
BAD GROUPS IN THE SENSE OF CHERLIN

OLIVIER FRÉCON

Abstract. There exists no bad group (in the sense of Gregory Cherlin),

namely any simple group of Morley rank 3 is isomorphic to PSL2(K) for an
algebraically closed field K.

1. Introduction

Model theory is a branch of mathematical logic concerned with the study of
classes of mathematical structures. There are numerous interactions between model
theory and the other areas of mathematics, sometimes spectacular as Wilkie’s article
on the field of real numbers with the exponential function, Hrushovski’s proofs of the
geometric Mordell-Lang conjecture and of the Manin-Mumford conjecture, Sela’s
work connecting logic with geometric group theory, Pila’s paper on the André-Oort
conjecture, the manuscript on Berkovich spaces by Hrushovski and Loeser, or the
theory of motivic integration of Cluckers, Loeser and others.

Model theoreticians study mathematical structures by considering first-order
sentences and formulas. The Morley rank is a model-theoretical notion of abstract
dimension. It generalizes the dimension of an algebraic variety (when the ground
field is algebraically closed). There are other notions of abstract dimension, the
importance of the Morley rank lies on Morley’s Categoricity Theorem below, which
“can be thought of as the beginning of modern model theory” (David Marker [11,
p. 2]) and the following Baldwin and Zilber Theorems.

We remember that a theory is a set of first-order L -sentences for a language L ,
it is complete if for any sentence φ, either φ or ¬φ belongs to T , and a theory is
κ-categorical for some cardinal κ if, up to isomorphism, it has exactly one model of
cardinality κ (cf. [11, Chapters 1 and 2] for more details).

Fact 1.1. – Let T be a complete theory in a countable language.

• (Morley’s Categoricity Theorem, [12]) If T is κ-categorical for some uncountable
κ, then T is κ-categorical for every uncountable κ.

• (Baldwin, [2]) If T is uncountably categorical, then it is of finite Morley rank.
• (Zilber, [18]) The theory of an infinite simple group of finite Morley rank is

uncountably categorical.

In this paper, we are concerned with groups of finite Morley rank. The main
example of such a group is an algebraic group defined over an algebraically closed
field in the field language (Zilber, [18]). In the late seventies, Gregory Cherlin
[6, §6] and Boris Zilber [18] formulated independently the following algebraicity
conjecture.
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Conjecture 1.2. – (Cherlin-Zilber Conjecture or Algebraicity Conjecture) An in-
finite simple group of finite Morley rank is algebraic over an algebraically closed
field.

This is the main conjecture on groups of finite Morley rank, and it is still open.
Most of studies on groups of finite Morley rank focus on this conjecture. Actually,
the original Cherlin Conjecture concerned simple ω-stable groups, but the substan-
tial litterature on the Algebraicity Conjecture treats only the finite Morley rank
case.

The Algebraicity Conjecture has been proved for several important classes of
groups including locally finite groups [17]. The main theorem on groups of finite
Morley rank ensures that any simple group of finite Morley rank with an infinite
abelian subgroup of exponent 2 satisfies the Cherlin-Zilber Conjecture [1].

However, in despite of numerous papers on the subject, the Cherlin-Zilber Con-
jecture is still open, even for groups of Morley rank 3. As a matter of fact, in [6],
the Algebraicity Conjecture was formulated as a result from an analysis of simple
groups of Morley rank 3. The main result of [6] can be summarized as follows,
where a bad group is a nonsolvable group of Morley rank 3 containing no definable
subgroup of Morley rank 2.

Fact 1.3. – (Cherlin, [6]) Let G be an infinite simple group of Morley rank at most
3. Then G has Morley rank 3, and one of the following two assertions is satisfied:

• there is an algebraically closed field K such that G ' PSL 2(K),
• G is a bad group.

Thus bad groups became a major obstacle to the Cherlin-Zilber Conjecture.
These groups have been studied in [6, 14] and [15], whose results are summarized in
Facts 2.3 and 2.4 respectively. Later, it was shown that no bad group is existentially
closed [10] or linear [13]. However, these groups appeared very resistant, and very
sparse other information was known on bad groups.

Furthermore, Nesin has shown in [15] that a bad group acts on a natural geome-
try, which is not very far from being a non-Desarguesian projective plane of Morley
rank 2. However, Baldwin discovered non-Desarguesian projective planes of Morley
rank 2 [3]. Thus, the question of the existence, or not, of a bad group was still fully
open. In this paper, we show that bad groups do not exist.

Main Theorem 1.4. – There is no bad group.

Note other more general notions of bad groups have been introduced indepen-
dently by Corredor [7] and by Borovik and Poizat [4], where a bad group is defined
to be a nonsolvable connected group of finite Morley rank all of whose proper con-
nected definable subgroups are nilpotent. Such a bad group has similar properties
to original bad groups. Moreover, later Jaligot will introduce a more general notion
of bad groups [9], and he will obtain similar results. However, we recall that, in this
paper, a bad group is defined to be nonsolvable, of Morley rank 3, and containing
no definable subgroup of Morley rank 2.

Our proof of Main Theorem goes as follows. First we note that it is sufficying
to study simple bad groups since for any bad group G, the quotient group G/Z(G)
is a simple bad group by [14, §4, Introduction].
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Then we fix a simple bad group G, and we introduce a notion of lines as cosets
of Borel subgroups of G (Definition 3.1). In §3, we study their behavior, mainly in
regards with conjugacy classes of elements of G.

In §4, we propose a definition of a plane (Definition 4.1). This section is dedicated
to prove that G contains a plane (Theorem 4.14). This result is the key point of
our demonstration. Roughly speaking, we show that for each nontrivial element g
of G such that g = [u, v] for (u, v) ∈ G × G, the union of the preimages of g, by
maps of the form adv : G → G defined by adv(x) = [x, v], is almost a plane, and
from this, we obtain a plane.

In last section §5, we try to show that our notions of lines and planes provide
a structure of projective space over the group G. Indeed, such a structure would
provide a division ring (see [8, p. 124, Theorem 7.15]), and probably it would be
easy to conclude. However, a contradiction occurs along the way, and achieves our
proof.

2. Background material

A thorough analysis of groups of finite Morley rank can be found in [5] and [1].
In this section we recall some definitions and known results.

2.1. Axioms. We present the rank axioms exactly as in [1, p. 23-24].
“We consider a group G equipped with additional structure. We suppose that G

carries a rank function in the sense of Borovik and Poizat, namely a function “rk”
which assigns to each set S definable over G, its “dimension” rk (S), and which
satisfies the following four axioms.

Monotonicity For any integer n, rk (S) > n if and only if S contains an infinite
family of disjoint definable subsets Si of rank n.

Additivity If f : A → B is definable and surjective, and if the fibers f−1(b) have
constant rank r for b ∈ B, then rk (A) = r + rk (B).

Definability For any uniformly definable family {Sb : b ∈ B} of definable sets,
and for any n ∈ N, the set {b ∈ B : rk (Sb) = n} is also definable.

Finite Bounds For any uniformly definable family F of finite subsets, the sizes of
the sets in F are bounded.

The definable subsets over G are quotients by definable equivalence relations of
definable subsets of Gn for some n. A family {Sb : b ∈ B} is uniformly definable
if, first, B is itself definable, and second, the relation “x ∈ Sy” is definable.”

It is shown in [16] that the groups (G, · , · · · ) as above are precisely the groups
of finite Morley rank, and that the function rk assigns to each definable set its
Morley rank. In particular, in this paper, the Morley rank of a definable set S will
be denoted by rkS, as in [5] and [1].

2.2. Morley degree. A nonempty definable set A is said to have Morley degree 1
if for any definable subset B of A, either rkB < rkA or rk (A \B) < rkA. The set
A is said to have Morley degree d if A is the disjoint union of d definable sets of
Morley degree 1 and Morley rank rkA.

Fact 2.1. –

• [5, Lemmas 4.12 and 4.14] Every nonempty definable set has a unique de-
gree.
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• [5, Proposition 4.2] Let X and Y be definable subsets of Morley degree d
and d′ respectively. Then X × Y has Morley degree dd′.
• [6, §2.2] A group of finite Morley rank has Morley degree 1 if and only if it

is connected, namely it has no proper definable subgroup of finite index.

Moreover, the following elementary result will be useful for us.

Fact 2.2. – Let f : E → F be a definable map. If the set E has Morley degree 1
and r = rkf−1(y) is constant for y ∈ F , then the Morley degree of F is 1.

Proof – Let B be a definable subset of F of Morley rank rkF . We show that
rk (F \B) < rkF . By the additivity axiom, we have rkE = r + rkF and

rkf−1(B) = r + rkB = r + rkF = rkE

Since E has Morley degree 1, we obtain rkf−1(F \ B) = rk (E \ f−1(B)) < rkE,
and by the additivity axiom again,

rk (F \B) = rkf−1(F \B)− r < rkE − r = rkF

so F has Morley degree 1. �

2.3. Bad groups. Main properties of bad groups are summarized in the following
facts, where a Borel subgroup of a bad group G is defined to be an infinite definable
proper subgroup of G.

Fact 2.3. – ([6, §5.2] and [14]) Let G be a simple bad group, and B be a Borel
subgroup of G.

(1) B = CG(b) for b ∈ G \ {1},
(2) B is connected, abelian, self-normalizing and of Morley rank 1,
(3) CG(x) is a Borel subgroup for each nontrivial element x of G,
(4) if A is another Borel subgroup of G, then A is conjugate with B, and either

A = B or A ∩B = {1},
(5) G =

⋃
g∈GB

g,

(6) G has no involution.

Fact 2.4. – [15, Lemma 18] Let A and B be two distinct Borel subgroups of a simple
bad group G. Then rk (ABA) = 3, rk (AB) = 2, and AB has Morley degree 1.

3. Lines

In this paper, G denotes a fixed simple bad group. We fix a Borel subgroup B
of G and we denote by B the set of Borel subgroups of G.

In this section, we define a line of G, and we provide their basic properties. We
note that, by conjugation of Borel subgroups (Fact 2.3 (4)), any Borel subgroup is
a line in the following sense.

Definition 3.1. – A line of G is a subset of the form uBv for two elements u and
v of G.

We denote by Λ the set of lines of G.

We note that, by Fact 2.3 (2), each line has Morley rank 1 and Morley degree 1.
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3.1. Basic properties. The elementary properties below of lines are used through-
out this paper. In particular, they show that any two distinct elements of G belong
to a unique line (Lemma 3.4).

Lemma 3.2. – Let uBv and rBs be two lines. Then uBv = rBs if and only if
uB = rB and Bv = Bs.

Proof – We may assume that uBv = rBs. Then we have

B = u−1rBsv−1 = u−1rsv−1Bsv
−1

so u−1rsv−1 ∈ Bsv
−1

and B = Bsv
−1

. Now sv−1 belongs to B since B is self-
normalizing by Fact 2.3. Hence we obtain Bv = Bs, and the equality uB = rB
follows from uBv = rBs. �

By the above lemma, the set Λ identifies with (G/B)l × (G/B)r where (G/B)l
(resp. (G/B)r) denotes the set of left cosets (resp. right cosets) of B in G. Then
Λ is a definable set. Moreover, since G is connected of Morley rank 3 and B has
Morley rank 1, the Morley rank of Λ is 4 and its Morley degree is 1.

Lemma 3.3. – The set Λ is a uniformly definable family.

Proof – We consider the set A = {(x, u, v) ∈ G × G × G | x = uv} and the
map f : A → G × Λ defined by f(x, u, v) = (x, (uB,Bv)). Then f is definable,
so its image f(A) is definable too. But if (x, (uB,Bv)) belongs to f(A), then
there are u′ ∈ uB and v′ ∈ Bv such that x = u′v′, so x belongs to uBv (which
identifies with (uB,Bv)). Moreover, for any (x, (uB,Bv)) ∈ G × Λ such that x
belongs to uBv, there is b ∈ B such that x = ubv, so (x, ub, v) belongs to A and
(x, (uB,Bv)) = f(x, ub, v) ∈ f(A). Hence f(A) is the graph of the membership
relation ∈ of an element of G to a line of G, so ∈ is definable, and Λ is a uniformly
definable family. �

Lemma 3.4. – Two distinct elements x and y of G lie in one and only one line
l(x, y).

Proof – By Fact 2.3 (5), there exists v ∈ G such that y−1x belongs to Bv.
Then x and y lie in uBv for u = yv−1.

Now, if rBs is a line containing x and y, then we find two elements b1 and b2 of
B such that x = rb1s and y = rb2s. Thus y−1x = s−1b−1

2 b1s is a nontrivial element
of Bs. But y−1x belongs to Bv by the choice of v, hence we have Bs = Bv (Fact
2.3 (4)). Since B is self-normalizing, sv−1 belongs to B and we obtain Bs = Bv, so
there exists b ∈ B such that s = bv. This implies that u = yv−1 = (rb2s)(s

−1b) =
rb2b belongs to rB, and rBs = uBv. �

Corollary 3.5. – The map l : {(x, y) ∈ G×G | x 6= y} → Λ is definable.

Proof – We consider the set

Γ = {((x, y), uBv) ∈ (G×G)× Λ | x 6= y, x ∈ uBv, y ∈ uBv}

By Lemma 3.3, it is a definable subset of {(x, y) ∈ G × G | x 6= y} × Λ. But by
Lemma 3.4, it is the graph of the map l, hence l is definable. �

Lemma 3.6. – If uBv = (uBv)g for uBv ∈ Λ \B and g ∈ G, then g = 1.
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Proof – We have uBv = g−1uBvg, so uB = g−1uB and Bv = Bvg by Lemma

3.2, and g belongs to the Borel subgroups Bu
−1

and Bv. If g is nontrivial, then

Bu
−1

= Bv (Fact 2.3 (4)), and vu belongs to NG(B) = B. Consequently u belongs
to v−1B, and we obtain uBv = Bv, contradicting uBv 6∈ B. Thus g = 1. �

3.2. Sets of lines. By Lemma 3.3, the set Λ is uniformly definable. In this section,
we are interested by its definable subsets.

Definition 3.7. – For each g ∈ G and each definable subset X of G, we consider
the following subsets of Λ:

L (g,X) = {l(g, x) ∈ Λ | x ∈ X \ {g}}
ΛX = {λ ∈ Λ | λ ∩X is infinite}

Lemma 3.8. – Let X be a definable subset of G. Then the sets ΛX and L (g,X)
are definable subsets of Λ for each g ∈ G.

Proof – The set L (g,X) is definable since it is the image of the definable set
{g} × (X \ {g}) by the map l, which is definable by Corollary 3.5.

Now we consider the definable map lX from {(x, y) ∈ X × X | x 6= y} to Λ
defined by lX(x, y) = l(x, y). We show that ΛX = {λ ∈ Λ | rk (l−1

X (λ)) = 2}. We

note that l−1
X (λ) is contained in (λ ∩X) × (λ ∩X). Thus, if λ does not belong to

ΛX , then λ ∩ X is finite, and l−1
X (λ) has not Morley rank 2. If λ belongs to ΛX ,

then λ ∩X is infinite, and for each pair (x, y) of elements of λ ∩X with x 6= y, we
have lX(x, y) = λ. This implies that l−1

X (λ) is a generic subset of (λ∩X)× (λ∩X),

with Morley rank 2. Consequently ΛX = {λ ∈ Λ | rk (l−1
X (λ)) = 2}, and ΛX is a

definable subset of Λ. �

Lemma 3.9. – Let λ1, . . . , λn be n lines. Then λ1 ∪ · · · ∪ λn is a definable set of
Morley rank 1 and Morley degree n.

Proof – For each i, the set Ai = λi ∩ (
⋃
j 6=i λj) has at most n− 1 elements by

Lemma 3.4, and λ1∪· · ·∪λn is the disjoint union of λ1\A1, . . . , λn\An, A1, . . . , An.
Since each line λi has Morley rank 1 and Morley degree 1 (Fact 2.3 (2)), the result
follows. �

Lemma 3.10. – If Λ0 is a definable subset of Λ, then
⋃

Λ0 is a definable subset of
G. Moreover, if Λ0 is infinite, then

⋃
Λ0 has Morley rank at least 2.

Proof – Since Λ0 is a definable subset of Λ, the set
⋃

Λ0 = {x ∈ G | ∃λ ∈
Λ0, x ∈ λ} is definable by Lemma 3.3. Moreover, if Λ0 is infinite, then

⋃
Λ0 has

Morley rank at least 2 by Lemma 3.9. �

Corollary 3.11. – The subset
⋃

ΛX of G is definable for each definable subset X
of G.

4. Planes

Our aim is to find a definable structure of projective space on our bad group G.
In this section, we introduce a notion of planes, and we show that G has such a
plane (Theorem 4.14).

Definition 4.1. – A definable subset X of G is said to be a plane if it has Morley
rank 2 and satisfies X = X where

X = {g ∈ G | rk (L (g,X)) = 1}
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Lemma 4.2. – Let X be a definable set of Morley rank 2. For each g ∈ G, we
have rk (L (g,X)) ∈ {1, 2}. In particular, X = {g ∈ G | rk (L (g,X)) ≤ 1} and
G \X = {g ∈ G | rk (L (g,X)) = 2}.

Proof – Let g ∈ G. We remember that, by Lemma 3.8, the set L (g,X) is
definable. We consider the map lg : X \ {g} → L (g,X) defined by lg(x) = l(g, x).
This map is definable and surjective, and since rkX = 2, we have rkL (g,X) ≤ 2.

Moreover, the set ∪L (g,X) is definable (Lemma 3.10), and it contains X. Since
rkX = 2, we obtain rk (∪L (g,X)) ≥ 2, and the set L (g,X) is infinite (Lemma
3.9), so rkL (g,X) ≥ 1. �

Lemma 4.3. – Let X be a definable subset of G of Morley rank 2. Then the set X
is a definable subset of

⋃
ΛX .

Proof – If g ∈ G does not belong to
⋃

ΛX , then l(g, x) ∩ X is finite for each
x ∈ X, and since X has Morley rank 2, the set L (g,X) has Morley rank 2, so
g 6∈ X. Thus X is contained in

⋃
ΛX .

We show that X is definable. We consider the set

A = {(g, λ) ∈ G× Λ | g ∈ λ, ∃x ∈ X \ {g}, x ∈ λ}

and the map f : A → G defined by f(g, λ) = g. We note that A is definable by
Lemma 3.3, so f is definable too. Moreover, the preimage by f of each g ∈ G is
f−1(g) = {g}×L (g,X), and we have rk (f−1(g)) = rkL (g,X). Consequently, we
obtain X = {g ∈ G | rk (f−1(g)) = 1}, and X is definable. �

Lemma 4.4. – Let X be a definable subset of G of Morley rank 2. Then rk ΛX
and rk

⋃
ΛX are at most 2. Moreover, ΛX is infinite if and only if rk

⋃
ΛX = 2.

Proof – We consider the surjective definable map

l0 : (X ×X) ∩ l−1(ΛX)→ ΛX

defined by l0(x, y) = l(x, y). For each λ ∈ ΛX , we have l−1
0 (λ) = {(x, y) ∈ (λ∩X)×

(λ ∩X) | x 6= y}, and since rkλ = 1, we obtain rk (λ ∩X) = 1 and rk l−1
0 (λ) = 2.

But we have

rk ((X ×X) ∩ l−1(ΛX)) ≤ rk (X ×X) = 2rkX = 4

hence rk ΛX is at most 4− 2 = 2.
We show that rk

⋃
ΛX ≤ 2. We consider the definable set

A = {(x, λ) ∈ G× ΛX | x ∈ λ \X}

and the definable map l1 : A → ΛX defined by l1(x, λ) = λ. For each λ ∈ ΛX ,
we have rkλ = 1 = rk (λ ∩X), so l−1

1 (λ) is finite. Consequently we obtain rkA ≤
rk ΛX ≤ 2. But the definable map l2 : A→ (

⋃
ΛX) \X, defined by l2(x, λ) = x, is

surjective, hence the Morley rank of (
⋃

ΛX) \X is at most rkA ≤ 2. Since X has
Morley rank 2, we obtain rk

⋃
ΛX ≤ 2.

Now it follows from Lemmas 3.9 and 3.10 that ΛX is infinite if and only if
rk

⋃
ΛX = 2. �

For each a ∈ G, let L (a) = L (a,G) be the set of lines containing a. It is
definable by Lemma 3.8. Moreover, we note that L (1) = B.
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Lemma 4.5. – Let Λ0 be a definable subset of Λ. If rk ∪ Λ0 = 2, then we have
rk (L (g) ∩ Λ0) ≤ 1 for each g ∈ G.

Moreover, if further rk Λ0 = 2, then the set {g ∈ G | rk (L (g) ∩ Λ0) = 1} has
Morley rank 2.

Proof – We recall that L (g) = L (g,G) is definable by Lemma 3.8. We show
that rk (L (g) ∩ Λ0) ≤ 1 for each g ∈ G. Let g ∈ G and lg : ∪(L (g) ∩ Λ0) \ {g} →
L (g) ∩ Λ0 be the map defined by lg(x) = l(g, x). Since each line has Morley rank
1, the preimage of each element of L (g)∩Λ0 has Morley rank 1. Consequently, we
have

rk (L (g) ∩ Λ0) = rk ∪ (L (g) ∩ Λ0)− 1 ≤ rk ∪ Λ0 − 1 = 1

as desired.
We suppose further that rk Λ0 = 2, and we show that {g ∈ G | rk (L (g)∩Λ0) =

1} has Morley rank 2. Let U = ∪Λ0, A = {(u, λ) ∈ U×Λ0 | u ∈ λ} and f : A→ Λ0

be the map defined by f(u, λ) = λ. Then A and f are definable, and the preimage
f−1(λ) of each λ ∈ Λ0 has Morley rank rkλ = 1, so rkA = 1 + rk Λ0 = 3. Now
let h : A → U be the map defined by g(u, λ) = u. It is a definable map, and the
preimage h−1(u) of each u ∈ U has Morley rank either 0, or 1 by the previous
paragraph.

But the preimage of U0 = {u ∈ U | rkh−1(u) = 0} has Morley rank

rkh−1(U0) = rkU0 ≤ rkU = 2 < rkA

so the preimage of U1 = {u ∈ U | rkh−1(u) = 1} has Morley rank 3. Hence we
obtain rkU1 = 3− 1 = 2. Moreover, we note that

U1 = {u ∈ U | rk (L (u) ∩ Λ0) = 1} = {g ∈ G | rk (L (g) ∩ Λ0) = 1}
so {g ∈ G | rk (L (g) ∩ Λ0) = 1} has Morley rank 2. �

Proposition 4.6. – Let X be a definable subset of G of Morley rank 2. For each
g ∈ X, we have rk (L (g) ∩ ΛX) = 1.

Moreover, if X has Morley degree 1, then X = {g ∈ G | rk (L (g) ∩ ΛX) = 1}
and G \X = {g ∈ G | L (g) ∩ ΛX is finite}.

Proof – First we note that L (g) ∩ ΛX = L (g,X) ∩ ΛX for any g ∈ G.
For each g ∈ G, we consider the definable map lg : X \ {g} → L (g,X) defined
by lg(x) = l(g, x). In particular, the preimage l−1

g (λ) of each λ ∈ L (g,X) is
(λ ∩X) \ {g}.

We show that rk (L (g,X) ∩ ΛX) ≤ 1 for each g ∈ G. We may assume that ΛX
is infinite. Then, by Lemma 4.4, the set ∪ΛX has Morley rank 2, and by Lemma
4.5, we obtain rk (L (g,X) ∩ ΛX) ≤ 1 for each g ∈ G.

Let g ∈ X. We show that rk (L (g) ∩ ΛX) = 1. For each λ ∈ L (g,X) \ ΛX ,
the set l−1

g (λ) = (λ ∩X) \ {g} is finite, and since g ∈ X, we have rkL (g,X) = 1.

Consequently, l−1
g (L (g,X)\ΛX) has Morley rank at most 1, and l−1

g (L (g,X)∩ΛX)

has Morley rank rkX = 2. But the set l−1
g (λ) = (λ ∩X) \ {g} is infinite of Morley

rank 1 for each λ ∈ L (g,X)∩ΛX . Hence we obtain rk (L (g,X)∩ΛX) = 2−1 = 1.
Now we assume that X has Morley degree 1. Let g ∈ G such that rk (L (g,X)∩

ΛX) = 1. We show that g ∈ X. Since the set l−1
g (λ) = (λ ∩X) \ {g} is infinite of

Morley rank 1 for each λ ∈ L (g,X) ∩ ΛX , the set l−1
g (L (g,X) ∩ ΛX) has Morley

rank
1 + rk (L (g,X) ∩ ΛX) = 2 = rkX
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Then, since X has Morley degree 1, the preimage of L (g,X)\ΛX has Morley rank
at most 1. Moreover, for each λ ∈ L (g,X)\ΛX , the preimage l−1

g (λ) = (λ∩X)\{g}
is finite and non-empty, so we obtain

rk (L (g,X) \ ΛX) = rk l−1
g (L (g,X) \ ΛX) ≤ 1

This shows that rkL (g,X) = 1 and g ∈ X.
Furthermore, since rk (L (g,X) ∩ ΛX) ≤ 1 for each g ∈ G, we obtain G \ X =

{g ∈ G | L (g) ∩ ΛX is finite}, as desired. �

Corollary 4.7. – If X is a definable subset of G of Morley rank 2, then rk (X\X) ≤
1.

Proof – We remember that X is definable by Lemma 4.3, so the sets Y = X \X
and A = {(y, λ) ∈ Y × ΛX | y ∈ λ} are definable too. Let lY : A → Y and
lD : A → ΛX be the definable maps defined by lY (y, λ) = y and lD(y, λ) = λ
respectively. On the one hand, for each λ ∈ ΛX , the set λ∩X is infinite, and since
λ has Morley rank 1 and Morley degree 1 (Fact 2.3 (2)), the set λ∩ Y is finite and
l−1
D (λ) has Morley rank at most 0. This implies rkA ≤ rk ΛX ≤ 2 (Lemma 4.4).

On the other hand, for each y ∈ Y , we have rk (L (y) ∩ ΛX) = 1 by Proposition
4.6, so l−1

Y (y) has Morley rank 1, and we obtain rkA = 1 + rkY . Consequently, the
Morley rank of Y is at most 1. �

Corollary 4.8. – Let X be a definable subset of G of Morley rank 2. If the Morley
degree of X is not 1, then rkX < 2. In particular, any plane has Morley degree 1.

Proof – Let n be the Morley degree of X, and X1, . . . , Xn be n definable
subsets of X of Morley rank 2 and Morley degree 1 such that X is the disjoint
union of X1, . . . , Xn. For each g ∈ X, we have rkL (g,X) ≤ 1 (Lemma 4.2), so
we obtain rkL (g,Xi) ≤ 1 for each i, and g ∈ Xi for each i by Lemma 4.2 again.
Thus X is contained in X1 ∩ X2. Since X1 ∩ X2 = ∅, the set X is contained in
(X1 ∩ Y2) ∪ (Y1 ∩X2) ∪ (Y1 ∩ Y2) where Y1 = X1 \X1 and Y2 = X2 \X2. Since Y1

and Y2 have Morley rank at most 1 by Corollary 4.7, we obtain rkX < 2. �

Proposition 4.9. – Let X be a definable subset of G of Morley rank 2 and Morley
degree 1. Then rkX = 2 if and only if ΛX has Morley rank 2.

In this case, ΛX and X have Morley degree 1, and X contains a generic definable
subset of X.

Proof – We consider the definable set A = {(x, λ) ∈ X × ΛX | x ∈ λ} and the
definable maps l1 : A→ X and l2 : A→ ΛX defined by l1(x, λ) = x and l2(x, λ) = λ
respectively. By Proposition 4.6, the preimage l−1

1 (g) of each element g of X has

Morley rank 1, so rkA = 1 + rkX. Moreover, the preimage l−1
2 (λ) of each λ ∈ ΛX

has Morley rank at most 1, so rkA ≤ 1 + rk ΛX . Then we obtain rkX ≤ rk ΛX . In
particular, it follows from Lemma 4.4 that if rkX = 2, then rk ΛX = 2. Hence we
may assume that rk ΛX = 2.

At this stage, Lemma 4.4 gives rk ΛX = 2, and by Lemma 4.5 and Proposition
4.6, we obtain rkX = 2. Moreover, it follows from Corollary 4.7 that X has Morley
degree 1 and that X ∩X is a generic definable subset of X.

We show that the Morley degree of ΛX is 1. Let l0 : {(x, y) ∈ X×X | x 6= y} → Λ
be the definable map defined by l0(x, y) = l(x, y). Since the Morley degree of X
is 1, the one of {(x, y) ∈ X × X | x 6= y} is 1 too. For each λ ∈ ΛX , we have
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rk l−1
0 (λ) = rk ((λ ∩X)× (λ ∩X)) = 2. Since rk ΛX = 2, we obtain

rk l−1
0 (ΛX) = 2 + rk ΛX = 4 = rk{(x, y) ∈ X ×X | x 6= y}

and since the Morley degree of {(x, y) ∈ X ×X | x 6= y} is 1, the Morley degree of
l−1
0 (ΛX) is 1 too. Now the Morley degree of ΛX is 1 by Fact 2.2. �

Lemma 4.10. – Let X and Y be two definable subsets of G of Morley rank 2 and
Morley degree 1. If X ∩ Y has Morley rank 2, then X = Y .

Proof – Let g ∈ G. If g belongs to X ∩ Y , then we have rkL (g,X ∩ Y ) ≤ 1
(Lemma 4.2). Since X has Morley degree 1 and X ∩ Y has Morley rank 2, the set
X \Y has Morley rank at most 1, and the set L (g,X \Y ) has Morley rank at most
1. Thus L (g,X) has Morley rank at most 1, and g belongs to X by Lemma 4.2
again.

Conversely, if g ∈ X, then L (g,X) has Morley rank 1, so L (g,X∩Y ) ⊆ L (g,X)
has Morley rank at most 1. Then Lemma 4.2 gives g ∈ X ∩ Y . This shows that
X ∩ Y = X. By the same way, we obtain X ∩ Y = Y , so X = Y . �

Lemma 4.11. – Let g be a nontrivial element such that g = [u, v] for (u, v) ∈ G×G.
Then we have {x ∈ G | [x, v] = g} = CG(v)u and {y ∈ G | [u, y] = g} = CG(u)v.
In particular, they are two lines and have Morley rank 1 and Morley degree 1.

Proof – The equalities are obvious. Moreover, by Fact 2.3, the sets CG(v)u
and CG(u)v are two lines, and they have Morley rank 1 and Morley degree 1. �

Lemma 4.12. – For each a ∈ G, the set aG ∩B has exactly one element.

Proof – We may assume a 6= 1. By Fact 2.3 (5), there is g ∈ G such that ag

belongs to B. If ah ∈ B for h ∈ G, then a is a nontrivial element of Bg
−1 ∩ Bh−1

.

By Fact 2.3 (4), we obtain Bg
−1

= Bh
−1

, and h−1g belongs to NG(B) = B. But

B is abelian (Fact 2.3 (2)), so h−1g centralizes ah, and ah = (ah)h
−1g = ag. Hence

aG ∩B = {ag}. �

The following result isolates a step of the proof of Theorem 4.14. The proof of
second point was initially more complicated, and Bruno Poizat proposed a simpli-
fication.

Proposition 4.13. – Let g be a nontrivial element of G. If the set {(x, y) ∈
G × G | [x, y] = g} is non-empty, then it has Morley rank 3 and the definable set
{x ∈ G | ∃y ∈ G, [x, y] = g} has Morley rank 2.

Proof – We consider the definable map ad : G×G→ G defined by ad(x, y) =
[x, y].

1. rk ad−1(g) ≥ 3.

Since ad−1(g) is non-empty, there is (x, y) ∈ G×G such that g = [x, y]. Since g
is nontrivial, y is nontrivial too, and C = CG(y) is a Borel subgroup. By the same
way, x is nontrivial, and since g is nontrivial, x does not belong to C and 1 6∈ Cx.

We show that the set Y = {dy ∈ G | ∃c ∈ C, d ∈ CG(cx)} has Morley rank
at least 2. For each c ∈ C, we have cx ∈ Cx, so cx 6= 1 and CG(cx) is a Borel
subgroup. In particular, there exists u ∈ G such that CG(cx) = Bu (Fact 2.3 (4)),
and CG(cx)y = u−1Buy is a line of G. If we have CG(c1x)y = CG(c2x)y for c1 ∈ C
and c2 ∈ C such that c1 6= c2, then CG(c1x) = CG(c2x) is a line containing c1x
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and c2x, and this line contains 1. But Cx is a line containing c1x and c2x, and Cx
does not contain 1. Hence we have Cx 6= CG(c1x), contradicting Lemma 3.4. This
proves that Y =

⋃
c∈C CG(cx)y is a union of infinitely many lines, and rkY is at

least 2 by Lemma 3.10.
For each α ∈ Y , there is c ∈ C such that α ∈ CG(cx)y, and we have

ad(cx, α) = [cx, α] = [cx, y] = [x, y] = g

Thus, the infinite set CG(α)cx× {α} is contained in ad−1(g). This shows that the
preimage of each element α ∈ Y , by the definable map f : ad−1(g)→ Y defined by
f(r, s) = s, is infinite. Then we obtain rk ad−1(g) ≥ 1 + rkY ≥ 3.

2. For each g ∈ G \ {1}, the definable set X(g) = {x ∈ G | ∃y ∈ G, [x, y] = g}
has not Morley rank 3.

We assume toward a contradiction that X(g) has Morley rank 3. Let U = {z ∈
G \ {1} | rkX(z) = 3}, and let V = {(x, y) ∈ G × G | [x, y] ∈ U}. For each
z ∈ G \ {1} and each x ∈ G, we have x ∈ X(z) if and only if ∃y ∈ G, [x, y] = z, so
the family {X(z) | z ∈ G \ {1}} is uniformly definable, and U and V are definable
sets.

We recall that, by Fact 2.3, each nontrivial conjugacy class aG of an element a
of G has Morley rank rkaG = rkG− rkCG(a) = 2

We consider the definable surjective map f : V → U defined by f(x, y) = [x, y].
For each z ∈ U , we have

f−1(z) = {(x, y) ∈ G×G | x ∈ X(z), [x, y] = z}

and by Lemma 4.11, this set has Morley rank rkf−1(z) = rkX(z) + 1 = 4, so
rkU = rkV − 4. But U is a normal set containing g, hence rkU ≥ rkgG = 2, and
we obtain rkV = 6 and rkU = 2.

Moreover, since G is connected, G×G is connected too, and since V is a subset of
G×G of Morley rank 6, the Morley degree of V is 1. Then, by Fact 2.2, the Morley
degree of U is 1 too. Since U is normal in G, and since each nontrivial conjugacy
class of G has Morley rank 2, the set U is a union of finitely many conjugacy classes
of G, and since the Morley degree of U is 1, there exists a ∈ G such that U = aG.

Now, V is a generic definable subset of G × G, so there is (x, y) ∈ V such that
(y, x) belongs to V . Thus [x, y] ∈ aG and its inverse [y, x] ∈ aG are conjugate, and
they are equal by Lemma 4.12, contradicting Fact 2.3 (6).

3. Conclusion.

Let pX : ad−1(g) → X(g) be the map defined by pX(x, y) = x. Then pX is a
surjective definable map. By Lemma 4.11, we have rkp−1

X (x) = 1 for each x ∈ X(g).

Consequently, we obtain rk ad−1(g) = 1 + rkX(g), and since rkX(g) ≤ 2 by 2,
we find rk ad−1(g) ≤ 3. Thus we have rk ad−1(g) = 3 by 1, so 1 + rkX(g) =
rk ad−1(g) = 3 and rkX(g) = 2. This finishes the proof. �

Theorem 4.14. – There is a plane in G.

Proof – It is sufficying to show that there is a definable subset X of G satisfying
the following properties:

(1) its Morley rank is 2 and its Morley degree is 1,
(2) ΛX has Morley rank 2.
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Indeed, by Proposition 4.9, for such a subset X, the set X has Morley rank 2 and
Morley degree 1, and it contains a generic definable subset Y of X. At this stage,
Lemma 4.10 shows that X is a plane.

We fix a nontrivial element g such that g = [u, v] for (u, v) ∈ G × G, and we
consider the definable map ad : G × G → G defined by ad(x, y) = [x, y]. Let
X(g) = {x ∈ G | ∃y ∈ G, [x, y] = g}. By Proposition 4.13, it is a definable set
of Morley rank 2. Let d be its Morley degree. Then X(g) is the disjoint union of
definable subsets X1, . . . , Xd of Morley rank 2 and Morley degree 1.

Let Y (g) = {y ∈ G | ∃x ∈ G, [x, y] = g}. Then Y (g) = {y ∈ G | ∃x ∈
G, [y, x] = g−1} has Morley rank 2 by Proposition 4.13. By Lemma 4.11, the set
ly = {x ∈ G | [x, y] = g} is a line for each y ∈ Y (g). We consider the following
definable subset of Λ:

LX = {λ ∈ Λ | ∃y ∈ G, ∀x ∈ λ, [x, y] = g}
that is LX = {ly ∈ Λ | y ∈ Y (g)}. We note that ∪LX = X(g). Indeed, ∪LX is
contained in X(g), and conversely, for each x ∈ X(g) there is y ∈ Y (g) such that
[x, y] = g so x ∈ ly ⊆ ∪LX . In particular, LX is contained in ΛX(g).

We show that la 6= lb for any distinct elements a and b of Y (g). Indeed, suppose
toward a contradiction that la = lb for two distinct elements a and b of Y (g). We
note that a and b are nontrivial because g is nontrivial. There exist r ∈ G and
s ∈ G such that [r, a] = [s, b] = g, and we have la = CG(a)r and lb = CG(b)s by
Lemma 4.11. Since r belongs to la = lb = CG(b)s, we obtain CG(b)r = CG(b)s =
la = CG(a)r and CG(b) = CG(a). Moreover, since r ∈ lb, we have [r, b] = g = [r, a]
and rb = ra, so ba−1 is a nontrivial element of CG(r). But [r, a] = g is nontrivial,
so r and a are nontrivial too, and CG(r) and CG(a) are Borel subgroups (Fact 2.3).
Since they contain ba−1, we find CG(r) = CG(a) and g = [r, a] = 1, contradicting
that g is nontrivial. Thus, for each λ ∈ LX , there exists a unique y ∈ Y (g) such
that λ = ly.

We consider the definable set

A = {(λ, y) ∈ LX × Y (g) | ∀x ∈ λ, [x, y] = g}
that is A = {(λ, y) ∈ LX × Y (g) | λ = ly}. By the previous paragraph, the
projection map p : A → LX defined by p(λ, y) = λ is bijective, and since it is
definable, we obtain rkA = rkLX . Moreover, by Lemma 4.11, the definable map
q : A → Y (g) defined by q(λ, y) = y is bijective too, so rkA = rkY (g) = 2. Hence
the Morley rank of LX is 2. Then, since LX is contained in ΛX(g), the Morley
rank of ΛX(g) is 2 by Lemma 4.4.

Now, for each element λ of ΛX(g), since λ∩X(g) is infinite and since λ has Morley
rank 1 and Morley degree 1, there is a unique i ∈ {1, . . . , d} such that λ ∩ Xi is
infinite, that is λ ∈ ΛXi . Thus, each λ ∈ ΛX(g) belongs to a unique definable set
ΛXi

for i ∈ {1, . . . , d}. Hence there exists i ∈ {1, . . . , d} such that rk ΛXi
= 2. Now

the set Xi satisfies the conditions (1) and (2) of the beginning of our proof, so Xi

is a plane. �

5. A projective space ?

In this section, we analyze planes. We remember that, by Theorem 4.14, the
group G has a plane, and that by Corollary 4.8, any plane has Morley degree 1. We
show that, if X and Y are two distinct planes, then ΛX ∩ΛY has a unique element
(Proposition 6.1). However, along the way, we will obtain our final contradiction.
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Definition 5.1. – For each line λ, we consider the following subset of Λ:

L (λ) = {m ∈ Λ | λ ∩m is not empty}

Lemma 5.2. – For any line λ, the set L (λ) is definable, it has Morley rank 3 and
Morley degree 1.

Proof – We consider the definable map f : λ × (G \ λ) → L (λ) \ {λ} defined
by f(x, g) = l(x, g). By Lemma 3.4, for each m ∈ L (λ) \ {λ}, there is a unique
element x in λ ∩m. Moreover, for any g ∈ G \ λ, we have f(x, g) = m if and only
if g ∈ m \ {x}. Consequently we have rkf−1(m) = rkm = 1, and

rkL (λ) = rk (λ× (G \ λ))− 1 = 3

Furthermore, since λ and G have Morley degree 1, the Morley degree of λ×G and
λ× (G \λ) is 1, and the Morley degree of L (λ) \ {λ} and L (λ) is 1 too (Fact 2.2).
�

Lemma 5.3. – Let X be a plane, and λ ∈ ΛX . Then L (λ) ∩ΛX has Morley rank
2.

Proof – Since λ belongs to ΛX , the set λ ∩X is infinite, and since λ is a line,
we have rk (λ ∩X) = 1. We consider the definable set

A = {(x,m) ∈ (λ ∩X)× ΛX | m 6= λ, x ∈ m}

and the definable maps p : A → λ ∩ X and q : A → ΛX defined by p(x,m) = x
and q(x,m) = m respectively. By Proposition 4.6, the set p−1(x) has Morley rank
1 for each x ∈ λ ∩X, so rkA = 1 + rk (λ ∩X) = 2.

Moreover, each m ∈ ΛX \ {λ} contains at most one element of λ (Lemma 3.4),
so q is an injective map and its image has Morley rank rkA = 2. But the image of
q is contained in (L (λ) ∩ ΛX) \ {λ}, and we have rk ΛX ≤ 2 (Lemma 4.4), hence
L (λ) ∩ ΛX has Morley rank 2. �

Lemma 5.4. – Let λ1 and λ2 be two distinct lines. Then L (λ1) ∩ L (λ2) has
Morley rank 2 and Morley degree 1.

Proof – Let A = {(x, y) ∈ λ1 × λ2 | x 6= y}, and let f : λ1 × λ2 → (L (λ1) ∩
L (λ2)) \ {λ1, λ2} be the map defined by f(x, y) = l(x, y). This map is definable
by Corollary 3.5 and it is a bijection by Lemma 3.4. Since λ1 and λ2 are two lines,
the set λ1 × λ2 has Morley rank 2 and Morley degree 1, and since f is a definable
bijection, L (λ1) ∩L (λ2) has Morley rank 2 and Morley degree 1. �

Proposition 5.5. – If X and Y are two distinct planes, then ΛX ∩ΛY has at most
one element.

Proof – Suppose toward a contradiction that λ1 and λ2 are two distinct ele-
ments of ΛX ∩ ΛY . By Lemma 5.3, the sets L (λ1) ∩ ΛX and L (λ2) ∩ ΛX have
Morley rank 2. But ΛX has Morley rank 2 and Morley degree 1 by Proposition 4.9
and Corollary 4.8, hence L (λ1)∩L (λ2)∩ΛX has Morley rank 2. By the same way,
L (λ1) ∩L (λ2) ∩ ΛY has Morley rank 2. Thus, since L (λ1) ∩L (λ2) has Morley
rank 2 and Morley degree 1 (Lemma 5.4), the set ΛX ∩ ΛY has Morley rank 2.

Since ΛX ∩ΛY is infinite, the set U = ∪(ΛX ∩ΛY ) has Morley rank at least 2 by
Lemma 3.10, and since U is contained in ∪ΛX , its Morley rank is exactly 2 (Lemma
4.4). Now the set Z = {g ∈ G | rk (L (g) ∩ ΛX ∩ ΛY ) = 1} has Morley rank 2 by
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Lemma 4.5. But Proposition 4.6 says that Z is contained in X ∩ Y , hence X ∩ Y
has Morley rank 2 and Lemma 4.10 gives X = Y , a contradiction. �

From now on, we try to show that the set ΛX ∩ΛY has exactly one element (cf.
Proposition 6.1). However, the final contradiction will appear earlier.

Corollary 5.6. – Let X be a plane and (a, b) ∈ G×G. Then the following assertions
are equivalent:

• aXb = X
• aΛXb = ΛX
• aXb ∩X has Morley rank 2.

Proof – We note that aXb is a plane, and that aΛXb = ΛaXb. If aXb ∩ X
has Morley rank 2, then aXb = X by Lemma 4.10, and if aXb = X, then we have
aΛXb = ΛaXb = ΛX . Moreover, if aΛXb = ΛX , then we have ΛaXb = ΛX and
aXb = X by Proposition 5.5, so aXb ∩X = X has Morley rank 2. �

By Fact 2.4, if A is a Borel subgroup distinct from B, then rk (ABA) = 3. The
following result is slightly more general, and its proof is different.

We recall that, if a group H of finite Morley rank acts definably on a set E, then
the stabilizer of any definable subset F of E is defined to be

StabF = {h ∈ H | rk ((h · F )∆F ) < rk (F )}

where ∆ stands for the symmetric difference. It is a definable subgroup of H by [5,
Lemma 5.11].

Lemma 5.7. – Let A and C be two Borel subgroups distinct from B. Then
rk (ABC) = 3.

Proof – We consider the action of G on itself by left multiplication. Then we
have b ·BC = BC for each b ∈ B, so B is contained in Stab(BC).

We assume toward a contradiction that C is contained in Stab(BC). Since BC
has Morley rank 2 and Morley degree 1 (Fact 2.4), we have rk (cBC \BC) ≤ 1 for
each c ∈ C, and since rkC = 1, we obtain rk (CBC \ BC) ≤ 2 and rk (CBC) = 2,
contradicting Fact 2.4. Consequently, C is not contained in Stab(BC), and since
Stab(BC) contains B, Fact 2.3 implies that Stab(BC) = B.

We assume toward a contradiction that rk (ABC) 6= 3. Since rk (BC) = 2,
we have rk (ABC) = 2 and ABC is a disjoint union of finitely many definable
subsets E1, . . . , Ek of Morley rank 2 and Morley degree 1. For each a ∈ A, the
set aBC has Morley rank rk (BC) = 2 and Morley degree 1, so there exists a
unique i ∈ {1, . . . , k} such that rk (aBC ∩ Ei) = 2. Since A is infinite, there are
i ∈ {1, . . . , k} and two distinct elements a and a′ of A such that rk (aBC ∩ Ei) =
rk (a′BC ∩Ei) = 2. Since Ei has Morley degree 1, the Morley rank of aBC ∩a′BC
is 2, and we obtain rk (a′−1aBC ∩ BC) = 2. But BC has Morley degree 1, hence
a′−1a belongs to Stab(BC) = B. Thus a′−1a belongs to A∩B = {1} (Fact 2.3 (4)),
contradicting that a and a′ are distinct. So we have rk (ABC) = 3, as desired. �

Corollary 5.8. – Let A and C be two distinct Borel subgroups. Then rk (BA ∩
BC) = 1.

Proof – We may assume A 6= B and C 6= B. By Fact 2.4, we have

1 = rkB ≤ rk (BA ∩BC) ≤ rk (BA) = 2
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We assume toward a contradiction that rk (BA ∩ BC) = 2. Since BC has Morley
rank 2 and Morley degree 1 (Fact 2.4), the set E = BC \ BA has Morley rank at
most 1. Consequently, EA has Morley rank at most rkE + rkA = 2, and since
(BA ∩ BC)A ⊆ BA has Morley rank 2, we obtain rk (BCA) = rk (EA ∪ (BA ∩
BC)A) = 2, contradicting that BCA has Morley rank 3 (Lemma 5.7). �

Lemma 5.9. – For any plane X, we have BX 6= X and XB 6= X.

Proof – We assume toward a contradiction that BX = X for a plane X. Let
x ∈ X. Since X is a plane, Proposition 4.6 gives rk (L (x,X) ∩ ΛX) = 1, so
L (x,X) ∩ ΛX is infinite. But each line containing x has the form Bux for u ∈ G,
hence there exist u 6∈ B and v 6∈ B such that Bu 6= Bv, and such that Bux and
Bvx belong to L (x,X)∩ΛX . In particular, there is a co-finite subset S of B such
that Sux and Svx are contained in X.

Now, since BX = X, the sets BSux and BSvx are contained in X. By Fact

2.4, the set BBu
−1

, and so Bu−1B, has Morley rank 2, and since Bu−1(B \S) is a
finite union of lines, the set Bu−1(B\S) has Morley rank 1 (Lemma 3.9), so Bu−1S
has Morley rank 2. Thus, the sets BSux = Bu−1Sux and BSvx = Bv−1Svx are
subsets of X of Morley rank 2, and since the Morley degree of X is 1 (Corollary 4.8),
the set BSux ∩ BSvx has Morley rank 2. This implies that rk (BBu ∩ BBv) = 2,
contradicting Corollary 5.8. Now we have BX 6= X and by the same way, we show
that XB 6= X. �

Corollary 5.10. – For any plane X, the stabilizer of X for the action of G on
itself by left multiplication is finite.

Proof – By Corollary 5.6, we have StabX = {a ∈ G | aX = X}. If StabX is
infinite, then it contains a Borel subgroup, that is impossible (Lemma 5.9). �

Proposition 5.11. – Let uBv be a line, and X and Y be two planes such that ΛX
and ΛY contain uBv. Then there exists b ∈ B such that Y = bu

−1

X.

Proof – We note that the set⋃
a∈B

Λau−1X = {λ ∈ Λ | (au
−1

)−1λ ∈ ΛX}

is a definable subset of Λ, and that uBv = au
−1

(uBv) ∈ au
−1

ΛX = Λau−1X for
each a ∈ B.

We consider the definable map

f : B × ((L (uBv) ∩ ΛX) \ {uBv})→ (L (uBv) ∩ (
⋃
a∈B

Λau−1X)) \ {uBv}

defined by f(a, λ) = au
−1

λ.
We show that f is surjective and that its fibers are finite. For each λ′ ∈

(L (uBv)∩(
⋃
a∈B Λau−1X))\{uBv}, there is a ∈ B such that λ′ belongs to Λau−1X ,

so we have (au
−1

)−1λ′ ∈ ΛX and f(a, (au
−1

)−1λ′) = λ′. Thus f is surjective.

Moreover, if f(b, λ) = λ′ for b ∈ B and λ ∈ ΛX , then we have bu
−1

λ = λ′, so

the planes au
−1

X and bu
−1

X contain an infinite subset of λ′ and of uBv, and by
Proposition 5.5, they are equal. But by Corollary 5.10, there are finitely many

elements a′ of B such that a′u
−1

X = au
−1

X, and for such any element a′, there is

a unique line λ′′ = (a′−1)u
−1

λ′ such that f(a′, λ′′) = λ′. Hence the preimage of λ′

is finite.
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Consequently, by using Lemma 5.3, we have

rk (L (uBv) ∩ (
⋃
a∈B

Λau−1X)) = rk (B × (L (uBv) ∩ ΛX)) = 1 + 2 = 3

By the same way, we have rk (L (uBv)∩ (
⋃
a∈B Λau−1Y )) = 3. Now it follows from

Lemma 5.2 that

rk (L (uBv) ∩ (
⋃
a∈B

Λau−1X) ∩ (
⋃
a∈B

Λau−1Y )) = 3

Thus we find a ∈ B and a′ ∈ B such that Λau−1X ∩ Λa′u−1Y contains a line
rBs 6= uBv, and since we have uBv ∈ Λau−1X ∩Λa′u−1Y , Proposition 5.5 says that

au
−1

X = a′u
−1

Y . Hence we have Y = bu
−1

X for b = a′−1a. �

Lemma 5.12. – Let X be a plane. Then the set {v ∈ G | ∃u ∈ G, uBv ∈ ΛX} is
a generic definable subset of G.

Proof – Let V = {v ∈ G | ∃u ∈ G, uBv ∈ ΛX}. We remember that Λ
identifies with (G/B)l × (G/B)r (Lemma 3.2). Let f : ΛX → (G/B)r be the
definable map defined by f(uBv) = Bv. Then we have V = h−1(f(ΛX)) where
h : G → (G/B)r is defined by h(x) = Bx. Thus V is a definable set, and since
the preimage h−1(Bx) of each Bx ∈ (G/B)r has Morley rank rkB = 1, the Morley
rank of V is 1 + rk (f(ΛX)).

We assume toward a contradiction that f is not injective. Then there exist
Bv ∈ (G/B)r and two distinct lines in ΛX of the form uBv and rBv. For each
b ∈ B, we have (uBv)bv = uBv and (rBv)bv = rBv, so uBv ∈ ΛXb

v = ΛXbv and
rBv ∈ ΛXbv . By Proposition 5.5, we obtain Xbv = X, so XBv = X, contradicting
Lemma 5.9. Thus f is injective, and since rk ΛX = 2 (Proposition 4.9), we obtain
rk (f(ΛX)) = 2 and rkV = 3. �

Proposition 5.13. – Let X be a plane. Then for each plane Y , there exists a
unique a ∈ G and a unique b ∈ G such that Y = aX = Xb.

Proof – We show that there exists a ∈ G and b ∈ G such that Y = aX = Xb.
By Lemma 5.12, there exists v ∈ G, and u ∈ G and u′ ∈ G, such that uBv ∈ ΛX
and u′Bv ∈ ΛY . Then we have Bv ∈ Λu−1X and Bv ∈ Λu′−1Y , and Proposition 5.11
provides b ∈ B such that u′−1Y = bu−1X. Hence we have Y = aX for a = u′bu−1.
Thus, each plane has the form aX for a ∈ G, and by the same way, each plane has
the form Xb for b ∈ G.

We show the uniqueness of a and b. Let S = {g ∈ G | gX = X}. It is a finite
subgroup of G by Corollary 5.10. For each α ∈ G, the previous paragraph gives
β ∈ G such that αX = Xβ. Then, for each s ∈ S, we have s(αX) = s(Xβ) = Xβ =
αX, and we obtain sαX = X and sα ∈ S. Thus any element α ∈ G normalizes
the finite subgroup S, and since G is a simple group, S is trivial. This proves the
uniqueness of a, and by the same way we obtain the uniqueness of b. �

By the previous result, the set of planes is P = {aX | a ∈ G}, and it identifies
with G, so it is definable.

Corollary 5.14. – The set P of planes is uniformly definable.

Proof – The set ∆ = {(u, a) ∈ G × G | a−1u ∈ X} is definable, and it is the
graph of the membership relation of an element of G to a plane, where P identified
with G. Thus, P is uniformly definable. �
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From now on, we fix a plane X, and we consider the action of G × G on G
defined by (u, v) · g = ugv−1. This action induces an action of G×G on P defined
by (u, v) · aX = uaXv−1. Then for each plane aX, we denote by Stab(aX) the
stabilizer of aX for this action of G×G on P.

Remark 5.15. –

(1) It follows from Lemma 3.2 that the stabilizer of each line uBv ∈ Λ is

Stab(uBv) = Bu
−1 ×Bv.

(2) Furthermore, for each pair (x, y) of nontrivial elements of G, by Fact 2.3

there are a unique pair of Borel subgroups (Bu
−1

, Bv) such that x ∈ Bu−1

and y ∈ Bv. Then uBv is the unique line stabilized by (x, y).

Lemma 5.16. – There exists a ∈ G such that a−1Xa 6= X.

Proof – We assume toward a contradiction that a−1Xa 6= X for each a ∈ G.
Then for each uBv ∈ ΛX and each a ∈ G, we have

(uBv)a ∈ ΛaX = ΛXa = ΛX

Since rk ΛX = 2 (Proposition 4.9), the line uBv is a Borel subgroup (Lemma 3.6),
and by conjugacy of Borel subgroups, we obtain ΛX = B. Now we have ∪ΛX = G,
so rk ∪ ΛX = 3, contradicting Lemma 4.4. �

Lemma 5.17. – The stabilizer StabX is the graph of a definable automorphism µ
of G×G. In particular, StabX and G are definably isomorphic.

Moreover, for each b ∈ G, if ν is the definable automorphism of G whose graph
is Stab(Xb), then ν ◦ µ−1(x) = xb for each x ∈ G.

Proof – Since the set P has Morley rank rkG = 3, and G×G acts transitively
on P (Proposition 5.13), the stabilizer StabX has Morley rank 6 − 3 = 3. By
Proposition 5.13 that StabX ∩ (G×{1}) and StabX ∩ ({1}×G) are trivial. Hence
StabX is the graph of a definable automorphism µ of G.

By the same way, Stab(Xb) is the graph of a definable automorphism ν of G.
For each (x, y) ∈ G×G, we have (x, y) ∈ StabX if and only if xXy−1 = X, that is
xXb(b−1y−1b) = Xb. In other words, (x, y) belongs to StabX if and only if (x, yb)
belongs to Stab(Xb). This implies that, for each x ∈ G, we have ν(x) = µ(x)b so
(ν ◦ µ−1)(x) = xb. �

Lemma 5.18. – The Borel subgroups of StabX are the stabilizers of the lines
λ ∈ ΛX , for the action of StabX on X.

Proof – Indeed, StabX has Morley rank 3 (Lemma 5.17), and it acts on the
definable set ΛX of Morley rank 2 (Lemma 4.4 and Proposition 4.9). Hence for each
line λ ∈ ΛX , the stabilizer StabX ∩ Stab(λ) is either a Borel subgroup of StabX,
or StabX. Since Stab(λ) has Morley rank 2 (Remark 5.15 (1)), the stabilizer
StabX ∩ Stab(λ) is a Borel subgroup of StabX. Conversely, by conjugacy of the
Borel subgroups of StabX ' G, each Borel subgroup of StabX stabilizes a line of
ΛX . �

Now we are ready for the final contradiction of our paper.

Proof – Let U = {Xx−1 ∈P | x ∈ X} be the set of the planes containing 1.
Since X has Morley rank 2, the set U has Morley rank 2.

Let ∆ = {(x, y) ∈ G×G | x = y}. We note that ∆ is definably isomorphic to G,
and it has Morley rank 3. Moreover, the action of ∆ on G is equivalent to the action
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by conjugation of G on itself. In particular, ∆ stabilizes U , and no element of U
is stabilized by ∆ (Lemma 5.16). Thus, since rkU = 2, the stabilizer ∆ ∩ StabY
of each Y ∈ U is a Borel subgroup of ∆.

We fix Y ∈ U . Since ∆ ∩ StabY is a Borel subgroup of ∆ ' G, we may
assume that ∆∩StabY = {(b, b′) ∈ B×B | b′ = b}. Then, since StabY is definably
isomorphic to G (Lemma 5.17), the set {(b, b′) ∈ B×B | b′ = b} is a Borel subgroup
of StabY , so {(b, b′) ∈ B × B | b′ = b} is the stabilizer of a line λ ∈ ΛY for the
action of StabY on Y (Lemma 5.18), and this line λ is B (Remark 5.15 (2)). By
Proposition 4.6, we have

rk (B ∩ ΛY ) = rk (L (1) ∩ ΛY ) = 1

so there is u ∈ G \ B such that Bu belongs to ΛY . By Lemma 5.18, the stabilizer
Stab(Bu) ∩ StabY is a Borel subgroup of StabY , and it is contained in Bu × Bu
(Remark 5.15 (1)).

Moreover, since the previous paragraph shows that StabB ∩ StabY = {(b, b′) ∈
B ×B | b′ = b}, we have

Stab(Bu) ∩ Stab(Y u) = {(c, c′) ∈ Bu ×Bu | c′ = c}

By Lemma 5.17, the sets StabY and Stab(Y u) are the graphs of two automorphisms
µ and ν respectively. Then, by Proposition 5.13 and Lemma 5.17 again, there is
g ∈ G such that ν ◦ µ−1(x) = xg for each x ∈ G. But, by the previous paragraph,
µ(x) belongs to Bu for each x ∈ Bu, and since Stab(Bu) ∩ Stab(Y u) = {(c, c′) ∈
Bu × Bu | c′ = c}, we have ν(x) = x for each x ∈ Bu. Hence, for each x ∈ Bu,

we have µ(x) = xg
−1

, and since µ(x) ∈ Bu, we obtain µ(x) = x by Lemma 4.12.
Thus StabY contains {(c, c′) ∈ Bu ×Bu | c′ = c} ⊆ ∆, contradicting ∆ ∩ StabY =
{(b, b′) ∈ B ×B | b′ = b}. �

6. Annex

Actually, after Lemma 5.18 we were ready for a new step to provide a structure
of projective space over G, which was the initial goal of our section.

Proposition 6.1. – If Y 6= X is a plane, then ΛX ∩ ΛY has a unique element.

Proof – By Lemma 5.17, the subgroup StabX (resp. StabY ) of G × G is the
graph of a definable automorphism µ (resp. ν) of G. By Proposition 5.13, there is
b ∈ G \ {1} such that Y = Xb. We may assume that b belongs to B. Then Lemma
5.17 shows that (ν ◦ µ−1)(x) = xb for each x ∈ G, so µ and ν are equal on B.

Since µ is a definable automorphism of G, the set H = {(b, µ(b)) ∈ G×G | b ∈
B} is a Borel subgroup of StabX ' G, and Fact 2.3 provides v ∈ G such that
µ(B) = Bv. Then Bv is the unique line stabilized by H (Remark 5.15 (2)), and
by Lemma 5.18, we have Bv ∈ ΛX , But µ = ν on B, hence Bv belongs to ΛY too.
Now Bv is the unique element of ΛX ∩ ΛY (Proposition 5.5). �
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