularity is necessary in Prob-
lem 1.1.

We will now collect those facts concerning o-minimal structures which we will
use. For a more detailed discussion (and for the proofs) we refer to [12] and [25].

Fact 2.8. Let M be an o-minimal expansion of a real closed field, f : M → M a
(partial) definable function then:

(1) M can be partitioned into finitely many open intervals I0, . . . , Ik and finitely
many points a1, . . . , ak such that for each 0 ≤ i ≤ k one of the following
holds:
(a) f is not defined on Ii.
(b) f is constant on Ii.
(c) f is monotone on Ii.

(2) The limit lim
t→1−

f(t) exists in M ∪ {±∞}.

(3) For every n,m, k ∈ N, any definable g : Mm → Mk, there is X ⊆ Mm

such that g is Cn on X and dim(Mm \X) 6 m− 1.
(4) If X ⊆ Rn × Rm is a definable family of definable sets parameterized by

Y ⊆ Rm, there exists a definable function f : Y → X (called Skolem
function) such that (f(d), d) ∈ X for all d ∈ Y .

(5) If X is a definable set of dimension n, then for any definable Y ⊆ X,
dim(Y ) = n if and only if Y contains a relatively open subset of X if and
only if Y contains a generic point of X. In particular if M is the field of
real numbers dim and the topological dimension coincide.
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(6) If dim(a/A) = n, then there is an A-definable, n-dimensional set X such
that a ∈ X. If a ∈ Y , where Y is A-definable, then we can find such X
with X ⊆ Y .

The properties of strongly minimal sets we will be using are considerably simpler
and will consist mainly in:

Fact 2.9. Let X be definable in a strongly minimal structure M and assume that
X (with induced structure) is strongly minimal.

(1) Let Y be a strongly minimal set in M such that X ∩ Y is infinite, then
X ∼ Y .

(2) If a1, a2 ∈ X are such that RM(a1/A) = RM(a2/A) = 1 for some parameter
set A then a1 ∈ Y ⇐⇒ a2 ∈ Y for every Y ⊆ X definable over A.

(3) For any definable X ⊆ Mn+m, a ∈ Mn, let Xa := {b ∈ Mm | (a, b) ∈ X}.
Then the set

{a ∈Mn | Xa is finite (resp. infinite)}

is definable.

From now till Section 8 we fix R, an o-minimal expansion of the reals. We
identify C with R2 and fix a function f : C → C definable in R such that the
reduct Cf := (C; +, f) is strongly minimal and non-locally modular. For simplicity
of notation we will assume that f is ∅−definable in R. Note that dim(c) ≤ 2 RM(c)
for every c ∈ Cn and that if X is a Cf−definable set then dim(X) = 2 RM(X).

We will now fix some (pretty standard) notation.

Notation 2.10. Assume X is a topological space, Y ⊆ X and g : C→ C.
(1) We will write g′(c) for the Jacobian matrix of g at c (if it exists).
(2) cl(Y ) is the topological closure of Y in X, int(Y ) is its interior.
(3) ∂(Y ) := cl(Y ) \ int(Y ) is the border of Y , fr(Y ) := cl(Y ) \ Y its frontier.
(4) For x ∈ Cn, ‖x‖ denotes the norm of x and for r > 0, Br(x) denotes the

open ball centered at x and of radius r.
(5) For a ∈ Rn and R-definable X,Y ⊂ Rn we say that X is transversal to Y

at a, denoted X ta Y , if a ∈ X ∩ Y and there is an open U 3 a such that
X ∩ U, Y ∩ U are C1-submanifolds of Rn which are transversal at a.

(6) For a field K, Gm(K) is the multiplicative group of K and Ga(K) is the
additive group of K

We finish this section with some easy consequences of strong minimality.

Fact 2.11. f is not almost R-affine.

Proof. If f is R-affine then the structure Cf is definable in the structure Rvect,
whose universe is R and whose ∅-definable subsets of Rn are R-linear subspaces.
Then Rvect is locally modular (see 2.7(4)). But then Cf is also locally modular, as
is any strongly minimal structure definable in a locally modular one, see 6.3 on p.
182 of [21]. �

By strong minimality we know that f has finite fibers (otherwise it would be
almost constant) and the size of fibers is uniformly bounded. Indeed, if a ∈ C is
generic then d :=

∣∣f−1(a)
∣∣ =

∣∣f−1(a′)
∣∣ for all but finitely many a′ ∈ C. We call

d the degree of f . We will show in Section 4 that f admits a topological degree,
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and that the two notions agree up to sign (a posteriori, having proved the main
theorem, we know that they agree unconditionally).

Fact 2.12. Assume U ⊆ C is open and f is C1 on U . Let X denotes the set
of critical points of f (i.e. those c ∈ C such that det(f ′(c)) = 0) on U . Then
dim(X) 6 1.

Proof. If not, we get by 2.8(5) an open V ⊆ U such that for each c ∈ V , f is critical
at c. But then, dim(f(V )) 6 1, hence f has an infinite fiber. Therefore, f is almost
constant and Cf is locally modular, a contradiction. �

One of the most useful characterizations of non-locally modular strongly minimal
structures is the existence of a large definable family of essentially distinct plane
curves. In the next lemma we show that in Cf we have a natural choice of such a
family:

Lemma 2.13. For each a ∈ C \ {0} and each open U ⊆ C, f(x+ a)− f(x) is not
constant on U .

Proof. Assume there existed b ∈ C such that f(x + a) − f(x) = b on U . Strong
minimality would imply f(x+ a)− f(x) = b for almost all x ∈ C. So for almost all
x we have

f(x+ 2a)− f(x) = f(x+ a+ a)− f(x+ a) + f(x+ a)− f(x) = 2b.

Inductively, for each n ∈ N, f(x + na) − f(x) = nb for almost all x ∈ C. So by
2.9(3), there is a cofinite set X ⊆ C such that for all c ∈ X there exists l(c) such
that f(x+ c)− f(x) = l(c) for almost all x ∈ C.
Claim l is an almost R-linear Cf -definable function.

Proof of Claim. By the uniformity part in the definition of strong minimality, l
is a Cf -definable function from X to C. Take any c ∈ X and d ∈ C such that
RM(d/c) = 1. Then RM(d+ c/c) = RM(d/c) = 1, so d+ c, d ∈ X and we have for
almost all x ∈ C:

l(d+c) = f(x+d+c)−f(x) = f(x+d+c)−f(x+d)+f(x+d)−f(x) = l(c)+ l(d).

Therefore, l is “generically-additive”, but we still need to find an actual additive
function coinciding almost everywhere with l. Let L denote the graph of l and
consider the following set:

S := {(v, w) ∈ C2 | ((v, w) + L) ∼ L}.

By 2.9(3), S is Cf -definable and it is clearly a subgroup of (C,+)× (C,+).
Let us take (v, w) ∈ S such that v ∈ X and choose a ∈ C generic over {v, w}. Then
(v, w) + (a, l(a)) ∈ L and v + a ∈ X. Therefore,

l(v) + l(a) = l(v + a) = l(a) + w,

so (v, w) ∈ L. Therefore, S is the graph of an additive function l̄ which coincides
with l almost everywhere.
By 2.8(3), there is an R-definable, open U ⊆ C such that dim(C \ U) 6 1 and l̄
is continuous on U . For any a ∈ C, if we take b ∈ U such that dim(b/a) = 2,
then dim(b + a/a) = 2, so b + a ∈ U by 2.8(5). Hence U + U = C. Now, it is an
easy exercise (left to the reader) to show that an additive function on C which is
continuous on an open set U ⊆ C satisfying U + U = C is R-linear. �
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By the Claim we can assume that l is R-linear. For a generic a ∈ C and for almost
all x ∈ C, we have:

f(a+ x)− l(x) = f(a).
Therefore, f is almost R-affine, contradicting 2.13. �

Let la,c denote the graph of f(x + a) + c. We get 4 corollaries (the first one is
immediate) which will be of use:

Corollary 2.14. F := {la,c : a, c ∈ C} is a normalized 2-dimensional family of
plane curves, i.e. (a, c) 6= (a′, c′) implies la,c � la′,c′ .

Corollary 2.15. Assume S ⊂ C2 is strongly minimal, definable over ∅ and a, c ∈ C
such that RM(a, c) > 0. Then S � la,c.

Proof. Assume not and take

X := {(x, y) ∈ C2 | S ∼ lx,y}.
By 2.9(3), X is Cf -definable over ∅. Since (a, c) ∈ X and RM(a, c) > 0, X is
infinite. In particular, there are (a, c) 6= (a′, c′) with la,c ∼ S, la′,c′ ∼ S. Hence
la,c ∼ la′,c′ contradicting 2.14. �

Corollary 2.16. For any open U ⊆ C, dim(f ′(U)) ∈ {1, 2}.

Proof. Since f ′ is R-definable and dim(U) = 2, dim(f ′(U)) 6 2. If f ′(U) is finite,
then without loss f ′ is constant on U . For simplicity, we may assume that 0 ∈ U ,
so choose any c ∈ U and consider the function fc(x) := f(x)− f(x+ c). We get an
open V ⊆ U such that fc|V is constant, which contradicts 2.13. �

Corollary 2.17. For any open U ⊆ C, no partial derivative of a coordinate func-
tion of f is constantly 0 on U .

Proof. Assume not. Let f = (f1, f2) : R2 → R2. Without loss there is α ∈ R such
that

∂f1
∂x

(a) = α
∂f1
∂y

(a), ∀a ∈ U.

Take an open U ′ ⊂ U and ε > 0 such that

U ′ +B2ε(0) ⊆ U.

For any (v, w) ∈ U ′ consider the function

hv,w : (−2ε, 2ε) → R, hv,w(γ) = f1(v + γ,w − αγ).

By the Chain Rule, h′v,w is constantly 0, so hv,w is constant.
Consider now the following Cf -definable function

fα,ε(x, y) := f(x+ ε, y − αε)− f(x, y).

and let g : C→ R be its first coordinate function.
Take (v, w) ∈ U ′. Since hv,w is constant, we have

g(v, w) = hv,w(ε)− hv,w(0) = 0.

Therefore, g is constant on U ′, hence

dim(fα,ε(U ′)) 6 1.

Therefore, fα,ε has an infinite fiber, so it is almost constant contradicting 2.13. �



10 A. HASSON AND P. KOWALSKI

3. transversality

In this section we prove that strongly minimal subsets of C2 are almost closed.
The idea of the proof is taken from [19] where for a strongly minimal X ⊂ C the
finiteness of its frontier is proved through an investigation of the possible ways X
can meet complex lines. In the present context we do not have enough Cf -definable
complex lines, so we replace them with the family of plane curves, F , introduced
in the previous section. The main problem in the proof is showing that for any
fixed strongly minimal X ⊂ C there are enough plane curves in our family which
intersect X at a smooth point (of the curve and X).

Consider a family {f ba : C→ C}a∈C of Cf -definable functions such that for each
a 6= a′ ∈ C we have f ba � f ba′ and f ba(b1) = b2, where b = (b1, b2) ∈ C2 is fixed. We
call graph(f ba) the f-line through b parameterized by a and denoted it lba. We will
usually denote the graph of a function g by Γg.

Consider the relation

Φb(s1, s2; a) ⇔ f ba(s1) = s2.

We say that a point s = (s1, s2) ∈ C2 is b-good if Φb(s1, s2;x) 6= ∅ and for each
a ∈ C such that Φb(s1, s2; a), there is a neighborhood U 3 (s, a) such that Φb ∩ U
is the graph of a C1-function which is a submersion at s. In other words, if s is a
b-good point, we have a C1 function φ : U → C such that for any s′ close enough
to s, φ(s′) is a parameter for an f -line through b and s′. We say that a point is bad
if it is not good. Let Bb denote the set of all bad points for our family.

We will now investigate the set of bad points of the the family

f ba(x) := f(a+ x)− f(a+ b1) + b2.

Lemma 3.1. For each b, dim(Bb) 6 3. Moreover, we can assume that

B(b1,b2+b
′
2) = B(b1,b2) + (0, b′2).

Proof. Let E := {(s1, s2) ∈ C2 : Φb(s1, s2, x) = ∅}. By strong minimality and
Lemma 2.13 dimE ≤ 2. It will, therefore, be enough to show that for almost all
s1 ∈ C the set

Bbs1 := {s2 ∈ C | (s1, s2) ∈ Bb \ E}
is at most 1-dimensional.
Fix s1. Consider the function

H : C3 → C, H(s1, s2, a) = f(s1 + a)− f(a+ b1) + b2 − s2.

Let A be the set of a ∈ C such that there is an open U 3 (s1, s2, a) such that H|U is
C1. By Fact 2.8(4) A is of codimension 1 at most (note that this does not depend
on s2). By the implicit function theorem, (s1, s2) is good if for each a such that
s2 = f(a+ s1)− f(a+ b1) + b2, we have a ∈ A and

0 6= det(
∂

∂a
H(s1, s2, a)) = det(f ′(s1 + a)− f ′(b1 + a)).

Consider the function g(x) := f(s1 + x)− f(b1 + x) + b2. We have just proved that

Bbs1 ⊆ g(C \A) ∪ g({a ∈ A | det(g′(a)) = 0)}).
Since the latter set has dimension at most 1 (except the case s1 = 0, which we can
ignore), the result follows.
The moreover part is given by the form of g and E. �
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Now, given a strongly minimal S ⊂ C2, and b ∈ C2 we cannot hope to be able to
say much on the possible intersections of S with f -lines through b, if S meets Bb in
a large set. Therefore, we first move S so that its intersection with Bb is of small
dimension for a suitable choice of b. For any a ∈ C, let us define

Fa : C2 → C2, Fa(x, y) = (x, f(y + a)).

Lemma 3.2. Assume S ⊂ C2 is strongly minimal and with infinite frontier. Then,
there are c ∈ fr(S) and a ∈ C with dim(a, c) = 3 such that dim(Fa(S)∩BFa(c)) 6 1
and Fa(c) ∈ fr(Fa(S)).

Proof. We may assume that S is ∅-definable. Take c = (c1, c2) ∈ fr(S) generic (so
dim(c) = 1) and let

A := {a ∈ C | Fa(c) ∈ Fa(S)},
Claim: A is finite.

Proof of Claim. Assume not. Let S2 denotes the section of S over c2. Since S is
not linear, S2 is finite. Since c /∈ S, c1 /∈ S2.
We get that for each a ∈ A, there is d ∈ S2 such that

f(a+ c1)− f(a) = f(a+ d)− f(a).

Therefore, there is a fixed d ∈ S2 such that for an infinite set X the functions
f(x+ c1) and f(x+d) coincide on X, which is impossible by 2.13, since c1 6= d. �

Let
Y := {a ∈ C \A | Fa is C1 at c and det(F ′a(c)) 6= 0}.

Y is clearly of codimension at most 1.
Since Fa(c) = (c1, f(a+ c2)), we have by the moreover part of 3.1

dim(Fa(S) ∩BFa(c)) = dim[Fa(S) ∩ (Bc + (0, f(a+ c2)− c2))]

= dim[(Fa(S)− (0, f(a+ c2)− c2)) ∩Bc].
Consider the function

F̄a(x, y) = (x, f(a+ y)− f(a+ c2) + c2).

We clearly have
F̄a(S) = Fa(S)− (0, f(a+ c2)− c2).

It is easy to check that F̄c(S) ∩ F̄d(S) is finite for all c 6= d, hence

dim{a ∈ Y | dim(F̄a(S) ∩B(c)) = 2} 6 1

(otherwise, we would have a 2-dimensional family (F̄a(S)∩Bc)a∈Y0 of 2-dimensional
sets inside a 3-dimensional set BFa(c) yielding some infinite intersection of F̄a1(S)
and F̄a2(S)).
Take a ∈ Y such that dim(a, c) = 3 and dim(Fa(S) ∩Bc) 6 1.
By the definition of Y and the inverse function theorem, there is an open set U 3 c
such that Fa|U is a diffeomorphism. For a topological space Z, the following is
trivial:

(∗) For any C ⊂ D ⊂ Z, z ∈ D \ C, z ∈ fr(C) if and only if z ∈ frD(C).

Therefore, since c ∈ fr(S) and c ∈ U , we get c ∈ frU (S ∩ U). Since Fa|U is a
homeomorphism, we get

Fa(c) ∈ frFa(U)(Fa(S ∩ U)).
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Since c /∈ A, we get Fa(c) /∈ Fa(S∩U). We obtain by (∗) that Fa(c) ∈ fr(Fa(S)). �

Theorem 3.3. Let S ⊂ C2 be strongly minimal. Then fr(S) is finite.

Proof. Assume not. Without loss S is defined over ∅. Take a, c as given by 3.2
and let b := Fa(c) (Fa from the statement of 3.2). Since Fa has finite fibers,
acl(a, b) = acl(a, c), so dim(b/a) = 1. Replacing S with Fa(S) we may assume by
3.2 that b ∈ fr(S), dim(b) = 1 and dim(S ∩Bb) 6 1.
Consider the f -line lba through b. Recall that lba is the graph of the function f ba(x) :=
f(a+ x) + cba (cba = −f(a+ b1) + b2, but it will not be important for us).
Claim 1

RM(cba, a) = 2.

Proof of Claim 1. Note that lba ∩ fr(S) is finite, since otherwise, we would have an
open U ⊆ C and a 2-dimensional family of infinite sets (lba ∩ fr(S))a∈C inside a
1-dimensional set fr(S), yielding infinite intersection of some f -lines.
Since fr(S) is ∅-definable, we get that dim(b/cba, a) = 0. If RM(cba, a) = 1, then in
particular dim(cba/a) = 0, so dim(b/a) = 0, which contradicts the choice of a. �

Take any s ∈ S∩lba. Note that s ∈ acl(a, b) because S∩lba is finite and definable over
a, b. On the other hand, there are finitely many f -lines through b going through s.
Therefore, a ∈ acl(s, b). Hence

dim(s/b) = dim(a/b) = 2.

Claim 2
S ts l

b
a

(in the sense of 2.10).

Proof of Claim 2. Since s /∈ Bb, there is U 3 s and a C1 parameter choice function
Φ : U → C such that Φ(s) = a. By the definition of Φ, Φ−1(a) ⊆ lba. Let
V := Ts(lba) ∩ Ts(S).
Assume S is not transversal to lba at s, i.e. dimV > 1. Since Φ is a submersion
at s, Φ−1(a) is smooth and 2-dimensional around s (so it locally coincides with lba
around s). We have

ker Φ′(s) = Ts(Φ−1(s)) = Ts(lba).
Therefore, there is a real curve γ : R → S such that γ(0) = s and γ′(0) ∈ V ,
Φ ◦ γ is constant on U0 a neighborhood of 0 ∈ R. Therefore, Φ is constantly a on
γ(U0) which is infinite. Hence lba intersects S at infinitely many points. By 2.15,
RM(a, cba) = 0 which contradicts Claim 1. �

We can now conclude as in [19]. Consider a subfamily of the family of f -lines from
2.14

F := (la,c)c∈C, la,c := Γf(a+x)+c.

Which are merely translations of lba (so there is no fixed point now through which
they all pass). By Claim 1, lba is a Cf -generic f -line in F . Therefore, there are
cofinitely many c ∈ C such that

n := |lba ∩ S| = |la,c ∩ S|.

Consider now lba ∩ S = {s1, . . . , sn}. By Claim 2, there is ε > 0 such that if
|c′ − c| < ε, then la,c′ still intersects lb′ near each si. But there are infinitely many
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c′ as above such that lc′ intersects S near b as well (since b ∈ fr(S)), contradicting
the choice of n. �

4. topology

4.1. The topological properties of f . Because even rational functions are only
continuous on the Riemann sphere, this will be the natural domain for us to work
in. We will use the finiteness of the frontier to show that allowing the value ∞, f
is an almost continuous, proper open map.

The key to the proof is Theorem 3.3 which will be used repeatedly to obtain
various finiteness results. First we apply the theorem to show that f is locally
injective on a cofinite set.

Definition 4.1. We say that c is a non-injective point of f if for any open U 3 c,
f |U is not injective. Let N (f) denote the set of non-injective points of f .

Fact 4.2. N (f) is finite.

Proof. Let
S := {(x, y) ∈ C2 : f(x) = f(y) ∧ x 6= y}.

Clearly, RM(S) = 1 and fr(S) is contained in the diagonal. For c ∈ C, we have
(c, c) ∈ fr(S) if and only if c ∈ N (f). But fr(S) is finite by 3.3, so we are done. �

Let S2 denote the 2-sphere. We view it as a 1-point compactification of C, so
S2 = C ∪ {∞}. Our first task is to show that ∞ ∈ S2 can not be obtained as a
limit infinitely often. Let us define

L := {a ∈ C | ∃an → a, lim(f(an)) = ∞}.

We need a lemma which gives a partial description of the topological properties of
f .

Lemma 4.3. There is a finite F ⊂ C such that f is continuous and open on
C \ (L ∪ F ).

Proof. Let F be the union of N (f) and the projection to the first coordinate of
fr(Γf ). By 3.3 and 4.2, F is finite. It is clear from our choices that f is continuous
and locally injective on C \ (L ∪ F ).
By Brouwer’s Invariance of Domain Theorem [2], f is open on C \ (L ∪ F ). �

Fact 4.4. L is finite.

Proof. The proof is similar to that of Theorem 3.3 but considerably simpler. As-
sume L is infinite. Then, L is clearly R-definable and by 2.8(3) of dimension 1. By
2.8(3) again, f |L is continuous on a cofinite subset of L, so we may assume that
f |L is continuous everywhere. We will also assume L∩F = ∅, where F is as in the
conclusion of 4.3.
Claim 1: There are a, a′ ∈ L and b ∈ C such that dim(a, a′, b) = 4 and for each
ε > 0:

f(Bε(a)) ∩ (f(Bε(a′)) + b) is unbounded.

Proof of Claim 1. Let N > 0 and

Ua,b := int[(f(Bε(a)) + b) ∩ (C \BN (0))].
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By 4.3, f(Bε(a) \ (L ∪ F )) is open and, since f |L is continuous and a ∈ L \ F , it is
unbounded. Therefore (Ua,b)(a,b)∈L×C is a family of non-empty open subsets of C
parameterized by a 3-dimensional set, so

X := {(a, b) ∈ l × C | dim{(a′, b′) ∈ l × C | Ua,b ∩ Ua′,b′ 6= ∅} < 3}

is at most 2-dimensional. Hence, if we take any a, a′ ∈ L and b1, b
′ ∈ C such that

dim(a, a′, b1, b′) = 6, we get that

(f(Bε(a)) + b1) ∩ (f(Bε(a′)) + b′)

is unbounded, since it intersects C \ BN (0) for every N > 0. Hence, we can take
b := b1 − b′. �

Take a, a′, b as in Claim 1. Since dim(a′) = dim(a) = 1, we get dim(a′/b, a) = 1, so
a′ is Cf -generic over a, b. Let

d := max{‖y‖ | ∃x ∈ C, (x, y) ∈ Γf(a+x) ∩ Γf(a′+x)+b}.

By Claim 1, for each ε > 0, there are x0, x1 ∈ Bε(0) such that

y = f(a+ x0) = f(a′ + x1)

and ‖y‖ > d. Taking a′′ := x1 − x0, we get some x such that

(∗) (x, y) ∈ Γf(a+x) ∩ Γf(a′′+x)+b.

We need now a transversality claim similar to Claim 2 in the proof of 3.3.

Claim 2: Let g, h : C → C be Cf -definable over A, not almost affine and b ∈ C
such that dim(b/A) = 2. Assume also h− g is not affine, then for each a ∈ C such
that h(a) = g(a) + b, h and g are C1 at a and

Γh t(a,g(a)) Γg(x)+b.

Proof of Claim 2. Without loss A = ∅. Because h − g is not affine and b is (in
particular) Cf -generic there exists a ∈ C such that h(a) = g(a)+b so acl(a) = acl(b),
so dim(a) = 2. Hence a is a C1-point of both h and g and det(h− g)′(a) 6= 0. Since
(h − g − b)′ = (h − g)′ and transversality of graphs is equivalent to injectivity of
the difference of derivatives, the result follows. �

Taking
A = {a, a′}, h(x) = f(a+ x), g(x) = f(a′ + x),

we get by Claim 2
Γf(a+x) ts Γf(a′+x)+b

for every s ∈ S (S is the intersection of the two graphs).
We may choose a′′ so close to a′ such that, by Claim 2, for every s ∈ S we get

Bε(s) ∩ Γf(a+x) ∩ Γf(a′′+x)+b 6= ∅

for some ε > 0 such that Bε(s) ∩Bε(s′) = ∅ for s 6= s′ ∈ S. In particular the norm
of the second coordinate of these intersection points is bounded by d.
But for y obtained in (∗) above ‖y‖ > d so

|Γf(a+x) ∩ Γf(a′′+x)+b| > |Γf(a+x) ∩ Γf(a′+x)+b|,

Since a′′ was arbitrary, there we get infinitely many points with the same property.
This contradicts the Cf -genericity of a′ over a, b. �
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It seems that from this point on the assumption that f is definable in an o-minimal
field R is used very mildly, except for the fact that f is C1 on a large set. We
will try to point out all the places where o-minimality is used. It is not clear to us
whether o-minimality is crucial for the conclusion of the proof.

We need a simple topological lemma:

Fact 4.5. Let D = B\{a} be a punctured disc, Y a topological space and f : D → Y
a continuous function. Then the set

E := {e ∈ Y : (a, e) ∈ fr(Γf )}
is connected.

Proof. Suppose not and let U, V be open and disjoint subsets of Y such that E =
(U ∩ E) ∪ (V ∩ E). Consider D̃ := f−1(U) ∪ f−1(V ). By continuity, D̃ is open,
and by the definition of E, B̃ := D̃ ∪ {a} is open in B, since for any sequence
B 3 xn → a we know that lim f(xn) ∈ E so xn ∈ D̃ for n big enough.
B has a basis of open discs, so there must be a disc C centered at a which is
contained in B̃. Therefore C \ {a} ⊆ D̃ and C \ {a} * f−1(U), f−1(V ), which
contradicts the connectedness of C \ {a}. �

Gathering all this information we easily get:

Proposition 4.6. Let A be the set of points at which f is not continuous. Then
A is finite and there is a continuous function f̂ : C → S2 which coincides with f
on C \A.

Proof. By 3.3, 4.4 and 4.5, for each a ∈ C,

f̂(a) := lim
x→a

f(x)

exists in S2. For a ∈ C \A, f̂(a) = f(a). If a ∈ A, then either a is contained in the
projection of the frontier of the graph of f , which is finite by 3.3, or f̂(a) = ∞, so
a ∈ L which is finite by 4.4. �

Since there is no harm in changing f on a finite set, from now on we replace f with
f̂ . Therefore f is a continuous function into S2. We call each point a ∈ C such
that f(a) = ∞, a pole of f .

Proposition 4.7. f is an open map.

Proof. By Brouwer’s Invariance of Domain Theorem ([2]), a locally injective func-
tion f : V → R2 is open for any open V ⊆ R2. Hence for any a /∈ N (f) there
exists a neighborhood Va such that f(Va) is open. So we focus on a ∈ N (f). With-
out loss, a = 0 = f(0). Since N (f) is finite we can find an open disc V around
0 such that cl(V ) ∩ N (f) = {0}. We may also assume that V is so small that
f−1(0) ∩ cl(V ) = {0}. Denote D := V \ {0}.

By the Invariance of Domain f |D is open so ∂f(D) ⊆ f(∂D). By our choice of
V we know that 0 /∈ f(∂D \ {0}) and as the latter is closed, 0 is an isolated point
of ∂f(D). Hence for a small enough ball B 3 0 we get that B ∩ ∂f(D) = {0}.
Therefore (B \ {0}) ∩ f(D) is non-empty and clopen in B \ {0}, so (since B \ {0}
is connected) B \ {0} ⊆ f(D) and B ⊆ f(V ). So 0 ∈ int(f(V )), which is what we
needed. �

We can now show that f is proper, i.e.:
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Proposition 4.8. f continuously extends to S2.

Proof. We need to show that lim
x→∞

f(x) exists. By 4.5, it is enough to show that

E := {e ∈ C : (∞, e) ∈ frS2×S2 Γf}
is finite.
Since {z :

∣∣f−1(z)
∣∣ 6= d} is finite (d is the degree of f), it will suffice to show that

there does not exists e ∈ E such that
∣∣f−1(e)

∣∣ = d. Assume the contrary, and
let e1, . . . , ed be distinct such that f(ei) = e for i 6 d. Let Ui 3 ei be pairwise
disjoint open sets. Since f : C→ C is open, V := f(U1)∩ . . .∩ f(Ud) is an open set
which is non-empty, as it contains e. But e ∈ E implies that f−1(V ) is unbounded.
Therefore, the set

A := f−1(V ) \ U1 ∪ . . . ∪ Ud
is infinite. But for any a ∈ A and i 6 k, f(a) has a preimage by f in Ui, there-
fore each element of the infinite set f(A) has at least d + 1 preimages by f , a
contradiction. �

Question 4.9. In the presence of a Cf -definable algebraically closed field Peterzil
and Starchenko [19] use similar arguments to conclude that g is C1 in all but finitely
many points. Can such a result be obtained already at this stage?

Before we proceed we note that what we have proved for f is also valid for any
(non-almost constant) Cf -definable function g : C → C, i.e. any such function is
almost continuous, open and with finitely many non-injective points as a function
from S2 to S2. Therefore, even when the complex addition does not extend to S2,
we can still add continuous Cf -definable functions from S2 to S2, understanding e.g.
f(x+ 1)− f(x) as the continuous correction of a Cf -definable function. Whenever
we say that a Cf -definable function is not injective, we mean that its continuous
correction is not. Since a Cf -definable function can have finitely many “accidental”
values, non-injectivity does not say much before this correction. Note however, that
if a Cf -definable function has at least 2 poles, then it is necessarily non-injective in
the right sense described above.

Fact 4.10. If f is injective, then g(x) := f(x+ 1)− f(x) is not.

Proof. By 2.13, g is not almost constant. Therefore the image of g is cofinite, hence
g is onto as a continuous function on the compact space S2. Since f is injective it
has only one pole at a ∈ S2, say. If a ∈ C, then g has poles at a and a− 1, so it is
not injective.
Assume a = ∞. Then g has no poles on C, so g(C) = C. In particular, there
is c ∈ C such that g(c) = 0. But then f(c + 1) = f(c), so f is not injective, a
contradiction. �

In the case f was injective (e.g. if f(x) = 1/x), we replace f with the g above,
so we can assume f is not injective. The reader may wonder if we do not lose
any information by replacing Cf with this reduct Cg. However, the course of the
proof is to find a Cf -definable field (so replacing f with g is fine) and then show
that all the extra structure must be already definable in that field. Hence, there
is no danger in replacing f with g, as long as Cg is not locally modular, which
is guaranteed e.g. if g is continuous and not injective. We will often make such
replacements.
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In a similar way, we may also assume that f(∞) = ∞. If not, there exists some
a′ ∈ C such that f(a′) = ∞. Replacing f with g := f(f(x)− f(∞) + a′) we get a
function with the desired property. Not that if f was not injective clearly so is g.

From now on whenever we consider a Cf -definable function g : S2 → S2 which is
not almost affine we will implicitly assume that g has the same topological properties
as f , i.e. we will always assume that g is continuous, open, non-injective with finite
fibers and with finitely many non-injective points. The following result, which
combines §V III.4.5 and §V III.6.1 of [26] will be crucial in our analysis of such
functions:

Theorem 4.11. Assume that g : S2 → S2 has all the above properties, then:
(i) g is a ramified covering, i.e. for each c ∈ S2 there exists a neighborhood V 3 c
and homeomorphisms φ : V → B1(0), ψ : g(V ) → B1(0) such that φ(c) = ψ(g(c)) =
0 and there is k > 1 such that the following diagram commutes:

V
g //

φ

��

g(V )

ψ

��
B1(0)

gk // B1(0),

for gk(z) = zk. The number k is called the multiplicity of g at c and denoted mltc g.
(ii) For y ∈ S2, the number

deg(g) :=
∑

c∈g−1(y)

mltc g

does not depend on y and is called the degree of g.

Remark 4.12. Note that the above theorem implies in particular that the size of
a generic fiber of f is maximal (which can be also inferred easily from the openness
of f). In particular, since we know that f is not injective, we get that deg(f) > 1.

Question 4.13. By Stöılow’s theorem (see, e.g. [26]) if g is a ramified covering of
S2, say, there exists a unique complex structure on S, denoted S, such that

g : (S2,S) → (S2,Riemann sphere structure)

is a holomorphic function. Moreover, (S2,S) is biholomorphic to the Riemann
sphere. Can those two facts be used to shorten the proof of our main result?

Definition 4.14. We call a point y ∈ S2 a ramification point of g if |g−1(y)| <
deg(g).

By strong minimality we obtain immediately that the set of ramification points is
finite. We have a relation between non-injective points and ramification points.

Fact 4.15. y ∈ S2 is a ramification point of g if and only if there is c ∈ g−1(y),
which is a non-injective point of g.

Proof. By 4.11(ii), y is a ramification point of g if and only if there is c ∈ g−1(y)
such that mltc g > 1. Such c is clearly a non-injective point of g. �

We prove that non-injective points of non-injective functions exist.

Lemma 4.16. If deg g > 1, and g(∞) = ∞ then g has at least 2 ramification
points. Therefore, there is c ∈ C which is a non-injective point of g and not a pole.
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Proof. The proof is actually an application of the Hurwitz formula which is valid
in our context. However, we need a very weak form of it, so we show the easy
calculation.
Let d := deg(g), R be the set of ramification points of g, r := |R| and X :=
S2 \ g−1(R). Since f |X is d-to-1, we get E(X) = dE(S2 \R), where E is the Euler
characteristic. Therefore

d(2− r) = dE(S2 \R) = E(X) 6 2− r.

Since d > 1, d(2− r) 6 2− r implies r > 1.
By 4.15, we have 2 non-injective points of g on which g attains different values, so
one of these values is from C and since g(∞) = ∞ we get what we wanted. �

By the last lemma, we can add to all our assumptions about f that it has a non-
injective point at 0 and that f(0) = 0 (replacing f with f(x)− f(0), since we know
0 is not a pole).

4.2. Degree theory. We want to investigate the way multiplicities vary in con-
tinuous families, which we will do using the notion of topological degree. We start
with some notation. For a simple closed curve C, let C0 denote the interior of the
region bounded by C and C̄ := C ∪C0. For a continuous function h : B → C from
a bounded open subset of C and y ∈ C \ ∂B, let d(h,B, y) denote the topological
degree as in [5]. We need a lemma about the relation between the topological degree
and the degree we have defined earlier.

Lemma 4.17. Let B, y be as above and h : B → C be an R-definable ramified
covering. Then ∑

x∈h−1(y)

mltx(h) = ±d(h,B, y).

Proof. By Theorem 2.9(1) of [5], we have∑
x∈h−1(y)

i(h, x, y) = d(h,B, y),

where i(h, x, p) is the index of h with respect to x, p defined in 2.8 of [5].
Since d(h,B, y) is continuous with y and the smooth points of h are dense, it will

be enough to show the equality for y ∈ C such that h is C1 on h−1(y) and h′(xi) 6= 0
for all xi ∈ h−1(y). Since h is locally injective on a co-finite set, by 3.2 of [20] h′

has constant sign (whenever it is defined). Therefore i(h, x, y) has constant sign.
Because we restrict to those points where f ′ 6= 0 we get that i(h, x, y) = sgn(h′(y))
and mltx(h) = ±i(h, x, y), with the sign independent of y. Hence the desired
equality. �

In [20] o-minimality is used to prove that sgn(h′) is constant. It seems, however,
that o-minimality is not really needed for the present context, besides the fact that
C1-points are dense (see also the proof of Theorem IX(2.1) of [26]).

Remark 4.18. We know a posteriori that any Cf -definable function is orientation
preserving, so the topological degree and our degree do, in fact, agree (not only up
to sign). But we are unable to show it at this stage.
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Let G : Cn×S2 → S2 be a Cf -definable continuous family of continuous functions.
In the next two lemmas we gather some facts on the trajectories of non-injective
points in the family

(ga(x) := G(a, x))a∈Cn .

These results will be crucial in the next section. We note that both lemmas follow
immediately from the Argument Principle (applied to g′a) if g is holomorphic. It
is possible that they are still folklore even in this more general topological context,
but we could not find a reference, so we give the proofs instead.

The function g0 is either orientation preserving everywhere or orientation revers-
ing everywhere. If it is orientation preserving (resp. reversing) then for each a close
enough to 0, ga is orientation preserving (resp. orientation reversing). Since, in the
proofs below we are interested only in a close enough to 0, we can assume that all
our functions are orientations preserving and that we actually have the equality in
the statement of 4.17 (otherwise, we just use the negative topological degree, which
has all the properties we want as well).

In the next lemma we show that if 0 is a non-injective point of g0 then for every
a close enough 0, ga has a non-injective point near 0. In other words, we cannot
lose non-injective points by changing our functions within a continuous family of
continuous functions.

Lemma 4.19. Assume 0 ∈ N (g0) and 0 is not a pole. Then for each open U 3 0,
there is ε > 0 such that for each a ∈ Bε(0), ga has a non-injective point in U .

Proof. Set g := g0. We may assume g(0) = 0. By 4.11(i), we can find a simple
closed curve 0 ∈ C ⊂ U such that g(C) = D is a simple closed curve, g(C0) = D0

and g|C0 is homeomorphic to zn. Take a closed 2-ball (i.e. a set homeomorphic to
a closed disc) 0 ∈ B ⊂ D0 such that g|g−1(B)∩C̄ is still homeomorphic to zn. Take
ε > 0 such that for each |a| < ε we have

ga(D) ∩B = ∅.

Since the topological degree is invariant under homotopy, (see D4 from the Intro-
duction to [5]), we have (by 4.17) for each |a| < ε and for each p ∈ B

d(ga, C0, p) = n.

Because g|g−1(B)∩C is homeomorphic to zn we know that ∂g−1(B) ∩ C̄ is a simple
closed curve. In particular g|g−1(B)∩C is connected. Therefore, there is 0 < ε′ < ε

such that g−1
a (B)∩ C̄ is connected for all |a| < ε′. To simplify the notation we will

from now on identify ga with its restriction to C̄. Assume ga has no non-injective
points in C0 for some |a| < ε′. In particular, by 4.11(i), ga is a local homeomor-
phism on C0. Therefore g−1

a (B) = cl(g−1
a (B)0), and ∂g−1

a (B) is a 1-dimensional
set which by 4.11 is everywhere locally homeomorphic to an interval (since, by as-
sumption, there are no non-injective points of ga in C0).
Case 1 ∂g−1

a (B) is connected
Then, g−1

a (B) is homeomorphic to a closed disc and ga|g−1
a (B) can not be n-to-1,

therefore, by the definition of the topological degree, there are non-injective points.
Case 2 ∂g−1

a (B) is not connected.
Each connected components of ∂g−1

a (B) is not self intersecting, and therefore home-
omorphic to S1. Therefore g−1

a (B) is homeomorphic to a closed disc with finitely



20 A. HASSON AND P. KOWALSKI

many closed discs removed. Hence, the Euler characteristic of g−1
a (B) is not pos-

itive, so ga|g−1
a (B) is not n-to-1, and again N (ga) ∩ C0 6= ∅ (since d(ga, C0, p) = n

for every p ∈ g−1(B)).
In both cases we reach a contradiction. �

In the next lemma we investigate the behavior of the local degree, as we trace it
along the trajectories of non-injective points within our family G. Roughly, our
statement is that if this trajectory splits at some point into several trajectories
then the local degree must go down.

Lemma 4.20. Assume c ∈ N (g0), g0(c) 6= ∞ and for all open balls B 3 0, C 3 c
there exists a ∈ B such that |N (ga) ∩ C| > 1, then there exist a ∈ C and d ∈ N (ga)
arbitrarily close to 0 and c respectively, such that mltd(ga) < mlt0(g0).

Proof. Without loss c = 0. Take a simple closed curve C such that g0|C0 is topo-
logically equivalent to z 7→ zn. Take a smaller closed 2-ball D ⊂ C0 as above and
ε > 0 such that for each a ∈ Bε(0) and each x ∈ D

d(ga, C0, ga(x)) = n.

We may assume that ε was also chosen in such a way that for each a ∈ Bε(0) there
are s1, s2 ∈ D0 ∩ N (ga) and ga(s1) and ga(s2) belong to the same component of
C \ ga(C). By 4.17 and a remark before 4.19, we have:

n = d(ga, C, ga(si)) =
∑

x∈g−1
a (ga(si))∩D

mltx ga

for i = 1, 2. So, we are done if there is i ∈ {1, 2} and s0 6= si such that ga(s0) =
ga(si).
If not, we are in the situation of [26, VIII(5.21)] for E = D, pi = si, qi = ga(si).
Take any closed region B ⊂ ga(D) \ ga(C) bounded by a simple closed curve and
containing ga(s1) and ga(s2) (it can be done since ga(s1) and ga(s2) belong to
the same component of C \ ga(C)). By [26, VIII(5.21)], there exist components
B1 3 s1, B2 3 s2 of g−1

a (B) such that ga|Bi is topologically equivalent to z 7→ zni

and ga(Bi) = B. Clearly B1 6= B2, therefore n > n1 + n2, so n1 < n. �

5. smoothness

The main result of this section is a weak version of the Cauchy-Riemann theorem.
We show that if g is a Cf -definable function with the usual properties and g is not
locally injective at some C1 point c then g′(c) = 0. Rather surprisingly, proving
that such functions existed (namely, ones with smooth non-injective points) turned
out to be one of the hardest parts of the proof.

Lemma 5.1. Let g : S2 → S2 be a ramified covering and g(0) = 0. Then 0 ∈ N (g)
if and only if there are an open set U 3 0 and a natural number k > 1 such that
for some ε > 0,

g−1([−ε, ε]× {0}) ∩ U =
k⋃
i=1

Ci,

where Ci’s are distinct arcs (i.e. each Ci is homeomorphic to a closed interval)
such that for i 6= j, we have Ci ∩ Cj = {0} and 0 ∈ Int(Ci) for all i.
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Proof. For the right-to-left direction is enough to see that the above condition
implies that g is not a local homeomorphism at 0.
For the left-to-right direction, note that the complex mapping hk(z) := zk on B1(0)
has the corresponding property for any arc J with 0 ∈ int(J). By 4.11(i), there
exists U 3 0 and homeomorphisms h1 : U → B1(0), h2 : B1(0) → g(U) such that
g = h1 ◦ hk ◦ h2 on B1(0). Necessarily h1(0) = h2(0) = 0. The result follows, if we
take J := h−1

2 ([−ε, ε]× {0}). �

From the above lemma we get.

Proposition 5.2. Let g : S2 → S2 be a ramified covering, g(0) = 0 and 0 ∈ N (g).
Assume that g is C1 at 0 then g′(0) = 0.

The proof follows immediately from the more general statement:

Lemma 5.3. Let g : S2 → S2 be a ramified covering, g(0) = 0 and 0 ∈ N (g). For
all but finitely many a ∈ S1 if the partial derivative ∂g

∂α exists and is continuous at
0 then ∂g

∂α (0) = 0.

Proof. Let g2 be the second coordinate function of g (locally around 0). It is enough
to focus on g2. It will be enough to prove that for each ε > 0 for cofinitely many
directions α there is c ∈ Bε(0) where ∂g2

∂α (c) = 0.
Let U , C1, . . . , Ck be as provided by 5.1 so g2|Ci = 0. Fix a direction α such that
(possibly after shrinking U) ∂g2

∂α exists and is continuous on U . Let Lα ⊂ R2 be
the line through 0 given by α. By the mean value theorem it will be enough to find
d ∈ C such that

|(Lα + d) ∩ (
k⋃
i=1

Ci) ∩Bε(0)| > 1.

Take any parameterizations τi : [−1, 1] → Ci such that τ(0) = 0. By Fact 2.8(5)
for any i the limits

c+i := lim
t→0+

τ ′i(t), c−i := lim
t→0−

τ ′i(t)

exist. We are done if Lα meets C1 and C2 “both-sided transversally” at 0, i.e. if
α /∈ {c+1 , c

−
1 , c

+
2 , c

−
2 }, which is a finite set. �

In the last proof we used o-minimality in order to assure that the (one-sided)
tangents to the curves Ci existed at 0. We are not sure whether o-minimality can
be avoided:

Question 5.4. Is 5.2 true without the o-minimality assumption?

To apply the above proposition, we need to have a Cf -definable continuous function
with a non-injective point at which the function is C1. Toward this end we will use
the degree theory developed in the previous section.
We introduce some notation. For a function h : C→ C, we denote by S(h) the set
of all points z ∈ C such that h is not C1 at z. By definition, S(h) is closed. If h is
R-definable, then S(h) is also R-definable and (by 2.8(3)) dimS(h) 6 1.
We fix the continuous Cf -definable family of continuous functions

fa(x) := f(a+ x) + f(x).

If N (fa) 6⊆ S(fa) for some a ∈ C we are done. So we will now investigate the bad
case that N (fa) ⊆ S(fa) for all a. Note that S(fa) ⊆ S(f) ∪ (S(f)− a).
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Note that S(f) is relatively small (i.e. at most 1-dimensional). In the next lemma,
we show that we can replace S(f) with a finite set.

Lemma 5.5. If N (fa) ⊆ S(f) ∪ (S(f) − a) for all a ∈ C, then there is a finite
S ⊂ C such that for each a, we have N (fa) ⊆ S ∪ (S − a).

Proof. Let dn : C → S(f) be the (partial) R-definable function such that dn(a) is
the nth-smallest (in the lexicographical order) element ofN (fa)∩(S(f)∪(S(f)−a)),
if it exists.
Claim: For all n such that dim(dom(dn)) = 2 there is a finite Sn ⊆ S such that
dim(d−1

n (S \ Sn)) 6 1.

Proof of Claim. Assume not. Since the set of ramification points of fa is uniformly
Cf -definable, by strong minimality (2.9(3)) we obtain

N := max{|fa(N (fa))| | a ∈ C} <∞.

Since dimS(f) < 2 and dim(dom(dn)) = 2, there are infinitely many x ∈ S(f) such
that d−1

n (x) is infinite. For any such x, the set

Rx := {a ∈ C | fa(x) is a ramification point of fa}

is infinite and Cf -definable, hence cofinite.
Let

D := max{deg(fa) | a ∈ C}
and take DN + 1 distinct xi such that d−1

n (xi) is infinite. Then for any

a ∈ Rx1 ∩ . . . ∩RxDN+1 ,

we get that fa has at least N + 1 ramification points, which contradicts the choice
of N . �

Note that |N (fa)| is uniformly bounded by N in the proof of the Claim and
the uniform bound for deg(fa). Therefore, there is n ∈ N, the least such that
dim(dom(dn)) < 2. Let

X := C \
⋃
i<n

(d−1
i (S \ Si)), S :=

⋃
i<n

Si.

So dim(X) 6 1 and S is finite. For each a ∈ C \X, we have N (fa) ⊆ S ∪ (S − a).
It remains to show that it still holds for a ∈ X. Assume there is c ∈ N (fa) such
that c /∈ S ∪ (S − a). Therefore, there is an open U 3 c and ε > 0 such that for
each a′ ∈ Bε(a), we have

U ∩ (S ∪ (S − a′)) = ∅.
By 4.19, there is ε′ < ε such that for each a′ ∈ Bε′(a), there is a non-injective point
of fa′ in U . But then N (fa′) * S ∩ (S − a′), which is a contradiction, since Bε′(a)
is 2-dimensional. �

Theorem 5.6. There is a Cf -definable function g : C → C such that 0 is a non-
injective point of g and g is C1 at 0.

Proof. We may assume that for all a ∈ C we have N (fa) ⊆ S(fa). Since S(fa) ⊆
S(f) ∪ (S(f)− a), we get by 5.5 a finite S such that N(fa) ⊆ S ∪ (S − a) for each
a ∈ C. By 4.16, N (f) ∩C 6= ∅ so without loss (after replacing f with f(x− a)) we
have 0 ∈ N (f) ⊆ S.
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Take a disc D with boundary C around 0 such that D∩S = {0}. Since f0 = 2f , so
0 ∈ N (f0), we get by 4.19 that there is ε > 0 such that for all a ∈ Bε(0) we have:

N (fa) ∩D 6= ∅ and D ∩ (S − a) = {−a}.
We need the following
Claim: There is a ∈ Bε(0) such that |N(fa) ∩D| > 1.

Proof. N (fa) ∩D ⊆ {0,−a} for each a ∈ Bε(0). Let

X := {a ∈ Bε(0) \ {0} | 0 ∈ N (fa)}.
By 4.19, X is an open subset of Bε(0) \ {0}.
The same applies to

Y := {a ∈ Bε(0) \ {0} | − a ∈ N (fa)}.
By 4.19, Bε(0) \ {0} = X ∪ Y .
Since fa = f−a ◦ La, where La(x) = a+ x, we get

N (fa) = L−1
a (N (f−a)) = N (f−a) + a.

Therefore X = −Y , so they are both non-empty. Since Bε(0) \ {0} is connected,
X ∩ Y 6= ∅. �

By 4.20, there is a ∈ C such that

min{mltfa
(x) | x ∈ N (fa)} < min{mltf (x) | x ∈ N (f)}.

Since this minimum can not go down for ever, at some stage we get a function with
the required property. �

Replacing f , if needed, we will from now on assume that f (aside from all the usual
properties) is C1 at 0 and 0 ∈ N (f). We will also assume that f(0) = 0. For c ∈ C
let fc(x) := f(x+ c) and for a := (a1, . . . , an), n ≥ 2 denote

fa := fan−1 ◦ . . . ◦ fa1 ◦ f − fan
.

For example, if n = 2 we get fa(x) = f(f(x) + a1)− f(x+ a2).
With this notation, an immediate but important application of the last theorem is:

Corollary 5.7. There is a ball B ⊆ Cn with 0 ∈ B such that fa has a C1 non-
injective point for all a ∈ B. Moreover, for each a if c ∈ N (fa) then

(∗) f ′an
(c) = f ′an−1

(fan−2 ◦ . . . ◦ fa1(f(c))) · . . . · f ′a1
(f(c)) · f ′(c).

Proof. The existence of such B is immediate from 4.19 and the last theorem. The
equality (∗) follows immediately from 5.2 using the Chain Rule. �

We denote

R(a; c) ⇐⇒ fa(c) is a ramification point of fa,

R′(a; c) ⇐⇒ R(a; c) ∧ f ′a(c) = 0.

Note that R is Cf -definable and R′ is R-definable. We claim that:

Lemma 5.8. Let

E := {(y, f(y) + a1, . . . , fan−2 ◦ . . . ◦ fa1(f(y)) + an−1) | (∃an ∈ C)R′(a; y)}.
Then dim(E) = 2n.
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Proof. Let B be as provided by Corollary 5.7 and a1, . . . , an−1 ∈ C be such that
for

a<n := (a1, . . . , an−1)

we have dim(a<n) = 2(n− 1) and a<n is in the projection of B. Let

R′a<n
:= {y ∈ C | (∃x ∈ C)R′(a<n, x; y)}.

Claim: dim(R′a<n
) = 2.

Proof of Claim. Let U := {x ∈ C : (a<n, x) ∈ B}. Then U is open and there is an
o-minimally definable function c : U → C such that for each x ∈ U , R′(a<n, x; c(x)).
It is enough to show that dim(c(U)) = 2. Assume not.
Case 1: dim(c(U)) = 0
Then, there is y0 ∈ C such that dim(c−1(y0)) = 2, hence there is an open U ⊆ C
such that U ⊆ c−1(y0). Therefore, for each an ∈ U , (∗) from 5.7 holds for a<n, an, y0
(with a<n, y0 fixed). But the right hand side of (∗) does not depend on an, implying
that f ′ is constant on an open set, which contradicts 2.16.
Case 2: dim(c(U)) = 1
Then, there is an infinite set Y ⊆ c(B) such that for each y ∈ Y , c−1(y) is infinite.
Since R′ ⊆ R, we get that for each y ∈ Y the set

Ry := {x ∈ C | R(a<n, x, y)}

is cofinite. Let

Rx := {y ∈ C | R(a<n, x, y)}, n := max{|Rx| | x ∈ C}.

If we take y1, . . . yn+1 ∈ Y , then for any x ∈ Ry1 ∩ . . . ∩ Ryn+1 , we have |Rx| > n,
a contradiction. �

By the claim, there are an, c ∈ C such that dim(c/a<n) = 2 and R(a<n, an; c), so

(c, f(c) + a1, . . . , fan−2 ◦ . . . ◦ fa1(f(c)) + an−1) ∈ E.

Since clearly,

dim(f(c) + a1, . . . , fan−2 ◦ . . . ◦ fa1(f(c)) + an−1/c) = dim(a<n/c) = 2n− 2,

we get that

dim(c, f(c) + a1, . . . , fan−2 ◦ . . . ◦ fa1(f(c)) + an−1) = 2n,

which is exactly what we want. �

It follows that for some Cf -definable functions g : C → C the set g′(C) ⊂ M2(R)
has at least some of the flavor of a group:

Corollary 5.9. Suppose g is a Cf -definable function and V ⊆ C is open such that
g is C1 on V and there is v ∈ V such that g is non-injective at v. Then for any
n > 1, there are open U1, . . . , Un ⊆ V such that for i 6 n, g′(Ui) ⊆ GL2(R) and

dim(g′(U1) · . . . · g′(Un)) 6 2.

Proof. Let E be as a in the previous lemma, V the set of C1 points of g, which
is open. Since dim(E) = 2n (by 5.8) and dim(C \ V ) = 1, we can assume that
E ⊆ V n. By 2.8(5), there are open Ui ⊆ C such that U1×· · ·×Un ⊆ E. The result
follows from the definition of E, the moreover part of 5.7 and 2.12. �
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6. analiticity

The aim of this section is to prove the converse of Proposition 5.2, namely that if
f ′(c) = 0 then f is not a local homeomorphism at c. We will do it by proving that
f is analytic on some open set. The proof will go as follows. As a first step we show
that from 5.9 we obtain a local Lie group X ⊂ GL2(R) and an open set U ⊆ C such
that f ′(U) ⊆ XM for some M ∈ GL2(R). We then use local Lie group theory to
prove that there exists a Lie subgroup H < GL2(R) such that H ∩X is a relatively
open subset of X. Then, we use the classification of maximal solvable Lie subgroups
of GL2(R) to show that H = GL1(C) (naturally embedded into GL2(R)). Then
we use 5.9 again to show that we can take M = I and therefore f is holomorphic
on U .

We will try to keep the following notational conventions: U, V,W will denote
(usually open) subsets of C, a, b, c elements of C, A,B,C,D subsets of GL2(R),
H,G Lie subgroups of GL2(R), X,Y local Lie subgroups of GL2(R) and M,N
elements of GL2(R) (with the exception of the more general 6.1 below).
In this section we omit the group multiplication symbol.

Lemma 6.1. Let B,C,D be k−dimensional, R-definable subsets of an R-definable
group G with dim(G) > k. Assume that dim(BCD) = k. Then there is a definable
relatively open A ⊆ B such that

dim(AA−1AA−1) = k.

Proof. Choose b0 ∈ B, c0 ∈ C, d0 ∈ D independent generics, and set z0 = b0c0d0.
Since z0 is interdefinable with d0 over {b0, c0} we get that dim(z0) = k, i.e. it is
generic in BCD. By the definability of dimension and the genericity of b0, c0 there
are B0 3 b0, C0 3 c0 relatively open such that for all b ∈ B0 and c ∈ C0 there is
some d ∈ D such that z0 = bcd. It follows that

C−1
0 B−1

0 z0 ⊆ D

B0C0C
−1
0 B−1

0 z0 ⊆ BCC−1
0 B−1

0 z0 ⊆ BCDz0

dim(B0C0C
−1
0 D−1

0 ) = k.

Since dim(B0C0) = k, we get in exactly the same way that for a relatively open
B00 ⊆ B0 and some z00 ∈ B0C0, we have B−1

00 z00 ⊆ C0, and therefore z−1
00 B00 ⊆

C−1
0 . It follows that

B00B
−1
00 z00z

−1
00 B00B

−1
00 ⊆ B00C0C

−1
0 B−1

00 .

Therefore, dim(B00B
−1
00 B00B

−1
00 ) = k and A := B00 works. �

It may be worth mentioning that in the stable case (and in particular in the strongly
minimal case) the analogue with just 2 subsets of G would have already produced
a definable group. It is unclear to us if the same holds in the o-minimal case.

Question 6.2. Can we take just 2 sets B,C in the statement of the above lemma?

It is also unclear to us whether the o-minimality assumption on top of the fact that
G is a Lie group (which is the case in practice) is needed at all.

Question 6.3. Is 6.1 true if we replace “definable” by “submanifold” (so, no o-
minimal theory around)?



26 A. HASSON AND P. KOWALSKI

Proposition 6.4. Let X ⊂ GL2(R) be local Lie subgroup, i.e. a submanifold
such that X = X−1, XX is a submanifold and dim(XX) = dim(X). Assume
dim(X) 6 2. Then, there is a Lie subgroup H < GL2(R) such that H ∩X is open
in X. Moreover, H is a conjugate of either the upper-triangular group or GL1(C).

Proof. It is easy to see that h := T1(X) is a Lie subalgebra of gl2(R). Since
dim(h) = 2, h is solvable. Hence h is contained in g, a maximal solvable subalgebra
of gl2(R).
We want to show that g is conjugated to GL1(C) or the algebra of upper-triangular
matrices. This should be well-known but we could not find a direct reference, so we
present a quick argument. All elementary facts on Lie algebras we use here can be
found in [15]. Since gl2(R) splits into the product of its center and sl2(R), we can
assume that g is a Lie subalgebra of sl2(R). If dim(g) = 1, then g is commutative,
so it must be a Cartan subalgebra of sl2(R). Therefore, h is conjugated to so2(R)
(which is contained in gl1(C)) or to the subalgebra of diagonal matrices. But
the latter is not maximal among solvable subalgebras of sl2(R). If dim(g) = 2,
then (by e.g. the Lie Theorem) g contains a semi-simple element M . If M is not
diagonalizable over R, then the R-span of M is conjugated to so2(R). But so2(R)
is maximal in sl2(R) even as a Lie subalgebra (by a direct computation or e.g.
exercise 1 on p.265 of [15]), a contradiction. Hence, M is diagonalizable over R, so
we may assume it is diagonal. It is easy to see that if N ∈ sl2(R) is not triangular,
then the Lie algebra generated by M and N is the entire sl2(R), so g consists of
triangular matrices. Taking one more conjugation (if needed), we make sure that
these matrices are upper-triangular.
We have obtained that g is a Lie algebra of a Lie subgroup H < GL2(R) and H is
conjugated to either the upper-triangular group or to GL1(C).
To finish, it is enough to notice that for local Lie subgroups X,Y , we have T1(X) ⊆
T1(Y ) if and only if X ∩ Y is open in X (see Theorem 74 on page 258 of [23]). �

Remark 6.5. This is the place in the proof of the main theorem where we find the
matrix A (as in the statement of 1.2) – it will be the conjugating matrix appearing
in the moreover part of the above Proposition. This will be made clearer in the last
three statements in this section and Remark 7.5.

Proposition 6.6. There are M,M ′ ∈ GL2(R) and an open U ⊆ C such that
M ◦ f ◦M ′ is holomorphic on U . Moreover, we may assume that M ′ = I.

Proof. Take n = 9 in 5.9 to obtain open sets U1, . . . U9 such that f is C1 and regular
on U1 ∪ · · · ∪ U9 and

dim(f ′(U1) . . . f ′(U9)) 6 2.
We want to be under the assumptions of 6.1. By 2.16, dim(f ′(Ui)) > 1 for each
i 6 9. If there is i 6 7 such that

dim f ′(Ui) = dim f ′(Ui+1) = dim f ′(Ui+2) = dim f ′(Ui)f ′(Ui+1)f ′(Ui+2)

we take B = f ′(Ui), C = f ′(Ui+1), D = f ′(Ui+2).
If there is no such i, we get in particular

dim f ′(U1)f ′(U2)f ′(U3) = dim f ′(U4)f ′(U5)f ′(U6) = dim f ′(U7)f ′(U8)f ′(U9) = 2.

Then we take

B = f ′(U1)f ′(U2)f ′(U3), C = f ′(U4)f ′(U5)f ′(U6), D = f ′(U7)f ′(U8)f ′(U9).
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By 6.1, there is a relatively open A ⊆ B such that X := AA−1 satisfies the assump-
tions of 6.4. Take H < GL2(R) as given by 6.4. By shrinking A we may assume
that X ⊆ H. For any a ∈ A, Aa−1 ⊆ H, therefore A ⊆ Ha.
By our choice of A, there is i 6 7 and b ∈ GL2(R) such that A∩ f ′(Ui)b is open in
f ′(Ui)b, so A′ := Ab−1 is open in f ′(Ui).
Since f is C1 on Ui, f ′|Ui

: Ui → GL2(R) is continuous, therefore U := (f ′|Ui
)−1(A′)

is open in C.
By our choices we obtain

f ′(U) ⊆ Ab−1 ⊆ Hab−1.

We want to show now that H is a conjugate of GL1(C). By 6.4 and since real con-
jugation is an isomorphism of Cf , it is enough to show that f ′(B) is not contained
in a single coset of the upper-triangular group. However, this follows immediately
from Corollary 2.17 since if B were contained in a coset of the upper triangular
matrices, it would imply that some partial derivative of f is constant on B.
The moreover part follows, since again we can replace f with its conjugate. �

Strangely enough, despite our good understanding of f we were not, until this stage,
able to show that f ′ does not have infinite fibers, which is the reason we had to use
n = 9 (rather that n = 3) in the proof of the last proposition.

Our next step is to show that in fact f is holomorphic (up to conjugation) on an
open set, i.e. that M = I (for M as in the statement of the last proposition). First,
we note that as an immediate application of the last result we do get the desired
control on the dimension of f ′(B).

Lemma 6.7. There is an open W ⊆ U such that f ′(W ) is an open subset of
M GL1(C) (U,M are from 6.6).

Proof. By 6.6, M−1 ◦ f is holomorphic on U . In particular dim(M−1 · f ′(U)) = 2,
since (M−1 ◦ f)′ is again holomorphic, hence open.
Therefore,

B := intM GL1(C)(f ′(B)) 6= ∅.
Take W := (f ′|U )−1(B) (it is open, since f is C1 on U). �

Proposition 6.8. f is holomorphic on an open V ⊆ C.

Proof. Take W from 6.7. We may assume that 0 ∈W . By 6.7, f ′(W )− f ′(0) is an
open subset of MM1(C) for some M ∈ GL2(R) (we work in M2(R) now).
Take 0 6= A ∈ f ′(W ) − f ′(0) such that −A ∈ f ′(W ) − f ′(0). Take a, b ∈ W such
that

f ′(a)− f ′(0) = A, f ′(b)− f ′(0) = −A.
Then we have

f ′(a) + f ′(b)− 2f ′(0) = 0.
Consider the Cf -definable function

g(x) := f(a+ x) + f(b+ x)− 2f(x).

Then g′(0) = 0 and there is an open V ⊆ W such that 0 ∈ V , g is C1 on V and
g′(V ) ⊆ MM1(C). Therefore, M−1g is holomorphic on V and (M−1g)′(0) = 0.
Thus 0 is a non-injective point of M−1g, hence 0 is also a non-injective point of g.
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Therefore g satisfies the assumptions of Corollary 5.9 whence there are U1, U2 ⊆ V
open such that

dim(g′(U1) · g′(U2)) ≤ 2.
By the argument as in 6.7, we have

dim(g′(U1)) = dim(g′(U2)) = 2.

Since the set of critical points of g|V can not be 2-dimensional, we can assume that

g′(U1), g′(U2) ⊆M GL1(C).

Therefore, it is enough to show:
Claim: For any open B1, B2 ⊆ GL1(C) if dim(MB1MB2) = 2 then M ∈ GL1(C).

Proof of Claim. For h ∈M2, let Xh := MB1Mh. Since

MB1MB2 =
⋃
h∈B2

Xh,

there is h ∈ B1 such that

dim({h′ ∈ B2 | Xh ∩Xh′ 6= ∅}) = 2.

Then for any such h′ we have

MB1Mh ∩MB1Mh′ 6= ∅
B1Mh ∩B1Mh′ 6= ∅

GL1(C)Mh = GL1(C)Mh′

Mh′h−1M−1 ∈ GL1(C).
Hence the group

H := {h′′ ∈ GL1(C) | Mh′′M−1 ∈ GL1(C)}
contains an open set, so (since GL1(C) is connected) H = GL1(C) and M GL1(C) =
GL1(C)M .
Since GL1(C) is self-normalizing in GL2(R), we get M ∈ GL1(C). �

7. rationality

In this section we finish the proof of our main result. For the first time in this
paper we will have to use some non-trivial model theoretic results. To obtain an
infinite field interpretable in Cf we will use a variant of the Hrushovski-Weil group
configuration theorem. We will then have to use known results of Hrushovski’s
to show that in fact the field is definable in Cf in order to conclude that it is o-
minimally definably isomorphic to C. To conclude that f is rational with respect
to this field structure we will have to use the purity of the field, as proved in [19].
The following will be the key to our argument:

Definition 7.1. Let M be a strongly minimal structure. A field configuration is
a collection of tuples such that RM(g1, g2, g3, b1, b2, b3) = 5 and:

• RM(gi) = 2 and RM(bi) = 1 for all 1 ≤ i ≤ 3.
• The gi are pairwise independent but g3 ∈ acl(g1, g2).
• RM(g1, b1, b2) = RM(g2, b2, b3) = RM(g3, b1, b3) = 3.
• There are no other dependencies.

For a proof of the theorem below see 4.5 on page 206 of [21] and 3.27(2) of [22].
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Theorem 7.2 (Hrushovski). If M is strongly minimal and admits a field configu-
ration then there is a strongly minimal field interpretable in M.

Note that if K is an algebraically closed field then a field configuration can be
easily constructed using the action of Gm(K) n Ga(K) on Ga(K). More precisely,
take gj := (αij , α

i
j) for independent generic elements of K for i, j ∈ {1, 2}. Thinking

of gj as the affine transformation x 7→ α1
jx + α2

j we let g3 = g2 ◦ g1. Take b1 ∈ K
any generic element independent over g1, g2 and let b2 = g1(b1) and b3 = g3(b1). It
is easy to check that this gives us a field configuration in the structure K.

We will now use the analyticity of f on an open set together with the field
configuration theorem to show:

Theorem 7.3. There is a Cf -interpretable strongly minimal field.

Proof. Our aim is to construct a field configuration. Take V from 6.8. Without
loss of generality, 0 ∈ V and let M := f ′(0).
We will find a field configuration of Gm(C) n Ga(C) acting on Ga(C) within f ′(V )
and use it to construct a similar field configuration in Cf .
Take a1, a2 ∈ C R-independent generics very close to 1 ∈ C and b1, b2, b R-
independent generics over a1, a2 in a small ball around 0 ∈ C. Let

g := (a1, b1), h := (a2, b2) ∈ Gm(C) n Ga(C)

(note that g, h are very close to the identity of Gm(C) n Ga(C)).
We get the afore mentioned group configuration

X := (g, h, hg, b, g · b, hg · b)

where · denotes the action of Gm(C) n Ga(C) on Ga(C). Denoting, for (a, b) ∈
Gm(C) n Ga(C),

M(a, b) = (M · a,M + b),
(where on the right-hand side a, b ∈ GL1(C) ↪→ GL2(R)) we get that

M(a, b) ∈ f ′(V )

for all a close enough to 1 and b close enough to 0. Therefore, we get a group
configuration MX ⊂ f ′(V ).
We aim to show that for any six-tuple Y ⊂ V such that f ′(Y) = MX , Y is a group
configuration in Cf .
Since R-independence is stronger than Cf -independence, we need to check only the
algebraicity conditions. They come from either a group operation in Gm(C)nGa(C)
or a group action of Gm(C) nGa(C) on Ga(C).
We consider only the latter case, so we take g, b, g · b ∈ X . We have

g = (a1, b1), g · b = a1b+ b1

Mg = (Ma1,M + b1), Mb = M + b, M(g · b) = M + a1b+ b1.

Take α, β, γ, δ ∈ V such that

(f ′(α), f ′(β)) = Mg, f ′(γ) = Mb, f ′(δ) = M(g · b).

We want to show δ ∈ acl(α, β, γ).

f ′(δ) = M + a1b+ b1 = M +M−1f ′(α)(f ′(γ)−M) + f ′(β)−M

= M−1f ′(α)f ′(γ)−M−1f ′(α)M + f ′(β).
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Since we have set M = f ′(0) and M ∈ GL1(C), M commutes with f ′(α) (this is
one of the reasons we needed f to be analytic on V and not only a translate of one)
and we get

f ′(0)f ′(δ) = f ′(α)f ′(γ)− f ′(0)f ′(α) + f ′(0)f ′(β).

For each µ, ν ∈ C there is a Cf -definable function fµ,ν which is holomorphic in a
neighborhood of 0 such that

fµ,ν(0) = 0, f ′µ,ν(0) = f ′(µ)f ′(ν).

Consider the function

gy := fα,γ − fα,0 + fβ,0 − fy,0.

We will show that gδ is not a generic function in the strongly minimal family
{gy : y ∈ C}. Since this family is defined over (α, β, γ) this will prove that indeed
δ ∈ acl(α, β, γ).
It will be enough to find infinitely many y such that |g−1

y (0)| > |g−1
δ (0)|. Since

gδ is holomorphic (which is another reason we needed f to be analytic on V ) in a
neighborhood of 0, and g′δ(0) = 0, we get that gδ has a multiple 0 at 0.
Let {a1, . . . , ak} = g−1

δ (0) and without loss of generality assume that a1 = 0. Let
Vi 3 ai be pairwise disjoint open sets. Choose δ′ close enough to δ such that
g′δ′(0) 6= 0. Therefore gδ′ has a single zero at 0. We use the Argument Principle to
find c ∈ V1 \ {0} such that gδ′(c) = 0.
It remains to check that for δ′ close enough to δ, |g−1

δ′ (0)∩ Vi| > 0 for all i > 1. By
4.17, d(0, gδ, Vi) 6= 0. By Axiom (D4) of the degree theory from the introduction
to [5], d(0, gδ′ , Vi) 6= 0 for δ′ close enough to δ. By 4.17 again, |g−1

δ′ (0) ∩ Vi| > 0.
By Theorem 7.2, a strongly minimal field is interpretable in Cf . �

It remains to prove:

Theorem 7.4. There is A ∈ GL2(R) such that CA◦f◦A−1 is interdefinable with the
field of complex numbers.

Proof. We will need a little more model theory for this proof. Let K be the strongly
minimal field interpretable in Cf by the previous theorem. Note that in particu-
lar dim(K) = 2. By [22, 2.27], (C,+) is K-internal, i.e. there exists a partial
Cf -definable surjective map g : Kn → (C,+). Therefore the structure (C,+) is
interpretable in the structure KCf

whose universe is K and the definable sets are
those which are Cf -definable.

By Theorem 1.1. of [16] (and dim(K) = 2), there is an R-definable isomorphism
of fields Φ : K → C. Then Φ(KCf

) is anR-interpretable, strongly minimal structure
and the complex field is definable in Φ(KCf

). By Theorem 1.3 of [19], the structure
Φ(KCf

) coincides with the complex field. Therefore, KCf
= K (as structures).

Hence (C,+) is interpretable in K. By [22, 3.1], [22, 4.13] and Remark 3. on
p. 69 of [22], (C,+) is Cf -definably isomorphic to a K-algebraic group. Since
dimC = dimK = 2 we get that also dimK(C,+) = 1. Since (C,+) has no torsion,
it is Cf -definably isomorphic to Ga(K).
Using the above isomorphism we can find a Cf -definable ? : C2 → C such that
(C,+, ?) is a field.
Claim: There is A ∈ GL2(R) such that

A : (C,+, ·) ∼= (C,+, ?).
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Proof. Let 1? be the neutral element for ? and for any a ∈ C let us denote a? := a·1?.
For any a ∈ C, we have

a? ? 2? = a? ? (2 · 1?) = a? ? (1? + 1?) = a? + a? = 2 · a? = 2 · a · 1? = (a · 2)?.

We can replace 2 above with any rational number to obtain

∀a ∈ C, b ∈ Q a? ? b? = (a · b)? .
Fix a ∈ C and consider 2 additive, Cf -definable functions

φa(x) := a? ? b?, ψa(x) := (a · b)?.
By 4.6, φa and ψa are continuous on a cofinite set. But any additive function g
continuous on a cofinite set is continuous everywhere – for c ∈ C and cn → c take
N such that g is continuous at Nc, then Ncn → Nc and f(Ncn) → f(Nc), so
f(cn) → f(c).
Therefore φa, ψa are continuous and they coincide on Q, so they coincide on R.
Take i? ∈ C such that i? ? i? = −1?. By an argument as above, we get that for all
r ∈ R, we have r · i? = r? ? i

?.
Let the first column of A consists of the real and imaginary part of 1? and the
second column of A consists of real and imaginary part of i?. Take any 2 complex
numbers a = x+ iy, b = w + iv. We have

A(a · b) = A(xw − vy + i(xv + yw)) = (xw − vy)? + (xv + yw) · i?

= (xw − vy)? + (xv + yw)? ? i? = x? ? w? − v? ? y? + (x? ? v? − y? ? w?)? ? i?

= (x? + i? ? y?) ? (w? + i? ? v?) = (x? + y · i?) ? (w? + v · i?) = Aa ? Ab.

�

By the claim the complex field is definable in CAfA−1 . By [19, 1.3], AfA−1 is
also definable in the complex field. Therefore, CAfA−1 is interdefinable with the
complex field. �

Remark 7.5. (1) Note that in the end of the proof of 7.4, we get that AfA−1

is C-rational, hence there is an open set U ⊆ C on which both f and AfA−1

are holomorphic. As in the proof of 6.8 this implies that A is multiplication
by a non-zero a ∈ C. Since af(a−1z) is rational, f is also rational and we
can take A = I in the statement of 7.4. Therefore 6.4 is the only place of
the proof where conjugation by a real matrix takes place. Hence A from
the statement of 1.2 is indeed as was mentioned in 6.5.

(2) In particular we have shown the following statement:
Let f : C → C be R-definable such that Cf is strongly minimal and not
locally modular. Assume f is holomorphic on an open set. Then f is an
almost C-rational function and Cf is interdefinable with the complex field.

(3) Note, however, that we still needed the Claim in the proof of 7.4, since
[16, 1.1] gives only a certain R-definable isomorphism between (C,+, ·)
and (C,+, ?) and we want this isomorphism to be R-linear. It is also easy
to find ? 6= · such that (C,+, ?) is isomorphic to the complex field by a
C-linear map (it must be of the form x ? y = axy for a fixed a ∈ C \ {0}).

Let us forget now all the changes we have done to f and just take it as it was in
the statement of 1.2. We easily obtain:

Corollary 7.6. f is a conjugate of a complex constructible function.
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Note that this is the best possible description of f , since any such a function yields
a strongly minimal structure Cf .

8. o-minimality

This section is dedicated to generalizing our main result to any o-minimal (real
closed) field. More precisely, assume R is an ω-saturated o-minimal expansion of a
real closed field R. Let K = R[i] be the algebraic closure of R and f : K → K an
R-definable function such that Kf := (K,+, f) is strongly minimal and not locally
modular. Theorem 1.2 generalizes naturally to:

Theorem 8.1. Kf is biinterpretable with the field K.

Before we give the details of the proof, we would like to mention that many
classical geometrical and topological theorems translate naturally into our present
context. Theorems such as the Mean Value Theorem, the Implicit Function The-
orem (together with its relatives, the Open Mapping Theorem and the Inverse
Function Theorem) as well as deeper theorems from differential geometry can be
proved in the o-minimal context by investigating classical proofs and replacing the
geometrical notions involved with their definable counterparts.

We do the exact same thing here. There is one significant difference (referred
to in the introduction) with the classical case. Working over R, the o-minimality
assumption simplifies the proofs, but it is unclear to what extent it is actually
needed. In the more general context considered here it gives the natural working
grounds, since the pure topology on R may be totally disconnected and the usual
topological notions will not be meaningful anymore. For example, in the totally
disconnected case the topological dimension of every set in R is 0, contrary to the
classical case where it coincides with the o-minimal one. Hence, the o-minimal
dimension is the meaningful one in this context, and because it only applies to
definable sets, the natural framework is that of R-definable sets and functions.

Since the methods of translating proofs are pretty standard by now, and our
original proofs were written with the abstract real closed field context in mind, we
just sketch how the translation can be done section by section, focusing on two
places where it may not straightforward.

Section 2 was written in the general context and since we assume R to be ω-
saturated needs no modifications. The same applies to Section 3, having in mind
the theory of smooth o-minimal manifolds as developed, e.g., by Berarducci and
Otero in [1].

We focus a bit more on Section 4. The fact that f is open (Lemma 4.3) goes
through by the o-minimal version of the Invariance of Domain Theorem (see [11])
and gives the finiteness of the number of poles of f as in Lemma 4.4. The (definable)
connectedness of the set of possible limits of f at a point (Lemma 4.5) also goes
through – replace sequences and their limits with definable curves and their limits.
The proof of the continuity and properness of f need no modification.

We postpone the discussion of the transfer of crucial facts from topological anal-
ysis from [26] (notably Theorem 4.11) to the Appendix. Other parts of Section 4.1
go through. For the degree theory we use Peterzil and Starchenko’s development of
the theory in the o-minimal setting ([19] and [20]). This allows for a smooth adap-
tation of the topological Lemmas in subsection 4.2 to the present setting. Section
5 is done purely in the definable realm so needs no adaptation.
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We focus now on Section 6. The corresponding Lie algebra theory for definable
groups was developed by Peterzil, Pillay and Starchenko in [17] and [18]. The alge-
braic facts on Lie algebras we needed (classification of maximal solvable subalgebras
of gl2(R)) hold for any real closed field and the proofs from [17] work in the local
case to give an analogue of Theorem 74 of [23]. The rest of Section 6 and the entire
Section 7 go through, using the theory of K-holomorphic functions as developed in
[19].

We conclude this section by showing that some care is needed when translating
proofs from the classical case to the o-minimal one. The key result in Section 6
is the proof in Proposition 6.4 of a correspondence between local Lie subgroups
of GL2(R) and solvable Lie subgroups of GL2(R). Our original proof of 6.4 went
along the following path – a local subgroup X produces a Lie subalgebra h. ¿From
h we can only get a virtual Lie subgroup of GL2(R), namely a smooth injective
map φ : H → GL2(R), which allows for a simple conclusion of the argument.

However, this map need not be definable in any o-minimal expansion of R as the
following example shows.

Example 8.2. Let α ∈ R \Q, T = S1 × S1 and h := (1, α)R be a Lie subalgebra
of Lie(T ). Then h corresponds to a virtual Lie subgroup φ : R → T and φ(R) is
dense in T . In particular, φ(R) is not definable in any o-minimal expansion of R.

Taking a piece of φ(R) which is a local Lie subgroup of T definable in an o-
minimal theory, we get a definable local subgroup not corresponding to any global
definable subgroup (in the definable category, the notion of definable subgroup and
virtual definable subgroup clearly coincide).

So, in o-minimal theories there is no chance for a full Lie correspondence

Lie subalgebras of Lie(G) ↔ Virtual Lie subgroups of G.

As was pointed out by Kobi Peterzil, there is no Lie correspondence even on the
level of local subgroups in the real field, since one can not define there even locally
subgroups of Gm(R)2 which are graphs of non-rational power function. However,
there is a natural o-minimal expansion of R (by analytic functions) for which we
have the full local correspondence. Hence, we find it natural to ask the following
question:

Question 8.3. Assume R is an o-minimal expansion of a real closed field. Is there
an o-minimal expansion R′ ⊇ R such that we have the correspondence

Lie subalgebras of gln(R) ↔ R′-definable local subgroups of GLn(R) ?

9. appendix

We give a short overview of the results in topological analysis used in the paper,
setting them in the o-minimal context. Since the classical proofs (taken from [26])
are given in a purely topological setting their adaptation to the o-minimal case is
rather straightforward. For the sake of completeness, and in view of its importance
to our analysis we give a proof of Theorem 4.11. Other results taken from [26]
and used in the text transfer to the o-minimal context as easily. We will use the
o-minimal version of the Jordan plane curve theorem (see [27]) without reference.
All references to [26] are to Chapter VIII unless stated otherwise. We keep the
notation and assumptions from the previous section.
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The proof of the following can be found in Whyburn (4.2) and needs no adapta-
tion to the general context:

Lemma 9.1. Any definable open mapping of one simple definable closed curve onto
another is definably homeomorphic to the mapping z 7→ zk for |z| = 1 and some
k ≥ 1.

Definition 9.2. A definable mapping satisfying the conclusion of the previous
lemma will be said to be of degree k.

The following should be standard (though possibly out of style):

Definition 9.3. A set T homeomorphic to a straight line interval is called a simple
arc. If a1, . . . , ak are any (distinct) points in Rn we sometimes denote by a1a2 . . . ak
an arbitrary simple arc T through a1, . . . , ak such that if φ : [c, d] → T is a home-
omorphism witnessing it then φ−1(a1) = c, φ−1(ak) = d and φ−1(ai) < φ−1(ai+1)
for 1 ≤ i < k.

The second Lemma we will need is:

Lemma 9.4. Let A,B be definably homeomorphic to a definable closed disc, g(A) =
B a definable finite-to-one open mapping. Let C = ∂A and J = ∂B, and assume
that g(Ao) = Bo, g(C) = J and g � C is of degree k. Then

∣∣g−1(p)
∣∣ ≤ k2 for all

p ∈ B.

Proof. It will be enough to show that if a, b ∈ J , p ∈ Bo and apb is a definable simple
arc spanning J (i.e. having no common points with J but a, b) then

∣∣g−1(p)
∣∣ ≤

m(ap) ·m(pb) where for any set S we define m(S) to be the number of definable
components of g−1(S).

If this were not true there would exist definable components K of g−1(ap) and
H of g−1(pb) such that

∣∣H ∩K ∩ g−1(p)
∣∣ > 1. Clearly H and K are infinite and 1-

dimensional. By 1-dimensionality for any generic (a1, a2) ∈ H we may assume that
a2 ∈ acl(a1) so for any a1 ∈ π(H), the set {a2 | (a1, a2) ∈ H} is finite. Similarly
for K. By the existence of Skolem functions (Fact 2.8(4)) there are finitely many
definable continuous (by 2.8(1)) functions h1(x) . . . hi(x) and k1(x), . . . , kr(x) whose
domains are intervals in R and such that

H =
⋃

Γhi
, K =

⋃
Γki

.

Let a ∈ H, and assume without loss that a ∈ Γh1 . Since h1(x) is continuous, for all
ε > 0 small enough, Γh1 ∩Bε(a) is connected. By the existence of Skolem functions
again, if for all ε > 0 there exists b ∈ H ∩Bε(a) \ Γh1 then there exists a definable
curve γ ⊆ H such that for every 0 < ε < ε0 (some ε0 small enough),

γ(ε) ∈ H ∩Bε(a) \ Γh1 .

It follows (by the definition of o-minimality) that for some ε > 0 small enough
{γ(x) : x < ε} ⊆ Γhi

for some i 6= 1. So by continuity of hi, lim
x→0

γ(x) ∈ Γhi
,

implying that (Γh1 ∪ Γhi
) ∩ Bε(a) is definably connected (because the Γhj

are
definably connected and those two have a as a common point). By induction it
is now easy to check that H (and similarly K) are definably locally connected, so
H ∪K is definably path connected. Since H ∩K ⊆ g−1(p) it is in particular finite.
From the assumption that |H ∩K| > 1 it follows that H ∪K contains a definable
simple closed curve. So there exists a definable component T of A \ (H ∪K) such
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that T ⊆ A\C. But fr(T ) ⊆ H ∪K so T ∩g−1(apb) = ∅ and so g(T ) would have to
be a definable component of B \ (apb) which is impossible, since g(T ) ∩ J = ∅. �

The next corollary is very easy:

Corollary 9.5. Let g(A) = B be as in the previous lemma, k = deg(g � C).

(1) If k = 1 then g is a homeomorphism.
(2) For any p1, p2 ∈ B,

∣∣g−1(p1)
∣∣ ≤ k

∣∣g−1(p2)
∣∣. In particular, if for some

p ∈ B we have
∣∣g−1(p)

∣∣ = 1 then
∣∣g−1(q)

∣∣ ≤ k for all q ∈ B.

We can now prove the main result of Whyburn we are using:

Proposition 9.6. Let A,B be definably homeomorphic to a definable closed disc,
g(A) = B a definable finite-to-one open mapping. Let C = ∂A and J = ∂B,
and assume that g(Ao) = Bo, g(C) = J . If there exists a point q ∈ B such that
g−1(q) = {p} for some p ∈ A then g is definably homeomorphic to z 7→ zk on
|z| ≤ 1 for some k ≥ 1.

Proof. By Lemma 9.1, g|C is definably homeomorphic to z 7→ zk on |z| = 1 for
some k ≥ 1. Let aqb be any definable simple arc spanning J and

{a1, . . . , ak} = g−1(a), {b1, . . . , bk} = g−1(b)

be cyclically ordered on C. Because g is finite-to-one dim(g−1(apb)) = 1. By o-
minimality (as in the proof of the Lemma 9.4 above) we get that g−1(apb) is locally
connected and since p must be in all its definable components, it must be definably
connected. Thus, g−1(aq) contains arcs of the form aiq and g−1(qb) contains arcs
qbi (i = 1, . . . , k). Since aip ∪ ajp separates bi and bk for i 6= j, and

(aip ∪ ajp) ∩ (pbi ∪ pbn) = {p}

it separates pbi from pbj . Whence pbi ∩ pbj = {p}. By (2) of the last corollary,

g−1(apb) =
k⋃
i=1

(aip ∪ pbi).

Denote

Ci := aip ∪ pbi ∪ biai,

where aibi is the arc in C satisfying aibi ∩ g−1(a) = {ai}. It is now straightforward
to check that g|C satisfies the assumptions of the previous corollary with k = 1,
and so is a homeomorphism. The conclusion now follows readily. �

To obtain (i) of theorem 4.11 we still have to show that if g is a definable finite-
to-one continuous open map, for every q ∈ K there exists a small enough closed disc
D 3 q such that every definable component of g−1(D) is definably homeomorphic
to a closed disc. This is the analogue of (3.1) of Whyburn, which is easily translated
into the present context as well. Alternatively, this can easily be obtained using
the properness of g. Part (ii) of 4.11 is an immediate corollary of part (i), as it
shows that the degree function is continuous.
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