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Abstract. Let N = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard struc-
ture of a real closed field R. We consider an equivariant definable version of a theorem
of J.H.C. Whitehead.

1. Introduction

Let N = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard structure of a
real closed field R. General references on o-minimal structures are [2], [4], see also [14].
Examples and constructions of them can be seen in [3], [5], [11].

J.H.C. Whitehead proves a weak homotopy equivalence between CW complexes is a
homotopy equivalence ([15]). Its equivariant version of it is proved by T. Matumoto ([10])
and its definable version of it proved by [1].

In this paper, we consider an equivariant definable version of the theorem of J.H.C.
Whitehead.

Everything is considered in N and a definable map is assumed to be continuous unless
otherwise stated.

Theorem 1.1. Let G be a definably compact definable group and ϕ : (X,A) → (Y,B) a
definable G map between definable G CW complex pairs. If XH , AH and BH are nonempty
and the induced maps ϕ∗ : πn(X

H) → πn(Y
H) and ϕ∗ : πn(A

H) → πn(B
H) are bijective for

1 ≤ n ≤ max(dimX, dimY ) and each definable subgroup H which appears as an isotropy
subgroup in X or Y , then ϕ : (X,A) → (Y,B) is a definable G homotopy equivalence
map.

2. Preliminaries

Let X ⊂ Rn and Y ⊂ Rm be definable sets. A continuous map f : X → Y is
definable if the graph of f (⊂ X × Y ⊂ Rn × Rm) is a definable set. A group G is
a definable group if G is a definable set and the group operations G × G → G and
G → G are definable. A definable subset X of Rn is definably compact if for every
definable map f : (a, b)R → X, there exist the limits limx→a+0 f(x), limx→b−0 f(x) in X,
where (a, b)R = {x ∈ R|a ≤ x < b},−∞ ≤ a < b ≤ ∞. A definable subset X of Rn

is definably compact if and only if X is closed and bounded ([13]). Note that if X is a
definably compact definable set and f : X → Y is a definable map, then f(X) is definably
compact.
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If R is the field of real numbers R, then for any definable subset X of Rn, X is compact
if and only if it is definably compact. In general, a definably compact set is not necessarily
compact. For example, if R = Ralg, then [0, 1]Ralg

= {x ∈ Ralg|0 ≤ x ≤ 1} is definably
compact but not compact.

Note that every definable subgroup of a definable group is closed ([12]) and a closed
subgroup of a definable group is not necessarily definable. For example Z is a closed
subgroup of R but not a definable subgroup of R.

Let G be a definable group. A pair (X,ϕ) is a definable G set if X is a definable set
and the G action ϕ : G×X → X is definable. We simply write X instead of (X,ϕ).

Let X, Y be a definable G sets. A definable map f : X → Y is a definable G map if
for any g ∈ G, x ∈ X, f(gx) = gf(x). A definable G map f : X → Y is a definable G
homeomorphism if there exists a definable G map h : Y → X such that f ◦ h = idY and
h ◦ f = idX . Two definable G maps f, h : X → Y are definably G homotopic if there
exists a definable G map H× [0, 1]R → Y such that H(x, 0) = f(x), H(x, 1) = h(x) for all
x ∈ X, where [0, 1]R = {x ∈ R|0 ≤ x ≤ 1}. A definable G map f : X → Y is a definably
G homotopy equivalence if there exists a definable G map h : Y → X such that f ◦ h is
definably G homotopic to idY and h ◦ f is definably G homotopic to idX .

Recall existence of definable quotient.

Theorem 2.1. (Existence of definable quotient (e.g. 10. 2.18 [2])). Let G be a definably
compact definable group and X a definable G set. Then the orbit space X/G exists as a
definable set and the orbit map π : X → X/G is surjective, definable and definably proper.

Using Theorem 2.1, if H is a definable subgroup of a definably compact definable group
G, then G/H is a definable set, and the standard action G × G/H → G/H defined by
(g, g′H) 7→ gg′H of G on G/H makes G/H a definable G set.

Recall definable G CW complexes and a result on them ([6], [7]).

Definition 2.2 ([7]). Let G be a definably compact definable group.
(1) A definable G CW complex is a finite G CW complex {X, {ci|i ∈ I}) satisfying the

the following three conditions.
(a) The underlying set |X| of X is a definable G set.
(b) The characteristic map fci : G/Hci ×∆ → ci of each open G cell ci is a definable G

map and fci|G/H × Int ∆ : G/H × Int ∆ → ci is a deifnable G homeomorphism, where
Hci is a definable subgroup of G, ∆ denote a standard closed simplex, ci is the closure of
Ci in X and Int ∆ means the interior of ∆.

(c) For each ci, ci − ci is a finite union of open G cells.
(2) Let X and Y be definable G CW complexes. A cellular G map f : X → Y is

definable if f : |X| → |Y | is definable.
Since G and every standard closed simplex are definably compact, every definable G

CW complex is definably compact.
Let G be a definably compact definable group. A group homomorphism from G to

some On(R) is a representation if it is definable, where On(R) means the nth orthogonal
group of R. A representation space of G is Rn with the orthogonal action induced from
a representation of G.

Theorem 2.3 ([6]). Let G be a definably compact definable group. Let X be a G invariant
definable subset of some representation space of G and Y a definable closed G subset of
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X. Then there exist a definable G CW complex Z in a representation space Ξ of G, a G
CW subcomplex W of Z, and a definable G map f : X → Z such that:

(1) f maps X and Y definably G homeomorphically onto G invariant definable subsets
Z1 and W1 of Z and W obtained by removing some open G cells from Z and W ,
respectively.

(2) The orbit map p : Z → Z/G is a definable cellular map.
(3) The orbit space Z/G is a finite simplicial complex compatible with p(Z1) and p(W1).
(4) For each open G cell c of Z, p|c : c → p(c) has a definable section s : p|(c) → c,

where c denotes the closure of c in Z.

Moreover, if X is definably compact, then Z = f(X) and W = f(Y ).

Corollary 2.4. Let G be a definably compact definable group and X a G invariant defin-
ably compact definable subset of some representation space of G. Then X is a definable
G CW complex.

Let G be a definably compact definable group, X a definable G set and Y a definable
G subset of X. We say that a pair (X, Y ) admits a definable G homotopy extension if
for any definable G map from X to a definable G set Z and any definable G homotopy
F : Y × [0, 1]R → Z with F (y, 0) = f(y) for all y ∈ Y , there exists a definable G homotopy
H;X × [0, 1]R → Z such that H(x, 0) = f(x) for all x ∈ X and H|Y × [0, 1]R = F .

Theorem 2.5 ([8]). Let G be a definably compact definable group. If X is a definable G
set and Y a definable close G subset of X, then (X, Y ) admits a definable G homotopy
extension.

3. Proof of Theorem 1.1

O-minimal homotopy groups are defined in [1]. We use there groups instead of the
classical homotopy groups

Proposition 3.1. Let Z be a definable G set and Y ⊂ X be a definable G CW pair such
that the dimensions of whose cells do not exceed N . If for each definable subgroup H of G,
ZH is nonempty, definably connected and πn(Z

H) vanishes for n < N , then any definable
G map of Y into Z is extended equivariantly on X.

Let ∅ = Z−1 ⊂ Z0 ⊂ . . . be a sequence of definable G subsets of a definable G set
Z such that any definable G map (G/H × ∆n, G/H × ∂∆n) → (Z,Zn−1) is definably G
homotopic rel. G/H to a definable G map G/H ×∆n → Zn (n = 0, 1, 2, . . . ), where H is
any definable subgroup of G.

Let Y ⊂ X be a definable G CW subcomplex and f0 : X → Z be a definable G map
such that f0(Y

n) ⊂ Zn for each n = 0, 1, . . . .

Lemma 3.2. There exists a definable G homotopy ft : X → Z rel. Y such that f1(X
n) ⊂

Zn, for each n = 0, 1, 2, . . . .

Proof . We proceed by induction on n. We may assume that there exists a defin-
able G homotopy fn−1

t : Xn−1 → Z rel Y ∩ Xn−1 such that fn−1
0 = f0|Xn−1 and

fn−1
1 (Xn−1) ⊂ Zn−1. Let en be an n cell of X which is not contained in Y and has
the G characteristic map Gσ : G/He × ∆n → Ge ⊂ X. We define a definable G map
F ′
s : (G/He)×∆n×{0} ∪ (G/He)×∂∆n× [0, 1]R → Z by F ′

s(g, s, 0) = f0(σ(g, s)), s ∈ ∆
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and Fs(g, s, t) = fn−1
t (σ(g, s)), s ∈ ∂∆n. By the inductive hypothesis, F ′(G/He ×

∂∆n × {1}) = fn−1
1 (Gσ(g, s)) ⊂ Zn−1. Then there exists a definable G extension of

F ′
s, Fs : G/He ×∆n × [0, 1]R → Z such that Fs(G/He ×∆n × {1}) ⊂ Zn. Fs induces a

definable G map of Ge× [0, 1]R into Z which is an extension of fn−1
t , therefore we have a

definable G homotopy fn
t : Xn → Z rel. Xn ∩ Y such that ft|Xn−1 = fn−1

t , fn
0 = f |Xn−1

and fn
1 (X

n) ⊂ Zn. By the induction on n, we have fn
t for any n. The map defined by

ft : X → Z by ft|Xn = fn
t is the required definable G homotopy. □

Lemma 3.3. Let Z ⊃ C be a definable G set pair and H a definable subgroup of G.
If CH is nonempty and πn(Z

H , CH) vanishes, then any definable G map Gf : (G/H ×
∆n, G/H × ∂∆n → (Z,C) is definably G homotopic rel. G/H × ∂∆n to a definable G
map G/H ×∆n → C.

Proof. Restricting Gf to H/H × ∆n, we have a non-equivariant definable map f :
(∆n, ∂∆n) → (ZH , CH). This map is definably homotopic rel. ∂∆ to a definable map
f1 : ∆n → CH . Let ft : ∆

n → ZH be this homotopy. Define Gft : G/H × ∆n → Z by
Gft(g, s) = gft(s). Since ft(s) ∈ ZH , this is well-defined. Thus Gf0 = Gf and Gft is a
definable G homotopy rel. G/H × ∂∆n of Gf0 to Gf1 : G/H ×∆n → C. □

The above two lemma proves the following proposition which is a generalization of
Proposition 3.1.

Proposition 3.4. Let Z ⊃ C be a definable G set pair and Y ⊂ X a definable G
CW complex pair such that the dimensions of whose cells do not exceed N . If for each
definable subgroup H of G which appears as an isotropy subgroup of a X, CH is nonempty
and πn(Z

H , CH) vanishes for each n < N +1, then any definable G map (X,Y ) → (Z,C)
is definably G homotopic rel. Y to a definable G map X → C.

Proposition 3.5. Let f : X → Y be a definable map between definable sets. Then
dim f(X) ≤ dimX.

We now consider the G cellular approximation theorem. Non-equivariant case of it is
studied in [9].

Lemma 3.6. Let f : (∆k, ∂∆k) → (∆n, ∂∆n) be a definable map and k < n. Then f is
definably homotopic rel. f−1(∂∆) to a definable map ∆k to ∆n.

Proof . By Proposition 3.5, f is not surjective, (∆k, ∂∆k) → (∆n, ∂∆n) which trans-
forms f ′ to a definable map which is definably homotopic to f . □
Lemma 3.7. Let Z = G/H ′ × ∆n and C = G/H ′ × ∂∆. Then any definable map
f : (∆k, ∂∆k) → (ZH , CH) is homotopic rel. f−1(CH) to a definable map of ∆k into CH

for k < n and any definable subgroup H of G.

Proof . Composite f with the projection ZH = (G/H ′)H ×∆n → ∆n. Then we have a
definable map f ′ : (∆k, ∂∆k) → (∆n, ∂∆n) which is definably homotopic rel. (f ′)−1(∂∆n)
to a definable map from ∆k to ∂∆n by Lemma 3.6. This gives a definable homotopy rel.
f−1(CH) of f to a definable map from ∆k to CH . □
Proposition 3.8. Let X be a definable G CW complex and k ≤ n. Then πk(X

H , (Xn)H) =
0.
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Proof. Let f : (∆k, ∂∆k) → (XH , (Xn)H) be a definable map. Let Gem1 , . . . , Ge
m
k be

G m cells of the highest dimension which intersects with f(∆k). The we can consider f
to be a definable map (∆, ∂∆k) into (ZH , (Xn)H), where Z = Gem2 ,∪ · · · ∪Gemk ∪Xm−1.
Since the difference between Z and C is only one cell G cell Gem1 , by the proof of Lemma
3.7, we have a definable homotopy rel. f−1(CH) of f to a definable map f ′ : ∆k → CH ,
provided k < m. Repeating this argument, we have a definable homotopy rel. ∂∆k of f
to a definable map f ′′ : ∆k → (Xn)H . □

By Proposition 3.8, 3.5 and 3.4, we have the following theorem.

Theorem 3.9. Let f : X → Y be a definable G map between definable G CW complexes.
Then f is definably G homotopic to a definable G map h : X → Y such that h(Xn) ⊂ Y n.

Lemma 3.10. Let ϕ : C → Z be a definable G map between definable G sets, and X ⊃ Y
a definable G CW pair such that the dimensions of whose cells do not exceed N . If for
each definable subgroup H of G which appears as an isotropy subgroup of X, CH and
ZH are nonempty and the induced map ϕ∗ : π(CH) → πn(Z

H) is bijiective for n < N
and surjective for n = N , then any definable G map pair g : X → Z, f ′ : Y → C with
g|Y = ϕ ◦ f ′, there exits a definable G map f : X → C such that f |Y = f ′ and ϕ ◦ f
definably G homotopic rel. C to g.

Proof . Let M be the definable mapping cylinder of ϕ : C → Z. Then MH coincides
with the mapping cylinder of πH : CH → ZH for each definable subgroup H of G. Thus
π(MH , CH) vanishes for n < N + 1. Hence for n ≥ 1, we can use the exact sequence in
the Hurwicz homotopy theory. Therefore we may deduce this lemma from Proposition
3.4. □

Theorem 3.11. Let ϕ : X → Y be a definable G map between definable G sets. If each
of XH , Y H is nonempty for each definable subgroup H of G, then the following conditions
are equivalent.

(1) For each definable sungroup H of G, induced map ϕ∗ : πn(X
H) → πn(Y

H) is
bijiective for 1 ≤ n < N and surjective for n = N .

(2) The induced map ϕ∗ : [K,X]defG → [K,Y ]defG is bijective for dimK < N and surjec-

tive for dimK = N for any definable G CW complex K, where [·, ·]defG denotes the set of
definable G homotopy classes of definable G maps.

Proof . (1) implies (2) because of Lemma 3.10. If we take K = G/H × (∆/∂∆), (2)
implies (1). □

Proof of Theorem 1.1. Put K = B. Then ϕ|A has a definable G homotopy left

inverse ψ because the induced map ϕ∗ : [B,A]
def
G → [B,B]defG is an isomorphism. By the

definable G homotopy extension property, we have a definable G map ϕ′ : Y → Y which
is definably G homotopic to the identity and satisfies ψ′|B = ψ. Then by Lemma 3.10,
we have a definable G map ψ′′ : Y → X such that ψ′′|B = ψ and ϕ ◦ ψ′′ = ψ′ is definably
G homotopic to the identity of Y . That is, ψ′′ is a definable G homotopy left inverse of ϕ.
Moreover we have a definable G homotopy left inverse of ψ′′ and by algebraic argument,
(ψ′′, ψ) is a definable G homotopy inverse of (ϕ, ϕ|B). □
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