STRICT C^{1}-TRIANGULATIONS IN O-MINIMAL STRUCTURES

Ma£gorzata Czapla and WiesŁaw Paweucki
Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. Prof. St. Łojasiewicza 6, 30-348 Kraków, Poland
E-mail addresses: Malgorzata.Czapla@im.uj.edu.pl, Wieslaw.Pawlucki@im.uj.edu.pl

Abstract

Let R be a real closed field and let an expansion of R to an o-minimal structure be given. We prove that for any closed bounded definable subset A of R^{n} and a finite family B_{1}, \ldots, B_{r} of definable subsets of A there exists a definable triangulation $h:|\mathcal{K}| \longrightarrow A$ of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in R^{n} and h extends to a definable C^{1}-mapping defined on a definable open neighborhood of $|\mathcal{K}|$ in R^{n}.

1. Introduction. Assume that R is any real closed field and an expansion of R to some o-minimal structure is given. Throughout the paper we will be talking about definable sets and mappings referring to this o-minimal structure. (For fundamental definitions and results on o-minimal structures the reader is referred to [vdD] or [C].) We adopt the following definitions of a simplex and a simplicial complex. Let $k, n \in \mathbb{N}$ and $k \leqslant n$. A simplex of dimension k in R^{n} is the convex hull

$$
\Delta=\left(a_{0}, \ldots, a_{k}\right)=\left\{\sum_{i=0}^{k} \alpha_{i} a_{i}: \alpha_{i}>0(i=0, \ldots, k), \sum_{i=0}^{k} \alpha_{i}=1\right\}
$$

of $k+1$ affinely independent points a_{i} of R^{n} which are called the vertices of Δ. An l-dimensional face of Δ is any of the following simplexes $\Delta^{\prime}=\left(a_{\nu_{o}}, \ldots, a_{\nu_{l}}\right)$, where $0 \leqslant \nu_{o}<\cdots<\nu_{l} \leqslant k$.

A simplicial complex in R^{n} is a finite family \mathcal{K} of simplexes in R^{n} which satisfies the following conditions:
(1) If $\Delta_{1}, \Delta_{2} \in \mathcal{K}$ and $\Delta_{1} \neq \Delta_{2}$, then $\Delta_{1} \cap \Delta_{2}=\emptyset$.
(2) If $\Delta \in \mathcal{K}$ and Δ^{\prime} is a face of Δ, then $\Delta^{\prime} \in \mathcal{K}$.

The closed bounded definable subset $|\mathcal{K}|=\bigcup \mathcal{K}$ of R^{n} is called the polyhedron of the symplicial complex \mathcal{K}.

[^0]Let A be any closed bounded subset of R^{n}. A definable C^{1}-triangulation of A is a pair (\mathcal{K}, h), where \mathcal{K} is a simplicial complex in some space $R^{m}, h:|\mathcal{K}| \longrightarrow A$ is a definable homeomorphism such that for each $\Delta \in \mathcal{K}, h(\Delta)$ is a definable C^{1} submanifold of R^{n} and $h \mid \Delta: \Delta \longrightarrow h(\Delta)$ is a C^{1}-diffeomorphism. When B_{1}, \ldots, B_{r} are definable subsets of A, we say that a triangulation (\mathcal{K}, h) is compatible with the sets B_{1}, \ldots, B_{r} if each of the sets $h^{-1}\left(B_{j}\right)$ is a union of some simplexes of \mathcal{K}. A definable strict C^{1}-triangulation is such a definable C^{1}-triangulation (\mathcal{K}, h) that $h:|\mathcal{K}| \longrightarrow R^{n}$ is of class C^{1}; i.e. it has an extension to a C^{1}-mapping defined on an open definable neighborhood of $|\mathcal{K}|$ in R^{m}.

The main result of the present article is the following.
Main Theorem. Let A be a closed bounded definable subset of R^{n} and let B_{1}, \ldots, B_{r} be a finite family of definable subsets of A. Then there exists a definable strict C^{1}-triangulation (\mathcal{K}, h) of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in R^{n}.

This theorem improves the results of Coste-Reguiat [CR] and Ohmoto-Shiota [OS]. The interest for proving such a theorem is in its application to integration theory on sets definable in o-minimal structures (cf. [OS]). The proof of the main theorem below is divided into two parts; in the first one it is proven that there exists a definable \mathcal{C}^{1}-triangulation (\mathcal{K}, h) of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in $R^{n}, h:|\mathcal{K}| \longrightarrow R^{n}$ is Lipschitz and $\{h \mid \Delta: \Delta \in \mathcal{K}\}$ is a \mathcal{C}^{1}-stratification with the Whitney (A) condition and in the second part this triangulation will be improved to a strict \mathcal{C}^{1}-triangulation.

2. Proof of Main Theorem.

Part I. First we will prove that there exists a definable \mathcal{C}^{1}-triangulation (\mathcal{K}, h) of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in R^{n}, $h:|\mathcal{K}| \longrightarrow R^{n}$ is Lipschitz and $\{h \mid \Delta: \Delta \in \mathcal{K}\}$ is a \mathcal{C}^{1}-stratification with the Whitney (A) condition.

The proof is by induction on n. Without any loss of generality we assume that A is the closure of its interior $A=\overline{\operatorname{int} A}$. By Theorem 3.12 from $[\mathrm{Cz} 2]$ there exists a definable C^{1}-triangulation (\mathcal{K}, f) of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in R^{n} and $f:|\mathcal{K}| \longrightarrow A$ is a Lipschitz mapping. By the assumption about $A,|\mathcal{K}|=\bigcup\{\bar{\Delta}: \Delta \in \mathcal{K}, \operatorname{dim} \Delta=n\}$. After perhaps a linear change of coordinates in R^{n}, we can assume that there exists a finite number of affine functions $\varphi_{j}: R^{n-1} \longrightarrow R(j=1, \ldots, s)$, such that

$$
\bigcup\{\partial \Delta: \operatorname{dim} \Delta=n\} \subset \bigcup_{j=1}^{s} \varphi_{j}
$$

where φ_{j} stands for the graph of $\varphi_{j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{n}=\varphi_{j}\left(x_{1}, \ldots, x_{n-1}\right)\right\}$. (Throughout the article we adopt the convention to identify mappings with their graphs.) Then $\{f \mid \Delta: \Delta \in \mathcal{K}\}$ is a finite definable C^{1}-stratification of (the graph of) f. By [L2] (see also [L1] or [LSW], or [E$]$) it admits a finite definable C^{1}-refinement \mathcal{S} with Whitney (A) condition such that strata from S of dimension n are exactly $\{f \mid \Delta: \Delta \in K, \operatorname{dim} \Delta=n\}$. There exists a corresponding \mathcal{C}^{1}-stratification \mathcal{T} of $|\mathcal{K}|$ which is a refinement of \mathcal{K} such that $\mathcal{S}=\{f \mid \Lambda: \Lambda \in \mathcal{T}\}$ and \mathcal{T} contains all
open simplexes of \mathcal{K}. Then for any pair $M, N \in \mathcal{T}$, such that $M \subset \bar{N}$ and for any $x_{o} \in M$ and any definable arc $\alpha:(0, \varepsilon) \longrightarrow N(\varepsilon>0)$ such that $\lim _{t \rightarrow 0} \alpha(t)=x_{o}$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} d_{\alpha(t)}(f \mid N) \supset d_{x_{o}}(f \mid M) \tag{1}
\end{equation*}
$$

Here we use the fact that the limit $\lim _{t \rightarrow 0} d_{\alpha(t)}(f \mid N)$ always exists due to the ominimality condition and common boundedness of the differentials $d_{\alpha(t)}(f \mid N)$ following from the lipschitzianity condition.

Let $\pi: R^{n} \ni\left(x_{1}, \ldots, x_{n}\right) \longmapsto\left(x_{1}, \ldots, x_{n-1}\right) \in R^{n-1}$ denote the natural projection. $\pi(|\mathcal{K}|)$ is a definable closed and bounded subset of R^{n-1}. Take $\rho>0$ such that $\left|\varphi_{j}(y)\right|<\rho$, for each $y \in \pi(|\mathcal{K}|)$ and $j \in\{1, \ldots, s\}$. By the induction hypothesis there exists a strict C^{1}-triangulation (\mathcal{L}, g) of $\pi(|\mathcal{K}|)$ compatible with all the subsets $\pi(N)$, where $N \in \mathcal{T}$, and at the time with all the subsets $\left\{y \in R^{n-1}: \varphi_{j_{1}}(y)=\varphi_{j_{2}}(y)\right\}$ and $\left\{y \in R^{n-1}: \varphi_{j_{1}}(y)<\varphi_{j_{2}}(y)\right\}$, where $j_{1} \neq j_{2}$. Replacing perhaps \mathcal{L} by its barycentric subdivision we can assume that
(2) $\Lambda \in \mathcal{L}, \varphi_{j_{1}} \circ g<\varphi_{j_{2}} \circ g$ on $\Lambda \Rightarrow\left(\varphi_{j_{1}} \circ g\right)(c)<\left(\varphi_{j_{2}} \circ g\right)(c)$, for some vertex c of Λ.

Put $\varphi_{o} \equiv-\rho$ and $\varphi_{s+1} \equiv \rho$.
Similarly as in the classical proofs of triangulation (compare [vdD, Chapter 8]), we built a polyhedral complex \mathcal{P} in R^{n} the polyhedron of which is $|\mathcal{L}| \times[-\rho, \rho]$ and such that its projection under π is \mathcal{L}. To this end fix any simplex $\Lambda \in \mathcal{L}$. Put

$$
\left\{\psi_{o}^{\Lambda}, \ldots, \psi_{r+1}^{\Lambda}\right\}=\left\{\varphi_{j} \circ g \mid \Lambda: j=0, \ldots, s+1\right\}
$$

where $\psi_{o}^{\Lambda}<\cdots<\psi_{r+1}^{\Lambda}, r=r_{\Lambda}$ depending on Λ. Let c_{o}, \ldots, c_{k} be all vertices of Λ. For each $i \in\{0, \ldots, r+1\}$, define also $\Psi_{i}^{\Lambda}: \Lambda \longrightarrow R$ by the the formula

$$
\Psi_{i}^{\Lambda}\left(\sum_{\nu=0}^{k} \alpha_{\nu} c_{\nu}\right):=\sum_{\nu=0}^{k} \alpha_{\nu} \psi_{i}^{\Lambda}\left(c_{\nu}\right)
$$

where $\alpha_{\nu}>0$, for each $\nu \in\{0, \ldots, k\}$, and $\sum_{\nu=0}^{k} \alpha_{\nu}=1$. Now we define the polyhedral complex

$$
\mathcal{P}:=\left\{\Psi_{i}^{\Lambda}: \Lambda \in \mathcal{L}, i=0, \ldots, r_{\Lambda}+1\right\} \cup\left\{\left(\Psi_{i}^{\Lambda}, \Psi_{i+1}^{\Lambda}\right): \Lambda \in \mathcal{L}, i=0, \ldots, r_{\Lambda}\right\}
$$

The complex is well defined because ψ_{i}^{Λ} have continuous extensions to $\bar{\Lambda}$ and because of (2) (for more detailed explanation, see Lemma 1 below). There exists a unique definable homeomorphism $H:|\mathcal{L}| \times[-\rho, \rho] \longrightarrow|\mathcal{L}| \times[-\rho, \rho]$, such that for each $\Lambda \in \mathcal{L}$ and $i \in\left\{0, \ldots, r_{\Lambda}+1\right\}, H\left(u, \Psi_{i}^{\Lambda}(u)\right)=\left(u, \psi_{i}^{\Lambda}(u)\right)$, for each $u \in \Lambda$, and for each $i \in\left\{0, \ldots, r_{\Lambda}\right\}$ and $u \in \Lambda, H$ is an affine isomorphism of the line segment $\left[\left(u, \Psi_{i}^{\Lambda}(u)\right),\left(u, \Psi_{i+1}^{\Lambda}(u)\right)\right]$ onto the line segment $\left[\left(u, \psi_{i}^{\Lambda}(u)\right),\left(u, \psi_{i+1}^{\Lambda}(u)\right)\right]$ (see Lemma 1). Since each of the functions ψ_{i}^{Λ} has a \mathcal{C}^{1}-extension to $\bar{\Lambda}$, according to Lemma 1, H is Lipschitz, \mathcal{C}^{1} on every polyhedron $\Theta \in \mathcal{P}$ and $\{H \mid \Theta: \Theta \in \mathcal{P}\}$ is a \mathcal{C}^{1}-stratification of H with Whitney (A) condition. By Lemma 2 below, all the
above properties of H hold when we replace \mathcal{P} by a simplicial complex \mathcal{P}^{*} which is a barycentric subdivision of \mathcal{P}, and since $g:|\mathcal{L}| \longrightarrow \pi(|\mathcal{K}|)$ is \mathcal{C}^{1}, the same properties inherits the mapping $\tilde{H}:=\left(g \times i d_{R}\right) \circ H:|\mathcal{L}| \times[-\rho, \rho] \longrightarrow \pi(|\mathcal{K}|) \times[-\rho, \rho]$. It is clear from the definitions that there exists a subcomplex \mathcal{R} of \mathcal{P} such that $\{\tilde{H}(\Theta): \Theta \in \mathcal{R}\}$ is a \mathcal{C}^{1}-stratification of $|\mathcal{K}|$ which is a refinement of \mathcal{K} such that \tilde{H} is Lipschitz and $\{\tilde{H} \mid \Theta: \Theta \in \mathcal{R}\}$ is a \mathcal{C}^{1}-stratification of \tilde{H} with Whitney (A) condition. Now the mapping $G:=f \circ \tilde{H}$ is the desired Lipschitz triangulation such that $\{G \mid \Theta: \Theta \in \mathcal{R}\}$ is a \mathcal{C}^{1}-stratification of G with Whitney (A) condition (see Lemma 2).

Lemma 1(cf. [Cz; Lemma 3.10]). Let $\Lambda=\left(c_{o}, \ldots, c_{k}\right)$ be a simplex in R^{n} of dimension k. Let \mathcal{L}_{Λ} be the simplicial complex of all faces of Λ; so $\left|\mathcal{L}_{\Lambda}\right|=\bar{\Lambda}$. Let $\psi_{i}: \bar{\Lambda} \longrightarrow R(i=1,2)$ be definable C^{1}-functions such that
(3) $\Delta \in \mathcal{L}_{\Lambda}, \psi_{1}\left|\Delta \not \equiv \psi_{2}\right| \Delta \Rightarrow$ there is a vertex c_{ν} of Δ such that $\psi_{1}\left(c_{\nu}\right)<\psi_{2}\left(c_{\nu}\right)$.

Let $\Psi_{i}:|\bar{\Lambda}| \longrightarrow R(i=1,2)$ be defined by the formula

$$
\Psi_{i}\left(\sum_{\nu=0}^{k} \alpha_{\nu} c_{\nu}\right)=\sum_{\nu=0}^{k} \alpha_{\nu} \psi_{i}\left(c_{\nu}\right)
$$

where $\sum_{\nu=0}^{k} \alpha_{\nu}=1, \alpha_{\nu} \geqslant 0$. Consider the following polyhedral complex

$$
\mathcal{P}=\left\{\Psi_{i} \mid \Delta: \Delta \in \mathcal{L}_{\Lambda}, i=1,2\right\} \cup\left\{\left(\Psi_{1}\left|\Delta, \Psi_{2}\right| \Delta\right): \Delta \in \mathcal{L}_{\Lambda}, \Psi_{1}\left|\Delta<\Psi_{2}\right| \Delta\right\} .
$$

Then there exists a unique definable homeomorphism

$$
H:|\mathcal{P}| \longrightarrow\left\{(y, z) \in \bar{\Lambda} \times R: \psi_{1}(y) \leqslant z \leqslant \psi_{2}(y)\right\}
$$

such that, for each $y \in \bar{\Lambda}$ and $i=1,2, H\left(y, \Psi_{i}(y)\right)=\left(y, \psi_{i}(y)\right)$ and H is an affine isomorphism of the line segment $\left[\left(y, \Psi_{1}(y)\right),\left(y, \Psi_{2}(y)\right)\right]$ onto the line segment $\left[\left(y, \psi_{1}(y)\right),\left(y, \psi_{2}(y)\right)\right]$. Moreover, we have that
(a) H is Lipschitz,
(b) H is \mathcal{C}^{1}-mapping on each $\Theta \in \mathcal{P}$ and
(c) $\{H \mid \Theta: \Theta \in \mathcal{P}\}$ is a \mathcal{C}^{1}-stratification of H with Whitney (A) condition.

Proof of Lemma 1. It is clear that, for each $\Delta \in \mathcal{L}_{\Lambda}$,

$$
H(y, w)= \begin{cases}\left(y, \psi_{1}(y)\right), & \text { if }(y, w) \in \Psi_{1} \mid \Delta \\ \left(y, \frac{w-\psi_{1}(y)}{\psi_{2}(y)-\psi_{1}(y)} \psi_{2}(y)+\frac{\psi_{2}(y)-w}{\psi_{2}(y)-\psi_{1}(y)} \psi_{1}(y)\right), & \text { if }(y, w) \in\left(\Psi_{1}\left|\Delta, \Psi_{2}\right| \Delta\right) \\ \left(y, \psi_{2}(y)\right), & \text { if }(y, w) \in \Psi_{2} \mid \Delta\end{cases}
$$

Notice that H is well-defined bijection due to (3), which implies that $\psi_{1}<\psi_{2}$ on Δ if and only if $\Psi_{1}<\Psi_{2}$ on Δ, otherwise $\psi_{1} \equiv \psi_{2}$ on Δ and $\Psi_{1} \equiv \Psi_{2}$ on Δ. To prove (a), (b) and (c), first observe that using the following \mathcal{C}^{1}-diffeomorphism

$$
\bar{\Lambda} \times R \ni(y, w) \mapsto\left(y, w-\psi_{1}(y)\right) \in \bar{\Lambda} \times R
$$

we can assume without any loss of generality that $\psi_{1} \equiv \Psi_{1} \equiv 0$. Of course, we can assume that $\psi:=\psi_{2}>0$ and $\Psi:=\Psi_{2}>0$ on Λ. The condition (b) is clearly fulfilled. Put $\Pi=(0|\Lambda, \Psi| \Lambda)$ and $H(y, w)=\left(y, H^{*}(y, w)\right)$. In order to prove (a) it suffices to show that all first-order partial derivatives of H^{*} are bounded on Π. Since

$$
\begin{gather*}
\frac{\partial H^{*}}{\partial y_{j}}(y, w)=\frac{z}{\Psi(y)} \cdot \frac{\partial \psi}{\partial y_{j}}(y)-\frac{z}{\Psi(y)} \cdot \frac{\psi(y)}{\Psi(y)} \cdot \frac{\partial \Psi}{\partial y_{j}}(y) \tag{4}\\
\text { and } \quad \frac{\partial H^{*}}{\partial w}(y, w)=\frac{\psi(y)}{\Psi(y)}
\end{gather*}
$$

it is enough to show that $\frac{\psi}{\Psi}$ is bounded on Λ. This is clear if $\psi\left(c_{\nu}\right)=\Psi\left(c_{\nu}\right)>0$, for all ν, so assume that $\left\{c_{o}, \ldots, c_{l}\right\}=\left\{c_{\nu}: \psi\left(c_{\nu}\right)=0\right\}$, where $0 \leqslant l<k$. By an affine change of coordinates one can assume that $c_{o}=0$ and $c_{\nu}(\nu=1, \ldots, k)$ are vectors of the canonical basis. Let $y=\left(y_{1}, \ldots, y_{k}\right) \in \Pi$. Put $u=\left(y_{1}, \ldots, y_{l}, 0, \ldots, 0\right)$. We have

$$
\left|\frac{\psi(y)}{\Psi(y)}\right|=\left|\frac{\psi(y)-\psi(u)}{\Psi(y)}\right| \leqslant \frac{M \sum_{\nu=l+1}^{k} y_{\nu}}{\sum_{\nu=l+1}^{k} y_{\nu} \psi\left(c_{\nu}\right)} \leqslant \frac{M}{\min \left\{\psi\left(c_{\nu}\right): \nu=l+1, \ldots, k\right\}}
$$

where M is the upper bound for the absolute value of the first-order partial derivatives of ψ. In order to check (c), first observe that H is a \mathcal{C}^{1}-diffeomorphism of $\{(y, w) \in|\mathcal{P}|: \Psi(y)>0\}$ onto $\{(y, z) \in \bar{\Lambda} \times R: 0 \leqslant z \leqslant \psi(y), \psi(y)>0\}$. Therefore, without any loss of generality, it suffices to check the Whitney (A) condition for Π and

$$
\begin{gathered}
\Theta \subset\{(y, w) \in \bar{\Lambda} \times R: \Psi(y)=0=w\}=\{(y, w) \in \bar{\Lambda} \times R: \psi(y)=0=w\}= \\
\operatorname{conv}\left\{c_{o}, \ldots, c_{l}\right\} \times\{0\} .
\end{gathered}
$$

Hence, without any loss of generality, one can assume that $\Theta=\left(c_{o}, \ldots, c_{p}\right) \times\{0\}$, where $p \leqslant l$. Fix any $(a, 0) \in \Theta$. By (4), since ψ and Ψ are \mathcal{C}^{1}, we have

$$
\frac{\partial H^{*}}{\partial y_{j}}(y, w) \rightarrow 0, \quad \text { for } j=1, \ldots, p, \text { when } \quad \Pi \ni(y, w) \rightarrow(a, 0) .
$$

This ends the proof of (c) and of Lemma 1.

The next lemma is a particular case of the general fact that the Whitney (A) condition is preserved in a transversal intersection (see [Cz1]).

Lemma 2. Let $H: A \longrightarrow R^{m}$ be a definable Lipschitz mapping defined on a closed subset $A \in R^{n}$. Let \mathcal{S} be a definable finite \mathcal{C}^{1}-stratification of A such that $H \mid M$ is \mathcal{C}^{1} for each $M \in \mathcal{S}$ and $\{H \mid M: M \in \mathcal{S}\}$ is a \mathcal{C}^{1}-stratification of H with Whitney (A) condition. Let \mathcal{T} be a definable finite C^{1}-stratification of A with Whitney (A) condition which is a refinement of \mathcal{S}.

Then $\{H \mid N: N \in \mathcal{T}\}$ is a \mathcal{C}^{1}-stratification of H with Whitney (A) condition.

Proof. It follows from the Lipschitz condition that the differentials of $H \mid M$ are commonly bounded. Hence the proof is immediate.

Part II. Let (\mathcal{K}, f) be a definable \mathcal{C}^{1}-triangulation of A compatible with B_{1}, \ldots, B_{r} such that \mathcal{K} is a simplicial complex in R^{n} such that:

$$
\begin{equation*}
f:|\mathcal{K}| \longrightarrow R^{n} \text { is Lipschitz } \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\{f \mid \Delta: \Delta \in \mathcal{K}\} \text { is a } \mathcal{C}^{1} \text {-stratification with the Whitney (A) condition. } \tag{6}
\end{equation*}
$$

Now we will improve f to get a strict \mathcal{C}^{1}-triangulation of A. To this end we will modify f in some tubular neighborhoods of simplexes.

Fix any simplex $\Gamma \in \mathcal{K}$ of dimension $p<n$. Without any loss of generality we can assume that $0 \in \Gamma$ and $\Gamma \subset R^{p}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{p+1}=\cdots=x_{n}=0\right\}$. Let $R^{n-p}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{1}=\cdots=x_{p}=0\right\}$. There are affine functionals $\rho_{j}: R^{p} \longrightarrow R(j=0, \ldots, p)$ such that $\Gamma=\left\{u \in R^{p}: \rho_{j}(u)>0(j=0, \ldots, p)\right\}$.

Consider the star $\operatorname{St}(\Gamma, \mathcal{K})$ of Γ in \mathcal{K}; i.e. $\operatorname{St}(\Gamma, \mathcal{K})=\{\Lambda \in \mathcal{K}: \Gamma$ is a face of $\Lambda\}$. Then $\Omega:=\bigcup\{\Lambda \in \operatorname{St}(\Gamma, \mathcal{K})\}$ is an open neighborhood of Γ in $|\mathcal{K}|$. There exists $\alpha>0$ such that, for each $u \in \Gamma$,

$$
\operatorname{dist}(u, \partial \Omega)>\alpha \min _{j} \rho_{j}(u) .
$$

Put $\omega(u):=\rho_{o}^{2}(u) \cdot \ldots \cdot \rho_{p}^{2}(u)$, for each $u \in \Gamma$. There exists $\varepsilon>0$ such that, for each $u \in \Gamma$,

$$
\begin{equation*}
2 \varepsilon \omega(u) \leqslant \alpha \min _{j} \rho_{j}(u)<\operatorname{dist}(u, \partial \Omega) . \tag{7}
\end{equation*}
$$

Then

$$
G:=\left\{(u, v) \in|\mathcal{K}|: u \in \Gamma, v \in R^{n-p},|v| \leqslant \varepsilon \omega(u)\right\}
$$

is a neighborhood of Γ in $|\mathcal{K}|$ contained in Ω due to (7).
Let $\varphi:[0,+\infty) \longrightarrow[0,+\infty)$ be a definable \mathcal{C}^{1}-function such that $\varphi(0)=\varphi^{\prime}(0)=$ $0, \varphi(t)=1$, for $t \geqslant 1$, and $\varphi^{\prime}(t)>0$, for $t \in(0,1)$. Now we define $g: \Gamma \times R^{n-p} \longrightarrow$ $\Gamma \times R^{n-p}$ by the formula

$$
g(u, v):=\left(u, \varphi\left(\frac{|v|}{\varepsilon \omega(u)}\right) v\right) .
$$

Then $g(G)=G$ and g is identity outside G. Besides, g is a \mathcal{C}^{1}-diffeomorphism of $\Gamma \times R^{n-p} \backslash \Gamma$ onto $\Gamma \times R^{n-p} \backslash \Gamma$, because its inverse on $\Gamma \times R^{n-p} \backslash \Gamma$ is

$$
g^{-1}(u, w)=\left(u, \psi^{-1}\left(\frac{|w|}{\varepsilon \omega(u)}\right) \frac{w}{|w|}\right),
$$

where $\psi:(0,+\infty) \longrightarrow(0,+\infty)$ is a \mathcal{C}^{1}-diffeomorphism defined by the formula $\psi(t):=\varphi(t) t$.

Furthermore g is C^{1} on $\Gamma \times R^{n-p}$, because for any $j \in\{1, \ldots, n-p\}$

$$
\begin{equation*}
\frac{\partial g}{\partial v_{j}}(u, v)=\left(0, \frac{v_{j}}{|v|} \cdot \frac{1}{\varepsilon \omega(u)} \cdot \varphi^{\prime}\left(\frac{|v|}{\varepsilon \omega(u)}\right) v+\varphi\left(\frac{|v|}{\varepsilon \omega(u)}\right) e_{j}\right) \tag{8}
\end{equation*}
$$

where $e_{j}=(0, \ldots, 1, \ldots, 0)$. It follows that $\frac{\partial g}{\partial v_{j}}(u, v) \rightarrow(0,0)$, when $(u, v) \rightarrow\left(u_{o}, 0\right) \in \Gamma$.

Now we define $h:|\mathcal{K}| \longrightarrow|\mathcal{K}|$ by putting $h(x)=g(x)$, for each $x \in G$, and $h(x)=x$ on $|\mathcal{K}| \backslash G$. It is clear that h is a homeomorphism of $|\mathcal{K}|$ onto $|\mathcal{K}|$ and a \mathcal{C}^{1}-diffeomorphism of each simplex $\Lambda \in \mathcal{K}$ onto itself. It follows from (8) and the boundedness of first-order partial derivatives of $f \mid \Lambda$ (due to (5)) that

$$
\begin{equation*}
\frac{\partial(f \mid \Lambda \circ h)}{\partial z}(u, v) \rightarrow(0,0), \quad \text { when } \quad(u, v) \rightarrow\left(u_{o}, 0\right) \in \Gamma \tag{9}
\end{equation*}
$$

where $\Lambda \in \operatorname{St}(\Gamma, \mathcal{K}) \backslash\{\Gamma\}$ and z is any nonzero vector from the intersection of the linear subspace L generated by Λ with R^{n-p}. On the other hand we have for any $i \in\{1, \ldots, p\}$ and $(u, v) \in G \cap \Lambda$

$$
\begin{gather*}
\frac{\partial(f \mid \Lambda \circ h)}{\partial u_{i}}(u, v)=\frac{\partial(f \mid \Lambda)}{\partial u_{i}}\left(u, \varphi\left(\frac{|v|}{\varepsilon \omega(u)}\right) v\right) \tag{10}\\
+\sum_{\nu=1}^{q} \frac{\partial(f \mid \Lambda)}{\partial z_{\nu}}\left(u, \varphi\left(\frac{|v|}{\varepsilon \omega(u)}\right) v\right)(-1) \frac{\partial \omega}{\partial u_{i}}(u) \frac{|v|}{\varepsilon \omega^{2}(u)} \varphi^{\prime}\left(\frac{|v|}{\varepsilon \omega(u)}\right) v_{\nu},
\end{gather*}
$$

where z_{1}, \ldots, z_{q} is an orthogonal basis of $L \cap R^{n-p}$ and v_{ν} are coefficients of v with respect to this basis. It follows from (5) and from flatness of ω on $\partial \Gamma$ that

$$
\begin{equation*}
\frac{\partial(f \mid \Lambda \circ h)}{\partial u_{i}}(u, v) \rightarrow \frac{\partial(f \mid \Delta)}{\partial u_{i}}(u, 0) \tag{11}
\end{equation*}
$$

when $\Lambda \ni(u, v) \rightarrow\left(u_{o}, 0\right) \in \Delta$, for any simplex $\Delta \in \mathcal{K}$ contained in $\bar{\Gamma}$. This has two consequences. Firstly, all first-order partial derivatives of $f \mid \Lambda \circ h$ have finite limits when approaching Γ (see (9) and (11)). Secondly, the new triangulation $f \circ h$ satisfies the condition (6) at faces Δ of Γ where it may fail to be \mathcal{C}^{1}-extendable. But such Δ are of dimension less then $p=\operatorname{dim} \Gamma$, and our procedure works by decreasing induction on $p=\operatorname{dim} \Gamma$.

Consequently, after finite number of steps, we obtain a definable \mathcal{C}^{1}-triangulation $f:|\mathcal{K}| \longrightarrow R^{n}$ of A which has on $|\mathcal{K}|$ all first-order continuous partial derivatives. Hence, by a definable version of Whitney's extension theorem $[\mathrm{KP}], f$ can be extended to a definable \mathcal{C}^{1}-mapping defined on the whole space R^{n}.

References

[C] M. Coste, An Introduction to O-minimal Geometry, Dottorato di Ricerca in Matematica, Dipartimento di Matematica, Università di Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
[CR] M. Coste; M. Reguiat, Trivialité en familles, Real algebraic geometry (Rennes, 1991) Lecture Notes in Math. 1524, Springer, Berlin, 1992, pp. 193-204.
[Cz1] M. Czapla, Invariance of regularity conditions under definable, locally Lipschitz, weakly bi-Lipschitz mappings, Ann. Polon. Math. 97 (2010), 1-21.
[Cz2] M. Czapla, Definable triangulations with regularity conditions, Geom.Topol. 16 no. 4 (2012), 2067-2095.
[KP] K. Kurdyka; W. Pawłucki, O-minimal version of Whitney's extension theorem, Studia Math. 224, no. 1 (2014), 81-96.
[L1] T.L. Loi, Whitney stratifications of sets definable in the structure $\mathbb{R}_{\text {exp }}$, Singularities and differential equations (Warsaw, 1993), Banach Center Publ. 33, Polish Acad. Sci., Warsaw 1996,, pp. 401-409.
[L2] T.L. Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998), 347-356.
[乇] St. Łojasiewicz, Stratifications et triangulations sous-analytiques, Geometry Seminars, 1986 (Italian) (Bologna, 1986), Univ. Stud. Bologna, 1988,, pp. 83-97.
[ŁSW] St. Łojasiewicz; J. Stasica; K. Wachta, Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. (Math.) 34 (1986), 531-539.
[OS] T. Ohmoto; M. Shiota, \mathcal{C}^{1}-triangulations of semialgebraic sets, arXiv: 1505.03970v1.
[vdD] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press, 1998.

[^0]: 2010 Mathematics Subject Classification: Primary 14P10. Secondary 54C60, 54C65, 32B20, 49 J 53.
 Key words and phrases: Michael's theorem, Lipschitz cell, o-minimal structure.

