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Abstract. We exhibit counterexamples to a Conjecture of Nesin, since we

build a connected solvable group with finite center and of finite Morley rank

in which no normal nilpotent subgroup has a nilpotent complement.
The main result says that each centerless connected solvable group G of

finite Morley has a normal nilpotent subgroup U and an abelian subgroup T

such that G = U o T , if and only if, for any field K of finite Morley rank, the
connected definable subgroups of K∗ are pseudo-tori.

Also we build a centerless connected solvable group G of finite Morley rank
with no definable representation over a direct sum of interpretable fields.

1. Introduction

The main question about groups of finite Morley rank is the Algebraicity Con-
jecture, which states that the infinite simple ones are isomorphic as abstract groups
with an algebraic group over an algebraically closed field. It was independently for-
mulated by Cherlin and Zil’ber in the 70’s. This conjecture motivated the search
for analogues in groups of finite Morley rank of classical theorems about affine al-
gebraic groups. In this vein, a central question concerning solvable groups of finite
Morley rank is a Conjecture of Nesin. It states that the connected ones decompose
as G = U o T for some normal nilpotent definable subgroup U and an abelian
subgroup T (see [8, Conjecture p.687] and [3, Section 9.3]). We recall that the term
connected for a group G of finite Morley rank means that G is equal to its connected
component G◦, which is the smallest definable subgroup of finite index. The first
result of the present paper shows that this conjecture fails, even for groups with
finite center (Proposition 2.1). Our counterexample is a central product of two
algebraic groups, with finite intersection; the intersection is unipotent in one group
and semisimple in the other.

In §3 and §4, we consider some weak forms of the Nesin Conjecture, and their
restriction to centerless groups. In particular, we study the following questions.

Question 1.1. (1) Do connected solvable groups of finite Morley rank have a
decomposition as a product of a normal nilpotent subgroup by an abelian
subgroup ?

(2) Does the Nesin Conjecture hold for centerless groups ?

Moreover, we notice that, in contrast with Proposition 2.1 below, Wagner proved
that any connected solvable group G of finite Morley rank is a product of two con-
nected definable nilpotent subgroups U and C with U normal in G [12]. However,

2000 Mathematics Subject Classification. 03C45, 20A15, 03C60.
Key words and phrases. Conjecture of Nesin, Pseudo-torus, Field of finite Morley rank.

1



2 O FRÉCON

no information is given about the size of the intersection U∩C, and we will consider
this question too (see the second part of Theorem 4.2).

Actually, we will show that these questions are related to the structure of fields
of finite Morley rank. More precisely, first we state the following conjecture, where
pseudo-tori are analogs of tori in algebraic groups introduced in [7], and are defined
as abelian divisible groups of finite Morley rank with no definable quotient definably
isomorphic to K+ for any interpretable field K.

Conjecture 1.2. For any field K of finite Morley rank, the connected definable
subgroups of K∗ are pseudo-tori.

We notice that the main result of [11] implies that Conjecture 1.2 holds in positive
characteristic. Then the main theorem of this paper is proven in the third section
and in the more technical fourth section, and it concerns the link between Question
1.1 and Conjecture 1.2.

Theorem 1.3. (1) (Proposition 3.6) If Conjecture 1.2 holds, then any con-
nected solvable group G of finite Morley rank decomposes as G = UT for
a normal nilpotent connected definable subgroup U and a divisible abelian
subgroup T such that U ∩ T is finite and central in G.

(2) (Theorem 4.2) On the other hand, if Conjecture 1.2 does not hold, then there
is a centerless connected solvable group G of finite Morley rank satisfying:
(a) G has no decomposition as a product of a normal nilpotent subgroup

by an abelian subgroup;
(b) G has no decomposition as a product of a normal nilpotent subgroup

U by another nilpotent subgroup C such that U ∩ C is finite.

The conjugacy of the complements will be considered in §3, and we will show
that there is a centerless connected solvable group G of finite Morley rank such that
no normal nilpotent subgroup U with nilpotent quotient G/U has the conjugacy of
its complements in G (Proposition 3.7). Also, the definability of the complements
will be considered in §5, and we will see that a centerless connected solvable group
G of finite Morley rank can have no decomposition of the form G = U o T for U a
normal nilpotent subgroup and T a definable nilpotent subgroup (Proposition 5.1)

On the other hand, Poizat showed in the 80’s that, if an infinite simple group
G is isomorphic as abstract group with an algebraic group over an algebraically
closed field, then we may define in the pure group G an algebraically closed field
K and an isomorphism from G to an algebraic group over K [10]. In view of this
situation, the linearity and the definable linearity of groups of finite Morley rank
have been continuing concerns. Notably, among the most recent results, we may
notice the construction of a torsion-free centerless solvable group of finite Morley
rank [2], that is a solvable group of finite Morley rank not isomorphic as abstract
group with a direct sum of algebraic groups over algebraically closed fields. Also,
it is now known that all the torsion-free nilpotent groups of finite Morley rank
are linear [1]. We will conclude this paper by counterexamples to some natural
questions on linearity. In particular, we build a centerless connected solvable group
G of finite Morley rank with no definable representation over a direct sum of fields
(Proposition 5.3).
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2. A counterexample to a Conjecture of Nesin

If G is a connected solvable algebraic group, then G = U o T where U is the
unipotent radical and T any maximal torus. In view of this theorem, Nesin con-
jectured that any connected solvable group of finite Morley rank has a similar
decomposition, namely there is a nilpotent definable subgroup with an abelian
complement (see [8, Conjecture p.687] and [3, Section 9.3]). In this section, we
provide a counterexample to this conjecture.

We recall that the Fitting subgroup F (G) of any group G is the subgroup gen-
erated by all its normal nilpotent subgroups. Note that, in any group G of finite
Morley rank F (G) is definable and nilpotent [3, Theorem 7.3].

Proposition 2.1. There exists a connected solvable group G of finite Morley rank
with finite center and such that no normal nilpotent subgroup has a nilpotent com-
plement.

Proof. Let K and L be two algebraically closed fields of characteristic p and q
respectively, where p is a prime and q 6= p is either a prime or zero. We consider

A0 =


 1 a b

0 r c
0 0 1

 | r ∈ K∗, (a, b, c) ∈ K ×K ×K

.
Then the center of A0 is Z(A0) =


 1 0 b

0 1 0
0 0 1

 | b ∈ K

, and it has an element

x of order p. The quotient of A0 by 〈x〉 is an algebraic group over K, and it acts
faithfully by multiplication onKn for a positive integer n. From now on, we consider
the group A = Kn o (A0×K∗) where, for each (a, k) ∈ A0×K∗ and each u ∈ Kn,
the action of (a, k) over u is defined by the one of the image a of a in A0/〈x〉 over
u and by the scalar multiplication of k over u. In particular, the center of A is 〈x〉.

Now let B be a Borel subgroup of SL(p, L), and UB its unipotent radical. Then
the center ZB of SL(p, L) is cyclic of order p, it is contained in each maximal torus
of B, and F (B) = UBZB . Let y be a nontrivial element of ZB , let G0 = A × B,
and let H = 〈xy−1〉. Then H is a central subgroup of G0, and it is cyclic of order
p. We consider the pure group G0. Since K and L are algebraically closed, G0

has finite Morley rank, and G = G0/H is a solvable connected definable quotient.
Moreover, since the center of G0 is 〈x, y〉, which is a finite subgroup, the center of
G is 〈x, y〉/H, and it is finite too.

We assume toward a contradiction that G has a normal nilpotent subgroup
U = U0/H and a nilpotent subgroup T = T0/H such that G = U o T . First
we show that U0 = F (G0). Since H ≤ Z(G0), the subgroup U0 is nilpotent and
contained in F (G0) = F (A)×F (B). On the other hand, since T is nilpotent, G/U0

is nilpotent too. We notice that F (A) = Kn o F (A0), where

F (A0) =


 1 a b

0 1 c
0 0 1

 | (a, b, c) ∈ K ×K ×K

.
In particular, we have [A0, F (A0)] = F (A0), and F (A0) is the only normal nilpotent
subgroup of A0 such that A0/F (A0) is nilpotent. Then, if NA denotes a normal
nilpotent subgroup of A such that A/NA is nilpotent, the groups NA ∩ A0 and
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A0/(NA ∩ A0) are nilpotent, so NA ∩ A0 = F (A0). In the same way, the Fitting
subgroup of Kn o K∗ ≤ A is Kn and we have [Kn,K∗] = Kn since K∗ acts by
multiplication on Kn, so Kn is the only normal nilpotent subgroup of Kn o K∗

such that (Kn o K∗)/Kn is nilpotent. This implies that NA ∩ (Kn o K∗) = Kn,
therefore we obtain NA = Kn o F (A0) = F (A). Thus, since G/U0 is nilpotent,
we obtain F (A) ≤ U0 and x ∈ U0. Moreover, we have [B,UB ] = UB , so UB is
the only normal nilpotent subgroup of B such that B/UB is nilpotent. Therefore,
since G/U0 is nilpotent, U0 contains UB . Now, since x ∈ U0 and since H = 〈xy−1〉
is contained in U0, we have ZB = 〈y〉 ≤ U0, and the subgroup F (B) = UBZB is
contained in U0. This proves that U0 = F (G0).

We show that x belongs to T0. Since U0 = F (G0) = F (A) × F (B), the group
T is isomorphic to G0/U0 ' A/F (A) × B/F (B). In particular, it is abelian and
divisible. Thus T has a unique maximal p-subgroup S = S0/H, and this subgroup
is abelian and divisible. Moreover, since H is a p-subgroup, S0 is a p-subgroup too.
But H is central in G0 hence, for each g ∈ S0, the map adg : S0 → H, defined by
adg(x) = [g, x], is a homomorphism and adg(S0) ' S0/CS0(g) is divisible. Since
H is finite, this proves that CS0(g) = S0 for each g ∈ S0, therefore S0 is abelian
and, by divisibility of S0/H, the set R0 = {gp2 | g ∈ S0} is a subgroup of S0 such
that S0 = R0H. Also R0 is divisible, since it is the image of the homomorphism
α : S0 → S0 defined for each g ∈ S0 by α(g) = g2, and H lies in the kernel of α.
Since the characteristic of K is p, all the p-elements of A are unipotent, so they
are contained in F (A), and A/F (A) has no nontrivial p-element. On the other
hand, F (A) is a p-group of exponent at most p2, so R0 is contained in B. Since the
characteristic of L is q 6= p, each divisible abelian p-subgroup of B is contained in a
maximal torus of B, and R0 is contained in a maximal torus TB of B. Let RB be the
maximal p-subgroup of TB . Then RB contains R0 and, since RB is isomorphic to
the maximal p-subgroup of (L∗)p−1, that is its Prüfer rank is finite, we have either
RB = R0, or RB is not isomorphic to R0. Since U0 = F (A)×F (B), the subgroup T
is isomorphic to A/F (A)×B/F (B) and, since A/F (A) has no nontrivial p-element,
S is isomorphic to the unique maximal p-subgroup of B/F (B) ' (L∗)p−1. This
proves that R0 is isomorphic to RB , and we obtain RB = R0. But y is a central
semisimple element of B, so it is contained in TB , and R0 = RB contains 〈y〉. In
particular we obtain y ∈ T0 and, since xy−1 ∈ H belongs to T0, we have x ∈ T0.

Therefore, we have x ∈ F (A) ≤ U0 and x ∈ T0, so x ∈ U0∩T0 = H contradicting
the choice of H. This finishes the proof. �

3. In the case where Conjecture 1.2 holds

In this section, we prove the first part of Theorem 1.3 (Proposition 3.6). Our
analysis depends on the following four results.

On the other hand, we provide a counterexample to a natural question concerning
the conjugacy of some complements in connected solvable groups of finite Morley
rank (Proposition 3.7).

Fact 3.1. [3, Theorem 9.21] Let G be a connected and solvable group of finite
Morley rank. Then G/F (G)◦ (so also G/F (G)) is a divisible abelian group.

As in [3], in any group G of finite Morley rank and for any subset X of G, a
definable subgroup A is said to be X-minimal if it is infinite, normalized by X and
minimal for these conditions.
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Fact 3.2. [3, Theorem 9.1] Let G = AoH be a group of finite Morley rank where A
and H are two infinite definable abelian subgroups, A is H-minimal and CH(A) = 1.
Then G interprets an algebraically closed field K such that A ' K+ definably, and
such that H is definably isomorphic to a subgroup of K∗.

Fact 3.3. [7, Corollary 2.8] Any nilpotent group of finite Morley rank has a unique
maximal pseudo-torus.

Fact 3.4. [7, Corollary 2.13] Let G be a group of finite Morley rank, N a normal
definable subgroup of G and T a maximal pseudo-torus of G. Then TN/N is a
maximal pseudo-torus of G/N .

Fact 3.5. [5, Lemma 4.20] Let G be a solvable connected group of finite Morley
rank and let T be an abelian divisible p-subgroup for a prime p. Then T ∩ F (G) is
contained in Z(G).

Proposition 3.6. Suppose that Conjecture 1.2 holds, and let G be a connected
solvable group of finite Morley rank. Then G = F (G)◦T for T a divisible abelian
subgroup of G, such that F (G) ∩ T is finite and central in G.

In particular, if G is centerless, then F (G) is connected and G = F (G) o T .

Proof. Let P be a maximal pseudo-torus of G. We show that G = F (G)◦P . Since
F (G) is nilpotent, it is the intersection of the centralizers of G-minimal sections
in G, and we find finitely many G-minimal sections A1, . . . , An of G such that
F (G) = CG(A1, · · · , An). On the other hand, for each G-minimal section A of G,
the quotient G/CG(A) is abelian by Fact 3.1, and Fact 3.2 says that each connected
definable subgroup of G/CG(A) is a pseudo-torus since Conjecture 1.2 holds. Then,
by considering C0 = G and Ci = CG(A1, · · · , Ai) for each i ∈ {1, . . . , n}, since
Ci/Ci+1 = Ci/(Ci∩CG(Ai+1)) is definably isomorphic to CiCG(Ai+1)/CG(Ai+1) ≤
G/CG(Ai+1) for each i ∈ {0, . . . , n − 1}, the group C◦i Ci+1/Ci+1 is a pseudo-
torus for each i ∈ {0, . . . , n − 1}. Thus, since we have F (G) = Cn and since
G/F (G) is abelian (Fact 3.1), we obtain C◦i Ci+1/Ci+1 ≤ PCi+1/Ci+1 for each
i ∈ {0, . . . , n−1} by Facts 3.3 and 3.4. Consequently PF (G)/F (G) has finite index
in G/F (G) = C0/Cn and, since G is connected, we find G = F (G)P = F (G)◦P .

Since P is divisible and abelian, (F (G)◦ ∩ P )◦ is divisible and abelian too, so
(F (G)◦ ∩ P )◦ has a complement T in P . Then T is a divisible abelian subgroup of
G such that G = F (G)◦T , and such that F (G) ∩ T is finite. Furthermore, for each
prime p, the p-elements of T are contained in an abelian divisible p-subgroup since
T is abelian and divisible, so Fact 3.5 says that F (G) ∩ T is central in G. �

By the following remark, we cannot expect the conjugacy of all the subgroups
T in Proposition 3.6, even if the ambient group is centerless. Indeed, in some
centerless connected solvable groups of finite Morley rank, the Fitting subgroup
has definable complements and nondefinable complements. On the other hand,
concerning the definability of complements, we will show in §5 that, in some cen-
terless connected solvable groups of finite Morley rank, the Fitting subgroup has
no definable complement.

Proposition 3.7. There is a centerless connected solvable group G of finite Mor-
ley rank such that any normal nilpotent subgroup U with nilpotent quotient G/U
satisfies:

(1) U is torsion-free;
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(2) U has a definable complement;
(3) U has a nondefinable complement.

In particular, the complements of U in G are not all conjugate.
Furthermore, we may choose G to be isomorphic as abstract group with a con-

nected algebraic group over an algebraically closed field.

Proof. Let K be an algebraically closed field of characteristic zero and let

G =




x a1 a2 a3

0 1 a4 a5

0 0 y a6

0 0 0 1

 | (x, y) ∈ K∗ ×K∗, ai ∈ K for i = 1, · · · , 6

.
We consider the group G in the pure field K. Then G is a centerless connected
solvable group of Morley rank 8, and F (G) is the unipotent radical, so F (G) is
torsion-free. Moreover, we notice that the definable subsets of G are the con-
structible ones.

Let U be a normal nilpotent subgroup with nilpotent quotient G/U . Then U is
contained in F (G) = G′. On the other hand, we have [G,G′] = G′. Then, since
G/U is nilpotent, we obtain U = G′ = F (G). In particular, U is the unipotent
radical of G and any maximal torus of G is a complement of U in G. Thus there
exists definable complements of U in G.

However, if T denotes a maximal torus of G, then V = CU (T ) is nontrivial and
abelian. Since V ≤ U is a definable torsion-free group, it is divisible, and TV is
an abelian divisible group too. Then there exists a complement R of V in TV
containing a fixed element x in (TV ) \ (T ∪ V ). Now, since U ∩ TV = V and
since G = U o T , the subgroup R is a complement of U in G. Nevertheless, T is
the unique maximal torus of TV and it does not contain x, so R is not a torus.
Consequently R is nondefinable, otherwise R ' G/U ' T would be a torus. �

4. The case where Conjecture 1.2 does not hold

In this section, we prove the second part of Theorem 1.3 (Theorem 4.2).
We will use Carter subgroups, which are defined as the connected definable nilpo-

tent subgroups of finite index in their normalizer. The following fact gives their
two properties useful for the proof of Theorem 4.2.

Fact 4.1. Let G be a connected solvable group of finite Morley rank. Then G
satisfies the following properties.

(1) [12] Any two Carter subgroups of G are conjugate.
(2) [4, Results 1.2 and 4.4] If H denotes a maximal proper connected definable

subgroup of G, then either H is normal in G, or H contains a Carter
subgroup of G.

By the following theorem, if Conjecture 1.2 does not hold, we can build a cen-
terless connected group of finite Morley rank with nonalgebraic properties. In
particular, both of the answers to Questions 1.1 (1-2) are negative in this case.

Theorem 4.2. If Conjecture 1.2 does not hold, then there exists a centerless con-
nected solvable group G of finite Morley rank such that:

(1) G has no decomposition as a product of a normal nilpotent subgroup by an
abelian subgroup;
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(2) G has no decomposition as a product of a normal nilpotent subgroup U by
another nilpotent subgroup C such that U ∩ C is finite.

Proof. By hypothesis, there is a field K of finite Morley rank with a connected
definable subgroup R of K∗ which is not a pseudo-torus. Then R has a definable
subgroup A such that R/A is definably isomorphic to L+ for an interpretable field
L. We may assume L = R/A, and we denote by +

L
the addition in L and by ·

L

the multiplication. Moreover, we denote by 1K ∈ R the identity element of K∗,
and by 1L ∈ L the one of L∗. We consider the following group, which can be seen
as a slightly bent subgroup of GL(5, L) :

V =




x 0 0 a1 a2

0 1 α a3 a4

0 0 1 0 β
0 0 0 y a5

0 0 0 0 1

 |
(x, y) ∈ L∗ × L∗,
(α, β) ∈ R×R,
ai ∈ L for i = 1, 2, 3, 4, 5


where, for every (v1, v2) ∈ V × V, the product v1v2 is

x1x2 0 0 x1a1,2 +
L
a1,1y2 x1a2,2 +

L
a1,1a5,2 +

L
a2,1

0 1 α1α2 a3,2 +
L
a3,1y2 a4,2 +

L
α1β2 +

L
a3,1a5,2 +

L
a4,1

0 0 1 0 β1β2

0 0 0 y1y2 y1a5,2 +
L
a5,1

0 0 0 0 1



where, for i = 1, 2, vi =


xi 0 0 a1,i a2,i

0 1 αi a3,i a4,i

0 0 1 0 βi

0 0 0 yi a5,i

0 0 0 0 1

 and αi (resp. βi) is the image

of αi (resp. βi) in L. Then V is a centerless connected interpretable solvable group
and we have

V ′ =




1L 0 0 a1 a2

0 1 1K a3 a4

0 0 1 0 1K

0 0 0 1L a5

0 0 0 0 1

 | ai ∈ L for i = 1, 2, 3, 4, 5

.
In particular, we obtain V ′ = [V, V ′].

We consider G = (K+ × K+) o V where V acts by conjugation on K+ × K+

such that, for any (r, s) ∈ K+×K+ and any v ∈ V , if v =


x 0 0 a1 a2

0 1 α a3 a4

0 0 1 0 β
0 0 0 y a5

0 0 0 0 1


for (x, y) ∈ L∗ × L∗, (α, β) ∈ R × R, and ai ∈ L for i = 1, 2, 3, 4, 5, then
(r, s)v = (αr, βs). Thus we have G′ = (K+ × K+) × V ′, so G′ is the Fitting
subgroup of G. Moreover, since V is centerless, G is centerless too.

Let U and T be two nilpotent subgroups of G such that U is normal in G and
G = UT . We will show that T is nonabelian and that U ∩ T is infinite. First we
show that U = G′. Since U is nilpotent, we have U ≤ F (G) = G′. Moreover, since
G/U ' T/(T ∩U) is nilpotent, V/(V ∩U) is nilpotent too. Thus, since V ′ = [V, V ′],
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the subgroup U contains V ′. Also, the action of V on K+ ×K+ is transitive, so V
centralizes no nontrivial section of K+×K+, and we have [V,K+×K+] = K+×K+,
so K+×K+ is contained in U . This proves that U contains G′ = (K+×K+)×V ′,
hence U = G′, and U is definable.

We show that we may assume T ≤ C for C a Carter subgroup of G. Since
T is nilpotent, there is a nilpotent definable subgroup Td of G containing T , and
T0 = T ∩T ◦d has finite index in T , so F (G)T0 has finite index in G. Since G/F (G) is
divisible (Fact 3.1), G/F (G) has no proper subgroup of finite index, and we obtain
G = F (G)T0 = UT0. Therefore we may assume T = T0, and T is contained in
a nilpotent connected definable subgroup. Now there exists a maximal nilpotent
connected definable subgroup C of G containing T . Then G = UC, so we have
NG(C) = NG′(C)C and, since G′ is nilpotent, NG(C) is nilpotent. This implies
NG(C)◦ = C, so C is a Carter subgroup of G.

We consider the following nilpotent connected definable subgroup

D =




x 0 0 0 0
0 1 α 0 a
0 0 1 0 β
0 0 0 y 0
0 0 0 0 1

 | (x, y) ∈ L∗ × L∗, (α, β) ∈ R×R, a ∈ L

.

Then D is self-normalizing in V , that is D is a Carter subgroup of V . We show
that C and D are conjugate. Let W1 = K+ × {0} and W2 = {0} ×K+. Then W1

is a normal subgroup of G, and no nontrivial proper subgroup of W1 is normal in
G. Since W2V is a complement to W1 in G, this shows that W2V is a maximal
proper connected definable subgroup of G, and W2V contains a Carter subgroup
of G (Fact 4.1 (2)). Then, by Fact 4.1 (1), each Carter subgroup of W2V is a
Carter subgroup of G. In the same way, V is a maximal proper connected definable
subgroup of W2V , and each Carter subgroup of V is a Carter subgroup of G, so D
is a Carter subgroup of G. Consequently, by Fact 4.1 (1), C and D are conjugate,
and we may assume D = C and T ≤ D.

Now we consider the following central subgroup of D:

Z =




1L 0 0 0 0
0 1 1K 0 a
0 0 1 0 1K

0 0 0 1L 0
0 0 0 0 1

 | a ∈ L

.

In particular we have Z = D∩V ′ = D∩U and TZ = T (D∩U) = D. Then, if T is
abelian, TZ is abelian too since T ≤ D, which contradicts that D is nonabelian, so
T is nonabelian. Thus we may assume that U ∩T is finite. But U ∩T ≤ D∩U = Z
is central in D, and T/(U ∩ T ) ' G/U is abelian. Hence, for each t ∈ T , the map
adt : T → U ∩T , defined by adt(x) = [t, x] for each x ∈ T , is a homomorphism and
adt(T ) is a finite subgroup isomorphic to T/CT (t). Since CT (t) contains U ∩ T ≤
Z(D) and since T/(U ∩ T ) ' G/F (G) is divisible (Fact 3.1), the subgroup adt(T )
is finite and divisible, so it is trivial. This proves that T is abelian, contradicting
that T is nonabelian. This finishes the proof. �
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5. Definability of complements

In Proposition 3.7, we provided a centerless connected solvable group G of finite
Morley rank such that F (G) has definable complements and nondefinable com-
plements. In this section we show that F (G) can have no definable complement
(Proposition 5.1).

We will deduce from this result that some groups of finite Morley rank are
not definably linear. A group G of finite Morley rank is definably linear (over
finitely many interpretable fields K1, . . . , Kn), if it has an interpretable faithful
linear representation over the ring K1 ⊕ · · · ⊕ Kn (Proposition 5.3 and Corollary
5.4).

Proposition 5.1. There exists a centerless connected solvable group G of finite
Morley rank such that, for each normal nilpotent subgroup U and each definable
nilpotent subgroup T , the equality G = UT implies that U ∩ T is infinite.

Furthermore, we may choose G to be isomorphic as abstract group with a con-
nected algebraic group over an algebraically closed field.

Proof. Let K be an algebraically closed field of characteristic zero. We assume that
K is not isomorphic to Q, namely K has a nonzero derivation δ. We consider the
group

G =




t a b u
0 1 c v
0 0 t w
0 0 0 1

 | t ∈ K∗, (a, b, c, u, v, w) ∈ K6

 .

Then G is a centerless connected group of Morley rank exactly 7 as an algebraic
group, and of Morley rank at most 7 as a group. We consider a decomposition of G
of the form G = UT for a normal nilpotent subgroup U and a definable nilpotent
subgroup T , and we show that U ∩ T is infinite.

As usual, U = F (G), the group of strictly upper triangular matrices. In partic-
ular U is torsion-free, so we may assume that G = U oT . But definable subgroups
of G are Zariski closed, so T is a closed subgroup of G. Hence, since U is the
unipotent radical of G and since G = U o T , the subgroup T is a maximal torus of
G.

By conjugacy of maximal tori in G, we may assume that T is the diagonal
subgroup of G. Let α : G→ G be the map defined by

α


t a b u
0 1 c v
0 0 t w
0 0 0 1

 =


t a b+ δ(t) u+ δ(w)
0 1 c v
0 0 t w
0 0 0 1

 .

It is an automorphism of the pure group G, so it preserves its definable subsets.
Thus α(T ) and T ∩ α(T ) are definable in the pure group G. Since the pure group
G is interpretable in the pure field K, this implies that T ∩α(T ) is definable in the
pure field K too, that is T ∩ α(T ) is a closed subgroup. But we have

T ∩ α(T ) =




t 0 0 0
0 1 0 0
0 0 t 0
0 0 0 1

 | t ∈ K∗, δ(t) = 0

 ,
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and δ is a nonzero derivation. Hence T ∩α(T ) is a proper closed subgroup of T , and
since T is a torus of dimension one over K, the subgroup T ∩ α(T ) is finite. This
yields the final contradiction since δ(t) = 0 for each element of the prime subfield
of K. �

It is noticeable that the group considered in the previous proof is not definably
linear, although it is centerless and connected (Proposition 5.3). The proof uses
the fact below.

Fact 5.2. [9, Théorème 4.15] Let F be an algebraically closed field. Then, in the
pure field F , every infinite definable field K is definably isomorphic to F .

Proposition 5.3. There exists a centerless connected solvable group of finite Mor-
ley rank which is not definably linear.

Furthermore, we may choose this group to be isomorphic as abstract group with
a connected algebraic group over an algebraically closed field.

Proof. Let K, G, T and α be as in the proof of Proposition 5.1. We assume toward
a contradiction that G is definably linear over finitely many interpretable fields
K1, . . . , Kn. Then there exist i ∈ {1, . . . , n} and a definable representation γ of G
over Ki such that the kernel C of γ does not contain the subgroup

Z(F (G)) =




1 0 0 u
0 1 0 0
0 0 1 0
0 0 0 1

 |u ∈ K
 .

But Z(F (G)) is the only minimal nontrivial normal closed subgroup of G, so C = 1.
Hence γ is an interpretable embedding from G to an algebraic group H over Ki.

By Fact 5.2, there is a field isomorphism ϕ : Ki → K, definable in the pure
field K. So the corresponding map ϕ◦ : H → ϕH is definable in K, where ϕH
denotes the algebraic group over K obtained by transfer of base field. In particular,
for each subset X of H, the set X is Zariski closed in H if and only if ϕ◦(X) is
Zariski closed in ϕH. In other words, X is definable in Ki if and only if ϕ◦(X) is
definable in K. Since γ is interpretable in G, which is an algebraic group over K, it
is interpretable in K, and since T is a Zariski closed subgroup of G, the subgroup
γ(T ) of H is definable in K. Thus ϕ◦(γ(T )) is definable in K too, and γ(T ) is
definable in Ki. Since Ki and γ are interpretable in G, we obtain the definability
of T in G. The latter contradicts the proof of Proposition 5.1, which says that T
is not definable in G. Thus G is not definably linear, as desired. �

In particular, Proposition 5.3 provides a counterexample to [6, Conjecture 1.3].
Indeed, the notion of geometric group was introduced in [6] as follows:

(1) [6, Definition 1.5 and Remark 1.6] if, for I an interpretable set, F =
{Fi | i ∈ I} is a uniformly definable family of connected definable sub-
groups of a group G of finite Morley rank, then F is said to be geometric
when {g ∈ G | ∃!i ∈ I, g ∈ Fi} forms a generic subset of G;

(2) [6, Definition 1.10] a group G of finite Morley rank is said to be geometric
when, for each distinct elements x and y of G, there exists a geometric
family F of subgroups of G such that xy−1 6∈ ∪F .

Then [6, Conjecture 1.3] states that any geometric group of finite Morley rank
is definably linear. Moreover, if this last conjecture holds, then any centerless
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connected group of finite Morley rank would be definably linear by [6, Théorème
4.18 and Corollaire 2.9]. But this fails by Proposition 5.3, hence we obtain the
following result.

Corollary 5.4. There exists a geometric group of finite Morley rank which is not
definably linear.
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