MICHAEL'S THEOREM FOR LIPSCHITZ CELLS IN O-MINIMAL STRUCTURES

MAŁGORZATA CZAPLA AND WIESŁAW PAWŁUCKI

Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. Prof. St. Łojasiewicza 6, 30-348 Kraków, Poland E-mail addresses: Malgorzata.Czapla@im.uj.edu.pl, Wieslaw.Pawlucki@im.uj.edu.pl

ABSTRACT. A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a constant) is proven.

1. Introduction. Assume that R is any real closed field and an expansion of R to some o-minimal structure is given. Throughout the paper we will be talking about definable sets and mappings referring to this o-minimal structure. (For fundamental definitions and results on o-minimal structures the reader is referred to [vdD] or [C].) In this article we adopt the following definition of a closed cell.

A subset S of \mathbb{R}^m $(m \in \mathbb{Z}, m > 0)$ will be called a *closed (respectively, closed M-Lipschitz) cell* in \mathbb{R}^m , where $M \in \mathbb{R}, M > 0$, if

(i) S is a closed interval $[\alpha, \beta]$ $(\alpha, \beta \in R, \alpha \leq \beta)$, or $S = [\alpha, +\infty)$, or $S = (-\infty, \alpha]$ $(\alpha \in R)$, or S = R, when m = 1 and

(ii) $S = [f_1, f_2] := \{(y', y_m) : y' \in S', f_1(y') \leq y_m \leq f_2(y')\}$, where $y' = (y_1, \ldots, y_{m-1}), S'$ is a closed (respectively, closed *M*-Lipschitz) cell in R^{m-1} , $f_i : S' \longrightarrow R$ (i = 1, 2) are continuous (respectively, *M*-Lipschitz) definable functions such that $f_1(y') \leq f_2(y')$, for each $y' \in S'$, or $S = [f, +\infty) = \{(y', y_m) : y' \in S', y_m \geq f(y')\}$, or $S = (-\infty, f] = \{(y', y_m) : y' \in S', y_m \leq f(y')\}$, or $S = S' \times R$, where S' is as before and $f : S' \longrightarrow R$ is continuous (respectively, *M*-Lipschitz), when m > 1.

Let $F: A \Rightarrow \mathbb{R}^m$ be a multivalued mapping defined on a subset A of \mathbb{R}^n ; i.e. a mapping which assigns to each point $x \in A$ a nonempty subset F(x) of \mathbb{R}^m . F can be identified with its graph; i.e. a subset of $\mathbb{R}^n \times \mathbb{R}^m$. If this subset is definable we will call F definable. F is called *lower semicontinuous* if for each $a \in A$ and each $u \in F(a)$ and any neighborhood U of u, there exists a neighborhood V of a such that $U \cap F(x) \neq \emptyset$, for each $x \in V$.

The aim of the present article is the following theorem.

²⁰¹⁰ Mathematics Subject Classification: Primary 14P10. Secondary 54C60, 54C65, 32B20, 49J53.

Key words and phrases: Michael's theorem, Lipschitz cell, o-minimal structure.

Theorem 1. Let $F : A \rightrightarrows \mathbb{R}^m$ be a definable multivalued, lower semicontinuous mapping defined on a definable subset A of \mathbb{R}^n such that every value F(x) is a closed M-Lipschitz cell in \mathbb{R}^m , where a constant M > 0 is independent of $x \in A$. Then F admits a continuous definable selection $\varphi : A \longrightarrow \mathbb{R}^m$.

The following generalization of Theorem 1 is immediate.

Corollary 1. Let $F : A \rightrightarrows R^m$ be a definable multivalued, lower semicontinuous mapping defined on a definable subset A of R^n . If there is a continuous definable mapping $\Phi : A \longrightarrow Aut(R^m)$ with values in the space of linear automorphisms¹ of R^m such that $\Phi(x)(F(x))$ is a closed M-Lipschitz cell in R^m , then F admits a continuous definable selection $\varphi : A \longrightarrow R^m$.

Applying Theorem 1 to semilinear sets (see Remark 3 below) and taking into account that every closed semilinear cell is Lipschitz and for every semilinear family of semilinear cells they are M-Lipschitz with common M [vdD, Chapter 1, (7.4)], we obtain the following application generalizing [AT, Theorem 4.10]

Corollary 2. Let $F : A \rightrightarrows R^m$ be a semilinear multivalued, lower semicontinuous mapping defined on a semilinear bounded subset A of R^n such that every value F(x) is a closed semilinear cell in R^m . Then F admits a continuous semilinear selection $\varphi : A \longrightarrow R^m$.

For other results on multivalued mappings in connection with o-minimal geometry we refer the reader to [AT1], [AT2] and [DP].

2. Proof of Theorem 1.

The proof will be by induction on m. Consider first the case m = 1. Then $F(x) = \{t \in R : f(x) \leq t \leq g(x)\}$, for each $x \in A$, where $f : A \longrightarrow R \cup \{-\infty\}$ and $g : A \longrightarrow R \cup \{+\infty\}$ are definable functions.² It is easy to check that F is lower semicontinuous if and only if g is lower semicontinuous and f is upper semicontinuous. Therefore, the problem reduces to the following.

Proposition 1. Let $f : A \longrightarrow R \cup \{-\infty\}$ and $g : A \longrightarrow R \cup \{+\infty\}$ be two definable functions such that $f(x) \leq g(x)$, for each $x \in A$, and f is upper semicontinuous while g is lower semicontinuous. Then there exists a definable continuous function $\varphi : A \longrightarrow R$ such that $f \leq \varphi \leq g$.

To prove Proposition 1, which is a definable version of the Katětov-Tong Insertion Theorem, we need the following definable version of the Tietze Theorem.

Theorem 2 (Definable Tietze's Theorem). Let X and Y be two definable subsets of \mathbb{R}^n such that Y is closed in X. Then every definable continuous function $\psi: Y \longrightarrow \mathbb{R}$ has a continuous definable extension $\Psi: X \longrightarrow \mathbb{R}$.

For a proof of Theorem 2 see [vdD, Chapter 8, (3.10)] (compare also [AF, Lemma 6.6]).

Remark 1. According to [AT2, Theorem 3.3] Theorem 2 holds true in the semilinear o-minimal structure, provided that Y is bounded.

¹The space $Aut(R^m)$ is naturally identified with a subset of R^{m^2} .

²This means that $f|f^{-1}(R)$ and $g|g^{-1}(R)$ are definable.

Proof of Proposition 1. We use induction on $d := \dim A$. The case d = 0 is trivial. Assume that d > 0. Let

 $B := \{a \in A : f \text{ and } g \text{ are both continuous in a neighborhood of } a \text{ in } A\}.$

Then B is definable, open and dense subset of A. Hence $A \setminus B$ is definable closed in A and $\dim(A \setminus B) < d$. By induction hypothesis there exists a definable continuous function $\psi : A \setminus B \longrightarrow R$ such that for each $x \in A \setminus B$, $f(x) \leq \psi(x) \leq g(x)$. By the Definable Tietze Theorem there exists a definable continuous extension $\Psi : A \longrightarrow R$ of ψ . Now put $\varphi(x) := \min(\max(\Psi(x), f(x)), g(x))$, for each $x \in A$. It is clear that $f \leq \varphi \leq g$. Continuity of φ on B is obvious, since Ψ, f and g are continuous on B. We are checking continuity at any $a \in A \setminus B$. Then $\varphi(a) = \psi(a) \in [f(a), g(a)]$. Fix any $\varepsilon > 0$. There exists a neighborhood V of a in A such that $\psi(a) + \varepsilon > f(x), \psi(a) - \varepsilon < g(x), \ \psi(a) + \varepsilon > \Psi(x) \ \max(\Psi(x), f(x)) < \psi(a) + \varepsilon = \varphi(a) + \varepsilon \ \max(\Psi(x), f(x)) < \psi(a) + \varepsilon = \varphi(a) + \varepsilon \ \max(\Psi(x), f(x)) < \psi(a) + \varepsilon = \varphi(a) + \varepsilon \ \max(\varphi(a) - \varepsilon < g(x))$. Hence $\varphi(a) - \varepsilon < \varphi(x) = \min(\max(\Psi(x), f(x)), g(x)) < \varphi(a) + \varepsilon$.

Remark 2. Since Theorem 2 holds true for the o-minimal structure of semilinear sets under the assumption that X semilinear is bounded (see Remark 1), Proposition 1 holds true in this case too.

Assume now that m > 1 and our theorem is true for m - 1. To make the induction hypothesis work we prove the following.

Proposition 2. Under the assumptions of Theorem 1, let

 $\pi: R^m \ni y = (y_1, \dots, y_m) \longmapsto y' = (y_1, \dots, y_{m-1}) \in R^{m-1}$

be the natural projection. Let $\pi \circ F : A \rightrightarrows R^{m-1}$ denote the composition defined by the formula $(\pi \circ F)(x) = \pi(F(x))$.

Then F treated as a multi-valued mapping $F : \pi \circ F \Rightarrow R$ is lower semicontinuous.

Proof of Proposition 2. Put for each $x \in A$

$$F(x) = \{ (y', y_m) : y' \in \pi(F(x)), y_m \in R, f_x(y') \leq y_m \leq g_x(y') \}.$$

Fix any $(a,b') \in \pi \circ F$, $u \in F(a,b') = \{y_m \in R : f_a(b') \leq y_m \leq g_a(b')\}$ and any open interval $U_{\varepsilon} := (u - \varepsilon, u + \varepsilon)$. Let W be the open ball $\{y' \in R^{m-1} : |y' - b'| < \frac{\varepsilon}{4M}\}$, where |.| is defined by $|y'| = |(y_1, \ldots, y_{m-1})| = \max_j |y_j|$. By lower semi-continuity of F there exists a neighborhood V of a in A such that $F(x) \cap (W \times U_{\frac{\varepsilon}{2}}) \neq \emptyset$, whenever $x \in V$.

Let now $(x, y') \in (\pi \circ F) \cap (V \times W)$. There exists $(z', v) \in F(x) \cap (W \times U_{\frac{\varepsilon}{2}})$. Then $y' \in \pi(F(x)), z' \in \pi(F(x))$; hence $|y' - z'| < \frac{\varepsilon}{2M}$ and $f_x(z') \leq v \leq g_x(z')$. Thus, if $f_x \not\equiv -\infty, |f_x(y') - f_x(z')| \leq M|y' - z'| < \frac{1}{2}\varepsilon$. Hence $f_x(y') \leq f_x(z') + \frac{1}{2}\varepsilon \leq v + \frac{1}{2}\varepsilon < u + \varepsilon$, also in the case when $f_x \equiv -\infty$. Similarly, if $g_x \not\equiv +\infty, |g_x(y') - g_x(z')| < \frac{1}{2}\varepsilon$ and consequently $g_x(y') \geq g_x(z') - \frac{1}{2}\varepsilon \geq v > u - \varepsilon$. Finally, $[f_x(y'), g_x(y')] \cap U_{\varepsilon} \neq \emptyset$, which ends the proof.

To finish the proof of Theorem 1, observe that the mapping $\pi \circ F$ is lower semicontinuous as a composition of a lower semicontinuous mapping with a continuous one, so by the induction hypothesis there exists a continuous definable selection φ' for $\pi \circ F$. By Proposition 2, $F|\varphi':\varphi' \rightrightarrows R$ is lower semi-continuous; hence, by Proposition 1, it admits a continuous definable selection $\sigma:\varphi' \longrightarrow R$, which gives a required selection $\varphi = (\varphi', \sigma \circ (id_A, \varphi')).$ **Remark 3.** Proof of Proposition 2 holds true for the o-minimal structure of semilinear sets, so in view of Remark 2, the Theorem 1 holds true for the semilinear structure under the assumption that X semilinear is bounded.

3. A counterexample.

We are going to present an example of a semialgebraic mapping $G : A \rightrightarrows R^2$, with $A \subset R^2$, which is not only lower semicontinuous, but even continuous with respect to the Hausdorff distance in the space of definable, closed, bounded and nonempty subsets, and which does not admit a continuous selection, although its values $G(x_1, x_2)$ are *M*-Lipschitz cells but not with a constant *M* independent of (x_1, x_2) . Let $A = T_1 \cup T_2$, where

$$T_1 = \{(x_1, x_2) : x_1 \in [0, 1], -x_1 \leq x_2 \leq x_1\}$$

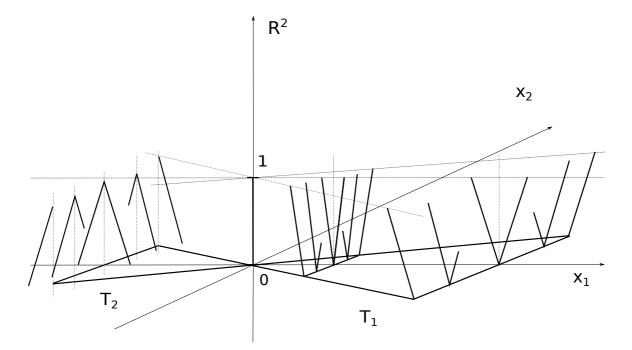
and

$$T_2 = \{ (x_1, x_2) : x_1 \in [-1, 0], x_1 \le x_2 \le -x_1 \}.$$

We define G by the following

$$G(x_1, x_2) = \begin{cases} \{0\} \times [0, 1], & (x_1, x_2) = (0, 0), \\ \left\{ \left(y, \frac{|y|}{|x_1|}\right) : -x_1 + x_2 \leqslant y \leqslant x_1 \right\}, & x_1 > 0, x_2 \geqslant 0, \\ \left\{ \left(y, \frac{|y|}{|x_1|}\right) : -x_1 \leqslant y \leqslant x_1 + x_2 \right\}, & x_1 > 0, x_2 \leqslant 0, \\ \left\{ \left(y, 1 - \frac{|y|}{|x_1|}\right) : x_1 + x_2 \leqslant y \leqslant -x_1 \right\}, & x_1 < 0, x_2 \geqslant 0, \\ \left\{ \left(y, 1 - \frac{|y|}{|x_1|}\right) : x_1 \leqslant y \leqslant -x_1 + x_2 \right\}, & x_1 < 0, x_2 \leqslant 0. \end{cases} \end{cases}$$

The graph of G is imagined by the following picture.



Suppose that the mapping G admits a continuous semialgebraic selection $\varphi = (\sigma, \rho) : A \longrightarrow R^2$. Then, for $x_1 > 0$, $\sigma(x_1, x_1) \ge 0$ and $\sigma(x_1, -x_1) \le 0$; hence, there exists $\xi \in [-x_1, x_1]$ such that $\sigma(x_1, \xi) = 0$, so $\rho(x_1, \xi) = \frac{|\sigma(x_1, \xi)|}{|x_1|} = 0$ and $\varphi(x_1, \xi) = (0, 0)$. Consequently, by continuity, $\varphi(0, 0) = (0, 0)$. Similarly, for any $x_1 < 0$, there exists $\xi \in [x_1, -x_1]$, such that $\varphi(x_1, \xi) = (0, 1)$; hence $\varphi(0, 0) = (0, 1)$, a contradiction.

Acknowledgement. We thank the referee for valuable comments.

References

- [AT1] M. Aschenbrenner; A. Thamrongthanyalak, Whitney's extension problem in o-minimal structures, MODNET Preprint Server No 624.
- [AT2] M. Aschenbrenner; A. Thamrongthanyalak, Michael's selection theorem in a semilinear context, Adv. Geom. 15 (2015), 293–313.
- [AF] M. Aschenbrenner; A. Fischer, Definable versions of theorems by Kirszbraun and Helly, Proc. London Math. Soc. 102 (2011), 468–502.
- [C] M. Coste, An Introduction to O-minimal Geometry, Dottorato di Ricerca in Matematica, Dipartimento di Matematica, Università di Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
- [DP] A. Daniilidis; J.C.H. Pang, Continuity and differentiability of set-valued maps revisited in the light of tame geometry, J. London Math. Soc. 83 (2011), 637–658.
- [vdD] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press, 1998.