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ABSTRACT. Let N = (R, +,-,<,...) be an o-minimal expansion of the standard struc-
ture of a real closed field R. We consider an equivariant definable version of a theorem
of J.H.C. Whitehead.

1. INTRODUCTION

Let N = (R,+,-,<,...) be an o-minimal expansion of the standard structure of a
real closed field R. General references on o-minimal structures are [2], [4], see also [14].
Examples and constructions of them can be seen in [3], [5], [11].

J.H.C. Whitehead proves a weak homotopy equivalence between C'W complexes is a
homotopy equivalence ([15]). Its equivariant version of it is proved by T. Matumoto ([10])
and its definable version of it proved by [1].

In this paper, we consider an equivariant definable version of the theorem of J.H.C.
Whitehead.

Everything is considered in N and a definable map is assumed to be continuous unless
otherwise stated.

Theorem 1.1. Let G be a definably compact definable group and ¢ : (X, A) — (Y,B) a
definable G map between definable G CW complex pairs. If X, A7 and B are nonempty
and the induced maps ¢, : 7,(X7) = 7,(YH) and ¢, : 7, (A?) — 7,(BT) are bijective for
1 <n <max(dim X,dimY’) and each definable subgroup H which appears as an isotropy
subgroup in X orY, then ¢ : (X, A) — (Y, B) is a definable G homotopy equivalence
map.

2. PRELIMINARIES

Let X C R" and Y C R™ be definable sets. A continuous map f : X — Y is
definable if the graph of f (C X xY C R"™ x R™) is a definable set. A group G is
a definable group if G is a definable set and the group operations G x G — G and
G — G are definable. A definable subset X of R"™ is definably compact if for every
definable map f : (a,b)g — X, there exist the limits lim, ,,.0 f(x),lim, ;o f(z) in X,
where (a,b)gr = {r € Rla < z < b},—00 < a < b < co. A definable subset X of R"
is definably compact if and only if X is closed and bounded ([13]). Note that if X is a
definably compact definable set and f : X — Y is a definable map, then f(X) is definably
compact.
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If R is the field of real numbers R, then for any definable subset X of R™, X is compact
if and only if it is definably compact. In general, a definably compact set is not necessarily
compact. For example, if R = Ry, then [0, 1]r,,, = {z € Ry,l0 < 2z < 1} is definably
compact but not compact.

Note that every definable subgroup of a definable group is closed ([12]) and a closed
subgroup of a definable group is not necessarily definable. For example Z is a closed
subgroup of R but not a definable subgroup of R.

Let G be a definable group. A pair (X, ¢) is a definable G set if X is a definable set
and the G action ¢ : G x X — X is definable. We simply write X instead of (X, ¢).

Let X,Y be a definable GG sets. A definable map f : X — Y is a definable G map if
for any g € G,z € X, f(gx) = gf(x). A definable G map f : X — Y is a definable G
homeomorphism if there exists a definable G map h : Y — X such that f o h = idy and
ho f =1idx. Two definable G maps f,h : X — Y are definably G homotopic if there
exists a definable G map H x [0,1]gp — Y such that H(x,0) = f(x), H(x,1) = h(z) for all
x € X, where [0,1]g = {z € R|0 <z <1}. A definable G map f: X — Y is a definably
G homotopy equivalence if there exists a definable G map h : Y — X such that fohis
definably G homotopic to idy and h o f is definably G homotopic to idy.

Recall existence of definable quotient.

Theorem 2.1. (Existence of definable quotient (e.g. 10. 2.18 [2])). Let G be a definably
compact definable group and X a definable G set. Then the orbit space X/G exists as a
definable set and the orbit map © : X — X/G is surjective, definable and definably proper.

Using Theorem 2.1, if H is a definable subgroup of a definably compact definable group
G, then G/H is a definable set, and the standard action G x G/H — G/H defined by
(9,9'H) — gg'H of G on G/H makes G/H a definable G set.

Recall definable G CW complexes and a result on them ([6], [7]).

Definition 2.2 ([7]). Let G be a definably compact definable group.

(1) A definable G CW complex is a finite G CW complex { X, {¢;|i € I}) satisfying the
the following three conditions.

(a) The underlying set | X| of X is a definable G set.

(b) The characteristic map f., : G/H., x A — ¢ of each open G cell ¢; is a definable G
map and f..|G/H x Int A : G/H x Int A — ¢; is a deifnable G homeomorphism, where
H,, is a definable subgroup of G, A denote a standard closed simplex, c; is the closure of
C; in X and Int A means the interior of A.

(c) For each ¢;, ¢ — ¢; is a finite union of open G cells.

(2) Let X and Y be definable G CW complexes. A cellular G map f : X — Y is
definable if f | X| — |Y| is definable.

Since G and every standard closed simplex are definably compact, every definable G
CW complex is definably compact.

Let G be a definably compact definable group. A group homomorphism from G to
some O,(R) is a representation if it is definable, where O,,(R) means the nth orthogonal
group of R. A representation space of G is R" with the orthogonal action induced from
a representation of G.

Theorem 2.3 ([6]). Let G be a definably compact definable group. Let X be a G invariant
definable subset of some representation space of G and Y a definable closed G subset of
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X. Then there exist a definable G CW complex Z in a representation space = of G, a G
CW subcomplex W of Z, and a definable G map f : X — Z such that:

(1) f maps X andY definably G homeomorphically onto G invariant definable subsets
Zy and Wy of Z and W obtained by removing some open G cells from Z and W,
respectively.

(2) The orbit map p : Z — Z/G is a definable cellular map.

(3) The orbit space Z /G is a finite simplicial complex compatible with p(Z1) and p(Wh).

(4) For each open G cell ¢ of Z, p|¢ : ¢ — p(¢) has a definable section s : p|(¢) — ¢,
where ¢ denotes the closure of ¢ in Z.

Moreover, if X is definably compact, then Z = f(X) and W = f(Y).

Corollary 2.4. Let G be a definably compact definable group and X a G invariant defin-
ably compact definable subset of some representation space of G. Then X is a definable
G CW complex.

Let G be a definably compact definable group, X a definable G set and Y a definable
G subset of X. We say that a pair (X,Y) admits a definable G homotopy extension if
for any definable G map from X to a definable G set Z and any definable G homotopy
F:Yx|0,1]g — Z with F(y,0) = f(y) for all y € Y, there exists a definable G homotopy
H; X x [0,1]g — Z such that H(z,0) = f(z) for all z € X and H|Y x [0,1]gp = F.

Theorem 2.5 ([8]). Let G be a definably compact definable group. If X is a definable G
set and Y a definable close G subset of X, then (X,Y) admits a definable G homotopy
extension.

3. PROOF OF THEOREM 1.1

O-minimal homotopy groups are defined in [1]. We use there groups instead of the
classical homotopy groups

Proposition 3.1. Let Z be a definable G set and Y C X be a definable G CW pair such
that the dimensions of whose cells do not exceed N. If for each definable subgroup H of G,
ZH is nonempty, definably connected and ,(Z%) vanishes for n < N, then any definable
G map of Y into Z is extended equivariantly on X.

Let ) = Z_1 C Zy C ... be a sequence of definable G subsets of a definable G set
Z such that any definable G map (G/H x A",G/H x dA") — (Z Z,1) is definably G
homotopic rel. G/H to a definable G map G/H x A" — Z,, (n=0,1,2,...), where H is
any definable subgroup of G.

Let Y C X be a definable G CW subcomplex and fy : X — Z be a definable G map
such that fo(Y™) C Z, foreach n =0,1,....

Lemma 3.2. There exists a definable G homotopy fy : X — Z rel. Y such that f1(X™) C
Ly, for eachn=0,1,2,....

Proof. We proceed by induction on n. We may assume that there exists a defin-
able G homotopy f' : X" ' — Z rel Y N X" ! such that fJ' = fo|X"! and
(X" C Z,.4. Let €” be an n cell of X which is not contained in Y and has
the G characteristic map Go : G/He x A" — Ge C X. We define a definable G map
F!: (G/He) x A" x {0} U(G/He) x 0A™ x[0,1]g — Z by Fl(g,s,0) = fo(o(g,s)),s € A
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and F,(g,s,t) = f"(0(g,8)),s € OA™. By the inductive hypothesis, F'(G/He x
OA™ x {1}) = "' (Go(g,s)) C Z,_1. Then there exists a definable G extension of
F! Fy: G/He x A" x [0,1]g — Z such that F;(G/He x A™ x {1}) C Z,. Fs induces a
definable G map of Ge x [0, 1]y into Z which is an extension of f;*~!, therefore we have a
definable G homotopy f: X™ — Z rel. X" NY such that f;| X"t = f~1 fo = f| X!
and fI'(X™) C Z,. By the induction on n, we have f;* for any n. The map defined by
fi : X = Z by fi]X™ = f]" is the required definable G homotopy. U

Lemma 3.3. Let Z D C be a definable G set pair and H a definable subgroup of G.
If CH is nonempty and m,(Z*,C™") vanishes, then any definable G map Gf : (G/H x
A" G/H x 0A™ — (Z,C) is definably G homotopic rel. G/H x OA™ to a definable G
map G/H x A™ — C.

Proof. Restricting Gf to H/H x A", we have a non-equivariant definable map f :
(A" 0A™) — (ZH CH). This map is definably homotopic rel. A to a definable map
fi: A" — CH. Let f, : A™ — ZH be this homotopy. Define Gf, : G/H x A" — Z by
Gfi(g,s) = gfi(s). Since fi(s) € ZH, this is well-defined. Thus Gfy = Gf and Gf; is a
definable G homotopy rel. G/H x OA™ of Gfy to Gf, : G/H x A™ — C. O

The above two lemma proves the following proposition which is a generalization of
Proposition 3.1.

Proposition 3.4. Let Z D C be a definable G set pair and Y C X a definable G
CW complex pair such that the dimensions of whose cells do not exceed N. If for each
definable subgroup H of G which appears as an isotropy subgroup of a X, C* is nonempty
and 7,(ZH, CH) vanishes for each n < N +1, then any definable G map (X,Y) — (Z,C)
1s definably G homotopic rel. 'Y to a definable G map X — C.

Proposition 3.5. Let f : X — Y be a definable map between definable sets. Then
dim f(X) < dim X.

We now consider the G cellular approximation theorem. Non-equivariant case of it is
studied in [9].

Lemma 3.6. Let f : (AF 0A*) — (A", 0A™) be a definable map and k < n. Then f is
definably homotopic rel. f~1(0A) to a definable map AF to A™.

Proof. By Proposition 3.5, f is not surjective, (AF dAF) — (A" OA™) which trans-
forms f’ to a definable map which is definably homotopic to f. 0

Lemma 3.7. Let Z = G/H' x A" and C = G/H' x OA. Then any definable map
[ (AF OAF) — (ZH CH) is homotopic rel. f~(CH) to a definable map of AF into CH
for k < n and any definable subgroup H of G.

Proof. Composite f with the projection Z# = (G/H')? x A™ — A". Then we have a
definable map f’ : (A¥, AF) — (A" OA™) which is definably homotopic rel. (f')~'(9A™)
to a definable map from A* to A" by Lemma 3.6. This gives a definable homotopy rel.
f~YHCH) of f to a definable map from A¥ to C*. OJ

Proposition 3.8. Let X be a definable G CW complex and k < n. Then mpy( X (X™)H) =
0.
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Proof. Let f : (AF, 0A%) — (XH (X™)H) be a definable map. Let Gel", ..., Ge be
G m cells of the highest dimension which intersects with f(A¥). The we can consider f
to be a definable map (A, dAF) into (ZH,(X™)), where Z = GeJ',U--- U Ge U X™ L.
Since the difference between Z and C'is only one cell G cell GeT*, by the proof of Lemma
3.7, we have a definable homotopy rel. f~1(Cf) of f to a definable map f’ : A* — CH|
provided k& < m. Repeating this argument, we have a definable homotopy rel. OA* of f
to a definable map f”: A* — (X)), O

By Proposition 3.8, 3.5 and 3.4, we have the following theorem.

Theorem 3.9. Let f : X — Y be a definable G map between definable G CW complexes.
Then f is definably G homotopic to a definable G map h : X — Y such that h(X™) C Y.

Lemma 3.10. Let ¢ : C' — Z be a definable G map between definable G sets, and X DY
a definable G CW pair such that the dimensions of whose cells do not exceed N. If for
each definable subgroup H of G which appears as an isotropy subgroup of X, CH and
ZH are nonempty and the induced map ¢, : ©(CH) — 7,(Z™) is bijiective for n < N
and surjective for n = N, then any definable G map pair g : X — Z, f' 1Y — C with
glY = ¢ o f', there exits a definable G map f : X — C such that f|Y = [ and ¢ o f
definably G homotopic rel. C' to g.

Proof. Let M be the definable mapping cylinder of ¢ : C — Z. Then M coincides
with the mapping cylinder of 7% : CH# — ZH for each definable subgroup H of G. Thus
7(MH,CH) vanishes for n < N + 1. Hence for n > 1, we can use the exact sequence in
the Hurwicz homotopy theory. Therefore we may deduce this lemma from Proposition

3.4. 0J

Theorem 3.11. Let ¢ : X — Y be a definable G map between definable G sets. If each
of XH YH is nonempty for each definable subgroup H of G, then the following conditions
are equivalent.

(1) For each definable sungroup H of G, induced map ¢, : m,(XH?) — 7, (YH) is
bijiective for 1 < n < N and surjective for n = N.

(2) The induced map ¢, : [K, X)5/ — [K, Y% is bijective for dim K < N and surjec-
tie for dim K = N for any definable G CW complex K, where |-, -]éef denotes the set of
definable G homotopy classes of definable G maps.

Proof. (1) implies (2) because of Lemma 3.10. If we take K = G/H x (A/0A), (2)
implies (1). O

Proof of Theorem 1.1. Put K = B. Then ¢|A has a definable G homotopy left
inverse 1) because the induced map ¢, : [B, A]dGef — [B, B]dGef is an isomorphism. By the
definable G homotopy extension property, we have a definable G map ¢’ : Y — Y which
is definably G homotopic to the identity and satisfies ¢/'|B = t. Then by Lemma 3.10,
we have a definable G map 9" : Y — X such that ¢"|B = ¢ and ¢ o ¢)” = 1’ is definably
G homotopic to the identity of Y. That is, ¢” is a definable G homotopy left inverse of ¢.

Moreover we have a definable G homotopy left inverse of 1" and by algebraic argument,
(¢",4)) is a definable G homotopy inverse of (¢, ¢|B). O
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