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Abstract. A version of Michael’s theorem for multivalued mappings definable in
o-minimal structures with M -Lipschitz cell values (M a constant) is proven.

1. Introduction. Assume that R is any real closed field and an expansion of R to
some o-minimal structure is given. Throughout the paper we will be talking about
definable sets and mappings referring to this o-minimal structure. (For fundamental
definitions and results on o-minimal structures the reader is referred to [vdD] or
[C].) In this article we adopt the following definition of a closed cell.

A subset S of Rm (m ∈ Z, m > 0) will be called a closed (respectively, closed
M -Lipschitz) cell in Rm, where M ∈ R, M > 0, if

(i) S is a closed interval [α, β] (α, β ∈ R, α 6 β), or S = [α, +∞), or S =
(−∞, α] (α ∈ R), or S = R, when m = 1 and

(ii) S = [f1, f2] := {(y′, ym) : y′ ∈ S′, f1(y′) 6 ym 6 f2(y′)}, where y′ =
(y1, . . . , ym−1), S′ is a closed (respectively, closed M -Lipschitz) cell in Rm−1,
fi : S′ −→ R (i = 1, 2) are continuous (respectively, M -Lipschitz) definable func-
tions such that f1(y′) 6 f2(y′), for each y′ ∈ S′, or S = [f, +∞) = {(y′, ym) :
y′ ∈ S′, ym > f(y′)}, or S = (−∞, f ] = {(y′, ym) : y′ ∈ S′, ym 6 f(y′)}, or
S = S′ × R, where S′ is as before and f : S′ −→ R is continuous (respectively,
M -Lipschitz), when m > 1.

Let F : A ⇒ Rm be a multivalued mapping defined on a subset A of Rn; i.e. a
mapping which assigns to each point x ∈ A a nonempty subset F (x) of Rm. F can
be identified with its graph; i.e. a subset of Rn×Rm. If this subset is definable we
will call F definable. F is called lower semicontinuous if for each a ∈ A and each
u ∈ F (a) and any neighborhood U of u, there exists a neighborhood V of a such
that U ∩ F (x) 6= ∅, for each x ∈ V .

The aim of the present article is the following theorem.
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Theorem 1. Let F : A ⇒ Rm be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of Rn such that every value F (x) is a
closed M -Lipschitz cell in Rm, where a constant M > 0 is independent of x ∈ A.
Then F admits a continuous definable selection ϕ : A −→ Rm.

The following generalization of Theorem 1 is immediate.

Corollary 1. Let F : A ⇒ Rm be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of Rn. If there is a continuous definable
mapping Φ : A −→ Aut(Rm) with values in the space of linear automorphisms1

of Rm such that Φ(x)(F (x)) is a closed M -Lipschitz cell in Rm, then F admits a
continuous definable selection ϕ : A −→ Rm.

Applying Theorem 1 to semilinear sets (see Remark 3 below) and taking into
account that every closed semilinear cell is Lipschitz and for every semilinear family
of semilinear cells they are M -Lipschitz with common M [vdD, Chapter 1, (7.4)],
we obtain the following application generalizing [AT, Theorem 4.10]

Corollary 2. Let F : A ⇒ Rm be a semilinear multivalued, lower semicontinuous
mapping defined on a semilinear bounded subset A of Rn such that every value F (x)
is a closed semilinear cell in Rm. Then F admits a continuous semilinear selection
ϕ : A −→ Rm.

For other results on multivalued mappings in connection with o-minimal geome-
try we refer the reader to [AT1], [AT2] and [DP].

2. Proof of Theorem 1.

The proof will be by induction on m. Consider first the case m = 1. Then
F (x) = {t ∈ R : f(x) 6 t 6 g(x)}, for each x ∈ A, where f : A −→ R ∪ {−∞}
and g : A −→ R ∪ {+∞} are definable functions.2 It is easy to check that F
is lower semicontinuous if and only if g is lower semicontinuous and f is upper
semicontinuous. Therefore, the problem reduces to the following.

Proposition 1. Let f : A −→ R∪{−∞} and g : A −→ R∪{+∞} be two definable
functions such that f(x) 6 g(x), for each x ∈ A, and f is upper semicontinuous
while g is lower semicontinuous. Then there exists a definable continuous function
ϕ : A −→ R such that f 6 ϕ 6 g.

To prove Proposition 1, which is a definable version of the Katětov-Tong Insertion
Theorem, we need the following definable version of the Tietze Theorem.

Theorem 2 (Definable Tietze’s Theorem). Let X and Y be two definable sub-
sets of Rn such that Y is closed in X. Then every definable continuous function
ψ : Y −→ R has a continuous definable extension Ψ : X −→ R.

For a proof of Theorem 2 see [vdD, Chapter 8, (3.10)] (compare also [AF, Lemma
6.6]).

Remark 1. According to [AT2, Theorem 3.3] Theorem 2 holds true in the semi-
linear o-minimal structure, provided that Y is bounded.

1The space Aut(Rm) is naturally identified with a subset of Rm2
.

2This means that f |f−1(R) and g|g−1(R) are definable.
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Proof of Proposition 1. We use induction on d := dim A. The case d = 0 is trivial.
Assume that d > 0. Let

B := {a ∈ A : f and g are both continuous in a neighborhood of a inA}.
Then B is definable, open and dense subset of A. Hence A\B is definable closed in
A and dim(A\B) < d. By induction hypothesis there exists a definable continuous
function ψ : A\B −→ R such that for each x ∈ A\B, f(x) 6 ψ(x) 6 g(x). By the
Definable Tietze Theorem there exists a definable continuous extension Ψ : A −→ R
of ψ. Now put ϕ(x) := min(max(Ψ(x), f(x)), g(x)), for each x ∈ A. It is clear that
f 6 ϕ 6 g. Continuity of ϕ on B is obvious, since Ψ, f and g are continuous on
B. We are checking continuity at any a ∈ A \B. Then ϕ(a) = ψ(a) ∈ [f(a), g(a)].
Fix any ε > 0. There exists a neighborhood V of a in A such that ψ(a) + ε >
f(x), ψ(a) − ε < g(x), ψ(a) + ε > Ψ(x) and ψ(a) − ε < Ψ(x) for each x ∈ V .
Then ϕ(x) − ε = ψ(a) − ε < Ψ(x) 6 max(Ψ(x), f(x)) < ψ(a) + ε = ϕ(a) + ε and
ϕ(a)− ε < g(x). Hence ϕ(a)− ε < ϕ(x) = min(max(Ψ(x), f(x)), g(x)) < ϕ(a) + ε.

Remark 2. Since Theorem 2 holds true for the o-minimal structure of semilinear
sets under the assumption that X semilinear is bounded (see Remark 1), Proposition
1 holds true in this case too.

Assume now that m > 1 and our theorem is true for m − 1. To make the
induction hypothesis work we prove the following.

Proposition 2. Under the assumptions of Theorem 1, let
π : Rm 3 y = (y1, . . . , ym) 7−→ y′ = (y1, . . . , ym−1) ∈ Rm−1

be the natural projection. Let π ◦ F : A ⇒ Rm−1 denote the composition defined by
the formula (π ◦ F )(x) = π(F (x)).

Then F treated as a multi-valued mapping F : π ◦ F ⇒ R is lower semi-
continuous.

Proof of Proposition 2. Put for each x ∈ A

F (x) = {(y′, ym) : y′ ∈ π(F (x)), ym ∈ R, fx(y′) 6 ym 6 gx(y′)}.
Fix any (a, b′) ∈ π◦F , u ∈ F (a, b′) = {ym ∈ R : fa(b′) 6 ym 6 ga(b′)} and any open
interval Uε := (u− ε, u + ε). Let W be the open ball {y′ ∈ Rm−1 : |y′ − b′| < ε

4M },
where | .| is defined by | y′| = |(y1, . . . , ym−1)| = maxj | yj |. By lower semi-continuity
of F there exists a neighborhood V of a in A such that F (x) ∩ (W × U ε

2
) 6= ∅,

whenever x ∈ V .

Let now (x, y′) ∈ (π◦F )∩(V ×W ). There exists (z′, v) ∈ F (x)∩(W×U ε
2
). Then

y′ ∈ π(F (x)), z′ ∈ π(F (x)); hence |y′ − z′| < ε
2M and fx(z′) 6 v 6 gx(z′). Thus, if

fx 6≡ −∞, |fx(y′)−fx(z′)| 6 M |y′−z′| < 1
2ε. Hence fx(y′) 6 fx(z′)+ 1

2ε 6 v+ 1
2ε <

u+ε, also in the case when fx ≡ −∞. Similarly, if gx 6≡ +∞, |gx(y′)−gx(z′)| < 1
2ε

and consequently gx(y′) > gx(z′)− 1
2ε > v > u−ε. Finally, [fx(y′), gx(y′)]∩Uε 6= ∅,

which ends the proof.

To finish the proof of Theorem 1, observe that the mapping π ◦F is lower semi-
continuous as a composition of a lower semicontinuous mapping with a continuous
one, so by the induction hypothesis there exists a continuous definable selection ϕ′

for π ◦ F . By Proposition 2, F |ϕ′ : ϕ′ ⇒ R is lower semi-continuous; hence, by
Proposition 1, it admits a continuous definable selection σ : ϕ′ −→ R, which gives
a required selection ϕ = (ϕ′, σ ◦ (idA, ϕ′)).
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Remark 3. Proof of Proposition 2 holds true for the o-minimal structure of semi-
linear sets, so in view of Remark 2, the Theorem 1 holds true for the semilinear
structure under the assumption that X semilinear is bounded.

3. A counterexample.

We are going to present an example of a semialgebraic mapping G : A ⇒ R2,
with A ⊂ R2, which is not only lower semicontinuous, but even continuous with
respect to the Hausdorff distance in the space of definable, closed, bounded and
nonempty subsets, and which does not admit a continuous selection, although its
values G(x1, x2) are M -Lipschitz cells but not with a constant M independent of
(x1, x2). Let A = T1 ∪ T2, where

T1 = {(x1, x2) : x1 ∈ [0, 1],−x1 6 x2 6 x1}

and
T2 = {(x1, x2) : x1 ∈ [−1, 0], x1 6 x2 6 −x1}.

We define G by the following

G(x1, x2) =





{0} × [0, 1] , (x1, x2) = (0, 0),{(
y,
|y|
|x1|

)
: −x1 + x2 6 y 6 x1

}
, x1 > 0, x2 > 0,

{(
y,
|y|
|x1|

)
: −x1 6 y 6 x1 + x2

}
, x1 > 0, x2 6 0,

{(
y, 1− |y|

|x1|
)

: x1 + x2 6 y 6 −x1

}
, x1 < 0, x2 > 0,

{(
y, 1− |y|

|x1|
)

: x1 6 y 6 −x1 + x2

}
, x1 < 0, x2 6 0.

The graph of G is imagined by the following picture.
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Suppose that the mapping G admits a continuous semialgebraic selection
ϕ = (σ, ρ) : A −→ R2. Then, for x1 > 0, σ(x1, x1) > 0 and σ(x1,−x1) 6 0; hence,
there exists ξ ∈ [−x1, x1] such that σ(x1, ξ) = 0, so ρ(x1, ξ) = |σ(x1,ξ)|

|x1| = 0 and
ϕ(x1, ξ) = (0, 0). Consequently, by continuity, ϕ(0, 0) = (0, 0). Similarly, for any
x1 < 0, there exists ξ ∈ [x1,−x1], such that ϕ(x1, ξ) = (0, 1); hence ϕ(0, 0) = (0, 1),
a contradiction.

Acknowledgement. We thank the referee for valuable comments.
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