
PILLAY'S CONJECTURE AND ITS SOLUTION-ASURVEYYA'ACOV PETERZIL1. IntrodutionThese notes were originally written for a tutorial I gave in a ModnetSummer meeting whih took plae in Oxford 2006. I later gave a similartutorial in the Wrolaw Logi olloquium 2007. The goal was to surveyreent work in model theory of o-minimal strutures, entered aroundthe solution to beautiful onjeture of Pillay on de�nable groups ino-minimal strutures. The onjeture (whih is now a theorem in mostinteresting ases) suggested a onnetion between arbitrary de�nablegroups in o-minimal strutures and ompat real Lie groups.All the results disussed here have already appeared in print (mainly[28℄, [5℄, [24℄, [16℄). The goal of the notes is to put the results togetherand to provide a diret path through the proof of the onjeture, avoid-ing side-traks and generalizations whih are not needed for the proof.This is espeially true for the last paper in the list [16℄ whih was oftenwritten with an eye towards generalizations far beyond o-minimality.The last setion of the paper has gone through substantial hangesin the �nal stages of the writing. Originally, it ontained several openquestions and onjetures whih arose during the work on Pillay's Con-jeture. However, most of these questions were reently answered in apaper of Hrushovski and Pillay, [15℄, in whih the so-alled CompatDomination Conjeture has been solved. In another paper, [25℄, theassumptions for Pillay's Conjeture were weakened from o-minimal ex-pansions of real losed �elds to o-minimal expansions of groups. Thesereent results are now briey disussed here. I also list some relatedwork whih appeared sine the original onjeture was formulated.The paper is aimed for readers who are familiar with the basimodel theoreti language and with the introdutory de�nitions of o-minimality (for more on o-minimality, see v.d. Dries' book, [6℄).Aknowledgements I thank M. Otero and A. Pillay for reading andommenting on an early version of this survey.Date: A preliminary version, Otober 30, 2007.1



2 PILLAY'S CONJECTURE2. A motivating example and the onjetureBefore stating Pillay's onjeture, with all its tehnial terminology,let's onsider the main motivating example.Consider the group:G = SO(2;R) = �� a b�b a � 2 GL(2;R) : a2 + b2 = 1�G is isomorphi, as a Lie group, to the irle group. Namely,G ' T1 = fz 2 C : jzj = 1g;with its omplex �eld-multipliation. Both groups, together with theirgroup operations and the isomorphism between them, are de�nable inthe real �eld R = hR; <;+; �; 0; 1i, so from a model theoreti view-pointthey are equivalent to eah other.Consider now a �-saturated real losed �eld R � R (� large). Wewrite G(R) for the realization of G in R. Namely, G(R) = SO(2;R).Beause SO(2;R) is a ompat group the standard-part mapping,whih sends every element of R of \�nite" size to its nearest real el-ement, indues a group-homomorphism st : SO(2;R) ! SO(2;R),de�ned by: st� a b�b a � = � st(a) st(b)st(�b) st(a) � :We have ker(st) = �(I) = \n2N fA : jA� Ij < 1=ng ;the intersetion of ountably many de�nable sets in R.One says in this ase that ker(st) is type-de�nable, i.e., it an bewritten as the intersetion of less than �-many de�nable sets.The map st(g) is a-priori just an abstrat group homomorphism.The �rst observation of Pillay, [28℄, establishes a onnetion betweende�nability in G(R) and the Eulidean topology on G:Two topologies on G(R)=�(I)We identify G(R)=�(I) with SO(2;R) and denote by the E-topologyits standard Eulidean topology. We de�ne another topology on thisquotient, alled the Logi topology (L-topology), by: F � SO(2;R)is L-losed i� st�1(F ) � G(R) is type-de�nable in the ordered �eldstruture on R.



PILLAY'S CONJECTURE 3Logial ompatness, together with the saturation of R relative tothe size of SO(2;R)=�(I) imply (see [28℄ ) that the L-topology is om-pat and Hausdor�.Fat 2.1. A set F � SO(2;R) is E-losed if and only if it is L-losed.Proof. Assume F � SO(2;R) is L-losed. It follows that st�1(F ) =p(R) for some type p(x) = f�i(x) : i 2 Ig, with jIj < �. We take g inthe Eulidean losure of F and show that it belongs to F .For all n 2 N , there exists g0 2 F suh that jg0 � gj < 1=n (withj � j being the Eulidean distane). If we now take any h 2 st�1(g0)then, sine h is in�nitesimally lose to g0, we have jh � gj < 1=n andmoreover, h j= p(x).Beause we an do the above for every n, we an replae the orderof quanti�ers (with the help of saturation) and obtain an element h0 j=p(x) suh that for all n 2 N , jh0�gj < 1=n. This implies that st(h0) = gand therefore p(R) \ st�1(g) = st�1(F ) \ st�1(g) 6= ;:Clearly, this implies that g 2 F .For the onverse, assume that F � SO(2;R) is losed in the Eu-lidean topology. We will show that st�1(F ) is type-de�nable.Beause F � SO(2;R) is ompat, for every g 2 SO(2;R)rF thereis ng 2 N suh that the distane between g and F is > 1=ng.Claim: st�1(F ) = p(R) for the type:p(x) =fx 2 SO(2;R)& jx� gj > 1=ng : g 2 SO(2;R) r Fg:Indeed, assume that st(h) = g0 2 F . Then, for every g 2 SO(2;R)rF , we have jg0 � gj > 1=ng. Beause h is in�nitesimally lose to g0 wehave jh� gj > 1=ng. Hene, h j= p(x).For the opposite inlusion, assume that h =2 st�1(F ). It followsthat st(h) = g 2 SO(2;R) r F , and therefore jh � gj < 1=ng, andh =2 p(R). �Remarks1. The type p(x) de�ning st�1(F ) is parameterized by a subset ofSO(2;R) hene uses at most 2�0-many formulas. Moreover, the type isgiven uniformly, namely there is a �xed formula �(x; y) suh that allformulas in p are of the form �(x; b) for varying b's. As we will latersee, this extra feature is still laking in the general theory.



4 PILLAY'S CONJECTURE2. The quotient group G(R)=�(I) (' SO(2;R)) is independent of R.I.e. every oset, even in elementary extensions, is already representedin R. In suh a ase �(I) is said to have of bounded index in G. Anequivalent ondition is that the ardinality of G(R)=�(I) is smallerthan � (reall that R is �-saturated). Note that if H is a de�nablesubgroup of G of bounded index then the quotient is neessarily �nite.An example of a type-de�nable subgroup whih is not of boundedindex is the in�nitesimal subgroup �(0) of hR; <;+i. The quotient inthis ase is not hR;+i beause as the elementary extension extends onean realize more and more elements whih are not in�nitesimally loseto eah other.3. The Logi topology on G(R)=�(I) is not the quotient topology withrespet to the topology of the real losed �eld, beause �(I) is open inthis topology (so the quotient topology is disrete).4. One an arry out the above proess starting with any ompatHausdor� topologial spae X, instead of SO(2;R), as long as a de�n-able basis for the topology is uniformly de�nable. In this ase, if weonsider an elementary extension X� of X then � : X� ! X is de�nedby: �(x) = the unique y 2 X suh that every X-de�nable open setontaining y also ontains x.Generalizing the exampleAssume now that we move in the opposite diretion. Namely, westart with an arbitrary group G de�nable in an arbitrary (suÆientlysaturated) o-minimal struture. The goal is to assoiate to G a real Liegroup H and a surjetive homomorphism � : G ! H whose kernel istype-de�nable, suh that the logi topology agrees with the Eulideantopology on H. Ideally, H should apture ertain properties of G, suhas dimension, the struture of torsion points, ohomologial strutureand elementary theory. This is the idea behind Pillay's Conjeture.Before stating the onjeture in full we need to review some topolog-ial onepts in the theory of de�nable groups in o-minimal strutures:Assume that M = hM;<; � � �i is an o-minimal struture. M is anordered struture and as suh it is a topologial spae. The artesianproduts of M admit the produt topology. Now, if G is a de�nablegroup in M whose universe is a subset of Mn then the set G inheritsthe subspae topology fromMn but this might not be ompatible withthe group operation on G. (Consider for example, the the interval [0; 1)in R, with addition mod 1. This is a de�nable group in the real �eld



PILLAY'S CONJECTURE 5but the group operation is ont ontinuous with respet to the realtopology).A fundamental theorem of Pillay, [29℄, says: Let hG; �i be de�nablegroup whose underlying set G is a subset of Mn. Then there exists atopology � on G with the properties:(1) For all g 2 G outside a de�nable set of small small dimension, iffUs : s 2 Sg is a basis for the open neighborhoods of g in Mn thenfh � Us : s 2 S; h 2 Gg is a basis for � .(2) G, together with � , is a topologial group. Namely, the groupoperation, and the group-inverse map are ontinuous with respet to� . Atually, Pillay proves a muh stronger result, as he shows thatG anbe overed by �nitely many � -open sets, eah de�nably homeomorphito an open subset of Mk for some �xed k (the o-minimal dimensionof G). This implies for example, that just like de�nable sets in theo-minimal topology, every de�nable subset of G has �nitely many de-�nably � -onneted omponents (a set is alled de�nably � -onneted ifit not ontained the disjoint union of two non-empty de�nable � opensets).It turns out, [6℄, that if M expands a real losed �eld then everyde�nable group G is de�nably homeomorphi (with its � -topology) toa a de�nable group H � M r, for some r, suh that the topology on His the subspae topology. We all suh anH an aÆnely embedded group.De�nable ompatnessIf one works in a suÆiently saturated o-minimal struture M thenthe underlying topology on Mn is very far from being loally ompat.In fat, it is not diÆult to see that no in�nite de�nable subset of Mis ompat. Also, sequenes are quite useless in this setting sine theonly onverging sequenes are those whih are eventually onstant.What should be then the orret analogue of ompatness? The �rstattempt is to restrit oneself to de�nable overs of open sets. However,this fails as the following example shows:Consider the interval [0; 1℄ in a nonstandard real losed �eld R, andtake � 2 R to be a positive in�nitesimal. The familyU = f(x� �; x+ �) : x 2 [0; 1℄gis a de�nable open over but it has no �nite subover.So, instead of using either open overs or onverging sequenes, weuse \onverging" de�nable urves (see [27℄):



6 PILLAY'S CONJECTUREDe�nition 2.2. A de�nable group G is de�nably ompat if everyde�nable ontinuous f : (a; b)! G has a limit point in G (with respetto the � -topology), as t tends to either a or b in M.Examples of de�nably ompat groups1. If G � Mn is an aÆnely embedded group then G is de�nablyompat if and only if it is losed and bounded. In partiular, if wework over R, the notions of de�nable ompatness and ompatnessare the same for de�nable groups.2. Compat real Lie groups are de�nably ompat in any o-minimalstruture in whih they are de�nable.3. If A is an abelian variety over a real losed �eld R then A(R) = theset R-points of A, is de�nably ompat.4. The interval [0; a), in any ordered divisible abelian, with additionmod a is de�nably ompat.As a result of the work on Pillay's onjeture, and mainly as a re-sult of the work of Dolih, [7℄, one obtains an equivalent de�nition forde�nable ompatness, in terms of open overs:Fat 2.3. [24℄ G is de�nably ompat if and only if every uniformlyde�nable open over of G whih is parameterized by a omplete type,has a �nite sub-over.Pillay's ConjetureWe are now ready to state Pillay's onjeture in full:Pillay's Conjeture PC [28℄Let G be a de�nable group in a �-saturatedo-minimal struture M (large �). Then:(1) G has a minimal (minimum) type-de�nable normal subgroup ofbounded index, all it G00.(2) G=G00, equipped with the Logi topology, is isomorphi, as atopologial group, to a ompat Real Lie group.(3) If G is de�nably ompat thendimLie(G=G00) = dimM(G):The beauty of this onjeture is that it o�ers a surprising onne-tion between the pure lattie of de�nable sets in de�nable groups ino-minimal strutures and Real Lie groups. It implies that every de�n-ably ompat group in an o-minimal (large) struture has a homomor-phism onto a anonial Real Lie group that is assoiated to it. The



PILLAY'S CONJECTURE 7pull-bak under this homomorphism of every Eulidean losed set istype-de�nable and vie-versa. Suh quotients are alled in Model The-ory \hyper-imaginaries" (in ontrast to standard imaginaries, whihare quotients of de�nable sets by de�nable equivalene relations).Some examples(1) If G an elementary extension of a ompat Lie group H then,just as in the ase of SO(2;R), the group G00 is just �(e) \ Gand G=G00 ' H. If G is de�nably isomorphi to suh a groupwe say that G has very good redution.In these examples the hoie of G00 is determined by thein�nitesimals of the assoiated saturated real losed �eld R, i.eby the valuation ring of R. This is not the ase in the nextexample.(2) Consider a suÆiently saturated real losed �eldR, � a positivein�nitesimal element, and let G = h[0; �);+ mod �i. In thisase the whole of G is ontained in the kernel of the standardpart map, so we need to use an \internal" notion of valuation:G00 = fg 2 [0; �) : 8n 2 N g < �=n _ 1� 1n < g < 1gand G=G00, as a Lie group is again SO(2;R).(3) G = hR;+i (R a real losed �eld). In this ase G00 = G, soG=G00 is trivial.(4) A non-elementary example: Take A(R) to be the R-points of anabelian variety A de�ned over a real losed �eld R, dimA = n,and let G = A(R)0 be its semi-algebrai onneted ompo-nent. By PC, there exists a homomorphism from G onto ann-dimensional real torus Tn, whose kernel is type-de�nable inR, and suh that the logi toplogy agrees with the Eulideantopology on Tn.The urrent status of PC.The existene of G00, and the fat that G=G00 is a Lie group wasproven in [5℄ without any restritions. PC is now proven in full whenM expands a real losed �eld (the last step in the proof is in [16℄). PCwas also proved in the ase whenM is an ordered vetor spae over anordered division ring, [19℄, [12℄.It is still unknown whether PC holds in arbitrary o-minimal stru-tures, or even in an o-minimal expansion of an ordered group. As wewill point out, the only obstale here is the understanding of torsionpoints in de�nably ompat groups in suh strutures.



8 PILLAY'S CONJECTURE3. The existene of G00 and some orollariesThe material in this setion is ontained in [5℄.In [28℄ Pillay shows, for a group G de�nable anywhere, that theexistene of G00 and the fat that G=G00 with the group topology isa ompat Lie group are together equivalent to the Desending ChainCondition for type-de�nable subgroups of bounded index.Throughout this setion G is a de�nable group in an arbitrary o-minimal struture.Theorem 3.1. [5℄(1) G satis�es DCC for type-de�nable subgroups of bounded index.Namely, there is no in�nite desending hain of type-de�nablesubgroups of G of bounded index.(2) If G is de�nably onneted then G=G00 is onneted.About the proof By [22℄, every de�nable group in an o-minimalstruture has a de�nable normal solvable subgroup H suh that G=H issemisimple, namely has no in�nite de�nable normal abelian subgroup.DCC for a semisimple group follows from its deomposition into analmost diret produt of de�nably almost simple groups (see [22℄) andthe fat that de�nably simple groups have very good redution, [23℄.By analyzing eah abelian step whih makes up the solvable group H,we are redued to the abelian ase, so we assume that G is abelian.An important ingredient the proof is the notion of a de�nably on-neted type-de�nable set X. By that we mean that there are node�nable open sets U1; U2 � G suh that U1 \ X and U2 \ X areboth nonempty and pairwise disjoint. As is proved in the paper, everytype-de�nable, de�nably onneted subgroup of G has a type-de�nablesubgroup of bounded index whih is de�nably onneted. This lattersubgroup an be written as the direted intersetion of de�nably on-neted sets.Assume now that DCC fails. Then there exists a desending hain oftype-de�nable subgroups of bounded index H1 > � � �Hn > � � � , whihwe may assume are all de�nably onneted. Using standard model the-oreti arguments one may assume that all groups are de�nable over aountable modelM0 using a ountable langauge. Let H be the minimaltype-de�nable subgroup of bounded index de�nable over M0 (this doesexist!). Most of the work now is towards proving that G=H, equippedwith the Logi topology, is a ompat Lie group. That is done us-ing topologial arguments, together with the fat that G has a �nitenumber of elements of every given �nite order (see [32℄). One it isestablished that G=H is Lie group, the sequene Hi=H is a desending



PILLAY'S CONJECTURE 9hain of losed subgroups, whih is impossible.Remark1. In [30℄, Shelah proves the existene of G00 (but not DCC!) for anygroup with NIP and therefore in partiular for o-minimal strutures.(The following disussion and example were suggested by Pillay):2. There are two other related notions for a group G (in a suÆientlysaturated struture): Consider all de�nable subgroups of G of �niteindex. If the intersetion of these groups has bounded index (equiva-lently, the intersetion does not hange when we move to an elementaryextension) then it is alled G0. In o-minimal strutures and in groupsof �nite Morley rank, G0 itself is de�nable and has �nite index in G.Another notion is that of G000: For A � M a small subset, let G000Abe the smallest subgroup of G of bounded index whih is invariantunder automorphisms �xing A point-wise. If G000A does not depend onA then we all this group G000.The existene of G000 implies the existene of G00 and this in turnimplies the existene of G0. In stable theories all exists and are equalto eah other.It was shown by Shelah, [31℄, that if G is abelian and has NIP (seede�nition below) then G000 exists. Later on this was generalized byGismatulin, [14℄, to an arbitrary group with NIP. However, it is stillunknown in the NIP ontext (and even in the o-minimal ase), whetherG00 = G000.Example Consider the group G = hZ!; �i in the two-sorted struturehG;Ni, with a prediate P � Z! � N suh that (x; n) 2 P if and onlyif xn = 0.The theory of the struture says that for every 0 6= g 2 G there existsan n 2 N suh that P (G; n) is a subgroup of index 2 whih avoids g.This is easily seen to imply that the group G0 (and therefore also G00and G000) does not exist in elementary extensions.We now return to the o-minimal ontext. Here are two importantorollaries of Theorem 3.1;Corollary 3.2. Assume that G is abelian. Then:(1) G00 is divisible.(2) Let H be a type-de�nable subgroup of bounded index. If H istorsion-free then H = G00.



10 PILLAY'S CONJECTUREProof. (1) We need to see that for every n, the map �n(x) = xn sendsG00 onto itself. It is easy to see that �n(G00) has bounded index in�n(G). However, �n has �nite kernel, [32℄, and therefore dim�n(G) =dim(G), so �n(G) has �nite index in G. It now follows that �n(G00)has bounded index in G, and beause it is ontained in G00 it followsfrom minimality that �n(G00) = G00.(2) The group H=G00 is a losed subgroup of the ompat Lie groupG=G00, therefore either H = G00 or H=G00 has torsion. If the lat-ter holds then, beause G00 is divisible H must have torsion as well.Contradition. �Corollary 3.3. If G is torsion-free then G00 = G.Notie that up until now we have not even established that in a de-�nably ompat group we have G00 6= G. Indeed, the main remainingdiÆulty in proving PC is the dimension equality:Remaining Conjeture If G is de�nably ompat then dimM(G) =dimLie(G=G00).4. Some theory of generi sets IMost of the material in this setion is taken from [24℄.Here G is de�nable in an o-minimal struture. However, some of theresults work in any model theoreti setting, or at least when there is areasonable notion of rank.De�nition 4.1. (1) A set X � G is alled left k-generi if G =Ski=1 giX, for some k 2 N and gi 2 G. X is left generi if itis left k-generi for some k 2 N. X is generi if it is both leftand right generi.(2) If X � G is de�nable then X is alled large if dim(G n X) <dimG.Remark In !-stable onneted groups the notions of \generi" and\large" are the same and both are equivalent to RM(X) = RM(G). Ino-minimal strutures generi sets are not neessarily large and dim(X) =dim(G) does not imply that X is generi:1. In hR;+i (R a r..f), a set is generi if and only if it is of the form(�1; a) [ (b;+1), for a; b 2 R.2. In elementary extensions of T1 a de�nable set is generi if and onlyif it ontains a segment of standard length.



PILLAY'S CONJECTURE 11Fat 4.2. If X is large in G and dim(G) = n then X is (both left andright) n-generi.Proof. Without loss of generality, X is 0-de�nable.We show: If g is generi in G and h 2 G n (X [ gX) thendim(h=g) < dim(h=;) < n:Indeed, if the left inequality fails then dim(h=g) = dim(h=;) andhene (by the addition formula for dimension) we have dim(g=h) =dim(g=;) = n. It follows thatdim(g�1h=h) = dim(g�1=h) = dim(g=h) = n:In partiular, g�1h is generi in G and beause X was large we musthave g�1h 2 X and hene h 2 gX, ontraditing the assumption on h.The inequality dim(h=;) < n follows from the fat that h 2 G n Xand X is large.It follows from the above dimension inequality that dim(G n (X [gX)) < dim(G n X) < dim(G). We now replae X by X [ gX andproeed by indution. �Our goal in this setion is to disuss the following result:Theorem 4.3. [24℄ Assume that G is a de�nably ompat aÆnely em-bedded group, M expands an ordered group and and X � G is notleft-generi. Then G nX is right generi.Fat 4.4. (i) If X � G is not left-generi then Cl(X) is not left-generi.(ii) If X � G is generi then Int(X) is also generi. (Here and belowwe use the � -topology of G whih was desribed above).Proof. (i) We use the following basi fat about a de�nable set X ino-minimal strutures: For Fr(X) = Cl(X)rX, dimFr(X) < dim(X).If Cl(X) is left-generi thenG = k[i=1 giCl(X) = k[i=1 giX [ k[i=1 giFr(X):But dim(Fr(X)) < dim(G), hene dim(Ski=1 giFr(X)) < dim(G),and therefore the set Ski=1 giX is large in G. By Fat 4.2, this last setis generi and therefore X is generi.(ii) Use the fat that for any X � G, we have dim(X n Int(X)) <dim(G), and proeed as in (i). �The onnetion of generi sets to Pillay's Conjeture omes through:



12 PILLAY'S CONJECTUREFat 4.5. If H � G is a type-de�nable subgroup then H has boundedindex in G if and only if it is the intersetion of left generi sets.Proof. If H has bounded index and is ontained in a de�nable set Xthen G an be overed by boundedly many left translates of X (namelythe number of osets of H). By ompatness, �nitely many left trans-lates of X over G.If H = Ti<�Xi is the intersetion of left generi sets, let A = fgj :j < �g be a set of elements suh that for every Xi, we have G = AXi.LetM0 be a small model realizing all omplete types over A. We laimthat every oset of H has a representative inM0. Indeed, if g 2 G thenfor every Xi there is gi 2 A suh that g�1i g 2 Xi. By ompatness wean �nd h 2M0 suh that h�1g 2 TiXi = H. �Fat 4.6. If X � G is not left-generi then for any small M0 � M(where \small" means jM0j < �) there exists g 2 G suh that Xg \M0 = ;.Proof. By assumption, for every h1; : : : ; hk 2 G, k 2 N , there is g 2 Gsuh that k̂i=1 g =2 hiX;or equivalently k̂i=1 h�1i =2 Xg�1:Clearly then, for every h1; : : : ; hk 2 G, k 2 N , there is g 2 G suhthat k̂i=1 hi =2 Xg:It follows that ifM0 is any small subset ofM then, by the saturationof M, there is g 2 G suh that M0 \Xg = ;. �Digression: Dolih's work In [7℄, Dolih examines the notion offorking and dividing in o-minimal strutures. The paper ontains manyinteresting and highly nontrivial results about types in o-minimal stru-tures. In [24℄ we extrat from his work the following:Theorem 4.7. Let X(a) � Mn be a losed and bounded a-de�nableset in a suÆiently saturated o-minimal struture M expanding anordered group and let M0 � M be a small model. Assume that theset fX(a0) : a0 �M0 ag has the �nite intersetion property (namely, theintersetion of every �nite sub-family is nonempty).Then X(a) \M0 6= ;.



PILLAY'S CONJECTURE 13The proof of this result is too long to disuss here. We only makefew observations:1. Consider the simplest example for 4.7, where X(a1a2) is the losedinterval [a1; a2℄ �M , andM0 a small submodel ofM . If [a1; a2℄\M0 =; then a1 �M0 a2 (otherwise, by o-minimality, there is an interval J overM0, ontaining one of the ai's but not the other. It follows that oneof the endpoints of this interval, whih must be in M0, also belongsto [a1; a2℄. Contradition). Moreover, beause a1 =2 M0 there existsa02 < a1 with a02 �M0 a1 �M0 a2. By homogeneity, there is a01 < a02 suhthat a01a02 �M0 a1a2, and hene X(a01a02) \X(a1a2) = ;, so the familyfX(a01; a02) : a01a02 �M0 a1a2gdoes not have the �nite intersetion property.2. Theorem 4.7 is false when X(a) is not losed and bounded. Con-sider for example the open interval (0; �) in a nonstandard real losed�eld, for an in�nitesimal � > 0, and take M0 to be the real algebrainumbers. The family f(0; �0) : �0 �M0 �gis �nitely satis�able but (0; �) \M0 is empty.3. In the stable ase, the analogous theorem to 4.7 is true for any de-�nable set beause the assumption is equivalent to the forking of X(a)over M0.4. The desription of a de�nably ompat set using a type-de�nableopen overing (see Fat 2.3) easily follows from Fat 4.7.End of DigressionProof. of Theorem 4.3Beause G is aÆnely embedded it is losed and bounded in Mk.Assume X � G is not left generi. By 4.4 we may assume that Xis losed. Fix M0 suh that X is de�nable over M0. By 4.6, thereexists g 2 G suh that M0 \Xg = ;. By 4.7, there are g1; : : : ; gk (eahrealizing the same type as g over M0) suh thatk\i=1Xgi = ;:



14 PILLAY'S CONJECTUREBy taking omplement we getk[i=1(G nX)gi = G:Hene, G nX is right-generi. �Remarks1. Theorem 4.3 fails without the de�nable ompatness assumption:The set (a;+1) and its omplement are both not generi in hR;+i(here left and right-generi are the same).2. The analogue of Theorem 4.3 in the stable setting is true for anyde�nable subset of the group G.3. Reently, Eleftheriou has pointed out that the assumption that G isaÆnely embedded an be omitted Theorem 4.7 by working in the man-ifold harts of G. Also, the assumption that M expands an orderedgroup seems to be unneessary.Here are two easy onsequenes:Fat 4.8. Assume that G is de�nably ompat and abelian.(1) The non-generi sets form an ideal.(2) Every formula de�ning a generi set in G belongs to a omplete\generi" type p (over M). Namely, every formula in p de�nesa generi set in G.5. Some Theory of generi sets II: Measure and the NIPThe ontent of Setions 4-8 is mostly taken from [16℄. The onnetionbetween the Non Independene Property and measure is due to Keisler[17℄ and the proof of 5.4 below is modeled after a proof from Keisler'spaper.The next notion is due to Shelah. The de�nition we use is equivalentto the original one.De�nition 5.1. A theory T is said to be dependent or to have the NonIndependene Property (NIP) if for every indisernible sequene hai :i < !i over A and �(x; y) a formula over A the type f�(x; b2j)4�(x; b2j+1) :j < !g is inonsistent. (We take �4 to mean (� ^ : ) _ (:� ^  ))Stable theories, o-minimal theories, the theory of p-adially losed�elds all have the NIP, while the theory of pseudo-�nite �elds fails tohave it.



PILLAY'S CONJECTURE 15De�nition 5.2. We say that G admits a left invariant Keisler measureif there exists a real valued �nitely additive measure � : Def(G)! R onthe de�nable subsets of G, suh that �(G) = 1 and for every de�nableX � G and g 2 G, we have �(gX) = �(X).In the rest of this setion we make the following assumptions onthe group G (equipped with the de�nable sets indued by the ambientstruture):� G has NIP.� The non left-generi sets form an ideal.� G admits a left-invariant Keisler measure.As we will eventually show, every de�nably ompat satis�es all ofthe above. For now, notie that any abelian de�nably ompat groupsatis�es the above assumptions. Indeed, o-minimality implies NIP, andby Fat 4.8 the non-generis form and ideal. Beause every abeliangroup is amenable, it admits a left-invariant real valued �nitely additiveprobability measure on all subsets.De�nition 5.3. For X; Y � G de�nable, we write X �ng Y if X4Yis not left-generi.Notie that sine the non left-generis form an ideal �ng is an equiv-alene relation. The NIp assumption is ruial for the following.Lemma 5.4. The equivalene relation �ng is bounded. I.e., there existsa �xed small model M0 suh that every equivalene lass of �ng isalready represented by a de�nable set over M0.Proof. Let � denote the �nitely additive left-invariant measure onDef(G),the family of de�nable subsets of G. Note that if X � G is a de�nablen-generi set then we have �(X) > 1=n.Assume that �ng is unbounded. Then there exists a formula �(x; y)over the empty set, with the variable x for elements in G, and un-boundedly many bi's, suh that �(G; bi)4�(G; bj) is generi.By standard Ramsey-type arguments, there exists a �xed n and anindisernible sequene hai : i < !i suh that for every i 6= j, the set�(G; ai)4�(G; aj) is n-generi.Consider the family F = fYj = �(G; a2j)4�(G; a2j+1) : j < !g.By indisernibility, there exists a natural number k suh that every ksets in F have empty intersetion. However, for every j, �(Yj) > 1=n,and beause �(G) = 1 it is impossible that every k sets in F intersettrivially. Contradition. �De�nition 5.5. For X � G de�nable, letStabng(X) = fg 2 G : gX �ng Xg:



16 PILLAY'S CONJECTUREUnder our assumptions, the set Stabng(X) is a subgroup of G. It istype-de�nable beause for every n, the set of all g suh that n translatesof gX4X do not over G, is de�nable. The map g 7! gX= �ng is aninjetive map from G=Stabng(X) into Def(G)= �ng and therefore weprovedTheorem 5.6. For any de�nable X � G, the subgroup Stabng(X) hasbounded index in G.6. The proof of PC in the abelian aseWe assume in this setion that M expands a real losed �eld andthat G is de�nably ompat and abelian.Our goal here is to prove:Theorem 6.1. If G is de�nably ompat and abelian then dimLie(G=G00) =dimMG.Proof. Beause G0 has �nite index in G we may assume that G isde�nably onneted.The proof is based on two ingredients. The �rst one is a deep theoremof Edmundo and Otero on the torsion points in de�nably onneted,de�nably ompat abelian groups. (Presumably, this was one of themost important justi�ations to the original onjeture of Pillay). Itsproof is based on Cohomologial tools and uses extensively the trian-gulation theorem whih is true only in o-minimal expansions of reallosed �elds:Theorem 6.2. [11℄ Assume thatM expands a real losed �eld and thatG is de�nably ompat, de�nably onneted abelian group of dimensionn. Then Tor(G) ' Tor(Tn):(where Tn is the n-dimensional torus).The seond ingredient, whih we will prove below is:Lemma 6.3. G00 is torsion-free.Let us see how the two results, taken together, imply PC in theabelian ase:Lemma 6.3, together with the divisibility of G00 (see 3.2 (1)) implythat Tor(G=G00) ' Tor(G):If dim(G) = n, it follows fromTor(G=G00) ' Tor(Tn):



PILLAY'S CONJECTURE 17Beause G=G00 is a onneted (3.1) abelian ompat Lie group,it is Lie isomorphi to a diret sum of T1's. The number of theseT1's is determined by, say, the number of 2-torsion points, thereforeG=G00 ' (T1)n and so the real dimension of G=G00 is n.Proof. of Lemma 6.3. For every n 2 N , onsider the map �n : g 7! gnfrom G onto G. By de�nable hoie, there exists a de�nable set X � Gsuh that �njX is a bijetion ofX and G (we assume thatG is de�nablyonneted).By [11℄ (or atually by [32℄), Tn = ker(�n) is �nite. It learly ontainsall n-torsion points and, as easily heked, G equals a �nite disjointunion of the gX's, for g 2 Tn. Thus X and all the gX's are generiand pair-wise disjoint, and therefore Tn \ Stabng(X) = f0g: Beausethis is true for every n, the group Stabng(X) is torsion-free.By 5.6, the type-de�nable subgroup Stabng(X) above has boundedindex in G, and therefore G00 � Stabng(X). It follows that G00 istorsion-free, ending the proof of Lemma 6.3 and thus PC in the abelianase.7. Proof of PC for arbitrary definably ompat GWe assume in this setion that G is a de�nably ompat group in ano-minimal expansion of a real losed �eld.Here are some preliminary fats about nonommutative de�nablyompat groups:As shown in [26℄, G=Z(G) is \semisimple", namely has no in�nitede�nable abelian normal subgroup. We let N = Z(G)0. By [22℄, G=Nan be written as an almost diret produt of de�nably almost simplegroups. Namely, eah omponent is a nonommutative de�nable groupwhih, modulo its �nite enter, has no de�nable normal subgroup. Theword \almost" implies that up to a �nite entral subgroup the produtof the groups is diret.Finally, as is shown in [23℄, every de�nably simple group has \verygood redution", namely it is de�nably isomorphi to a semialgebrailinear group de�ned over the real algebrai numbers. The proof ofPC for groups with very good redution is partly ontained in theIntrodution (see [24℄ for more details). It easily follows that PC holdsfor de�nably almost simple groups and therefore also for an almostdiret produt of suh groups. Therefore, PC holds for both Z(G)(Theorem 6.1) and for G=N .We thus have:dimM(G) = dimM(G=N) + dimM(N) =



18 PILLAY'S CONJECTUREdimLie((G=N)=(G=N)00) + dimLie(N=N00):We also havedimLie(G=G00) = dimLie(G=G00N) + dimLie(G00N=G00):It is easy to verify that G00N=N = (G=N)00. Hene,(G=N)=(G=N)00 w G=G00N:In order to show that dimM(G) = dimLie(G=G00) it is therefore suÆ-ient to prove: G00N=G00 w N=N00:The group on the left is isomorphi to N=(G00 \N), hene in order toprove PC we are left to prove:Lemma 7.1. If G is de�nably ompat then N00 = G00 \N .The fat that N00 � (G00 \N) follows from the fat that the groupon the right has bounded index in N . However, in order to prove theopposite inlusion (whih fails for arbitrary groups, even with NIP) weneed to take one more de`tour, through the general theory of generisets. 8. Some theory of generi sets IIIIn this setion we make no assumption on the group G unless otherwisestated.De�nition 8.1. The theory of G is said to have �nitely satis�ablegeneris1 (in short f.s.g) if there exists a omplete type p over M suhthat if �(x) 2 p then:(i) �(G) is left generi.(ii) There exists a small model M0 � M suh that every left translateof �(G) intersets M0.Our goal is to show that every de�nably ompat group in an o-minimal struture has f.s.g. This is useful beause of the followingproperties:Fat 8.2. Assume that T = Th(G) has f.s.g . Then(i) There exists a small M0 � M suh that every left generi set andevery right generi set interset M0.(ii) Given X � G de�nable, X is left-generi if and only if it is rightgeneri.(iii) The de�nable non generi sets in G form an ideal.(iv) G00 exists and G00 = TfStabng(X) : X 2 Def(G)g:1For simpliity, we slightly modi�ed the de�nition from [16℄



PILLAY'S CONJECTURE 19Proof. Assume that p and M0 witness f.s.g.(i) If X is a left generi set then there are g1; : : : ; gk 2 G suh that theformula x = x is equivalent to the �nite disjuntion of the formulasx 2 giX: Hene, there is gi suh that \x 2 giX" is in p. By assumptionon p, X \M0 6= ;. Consider the type p(x�1). Beause x 7! x�1 is a0-de�nable bijetion of G it easily follows that every de�nable set Y inp(x�1) is right generi and every right translate of Y intersets M0. Asabove, it follows that every right generi set intersets M0.(ii) Assume X is not a left generi set. By 4.6, there exists a righttranslate of X whih does not interset M0, hene by (i), X is notright generi as well.(iii) Sine p is a omplete generi type it must ontain the omplementof every nongeneri set.(iv) For the existene of G00, see [16℄, Corollary 4.3.Now �x a small model M0 witnessing (i). Given X � G de�nable,let M1 be a small model ontaining M0 over whih X is de�nable. Ifg �M1 h then gX\M1 = hX\M1 and hene (gX4hX)\M0 = ;. By(i), gX4hX is nongeneri. Thus, every oset of Stabng(X) ontainsall the realizations of some omplete type over M1. In partiular, ina (still small) model where every omplete type over M1 is realized,there is a representative for every oset of Stabng(X), so Stabng(X) hasbounded index, and therefore it is ontained in G00.For the opposite inlusion, sine G00 has bounded index it an beobtained as the intersetion of de�nable generi sets (Fat 4.5). If gbelongs to Stabng(X) for every suh X then it must belong to G00(otherwise, by ompatness, there is X ontaining G00 suh that gX \X = ;, whih implies that g =2 Stabng(X). �Lemma 8.3. Assume that N is a de�nable normal subgroup of G. IfN and G=N have fsg then G has fsg.Proof. See Proposition 4.5 in [16℄. �We return to the o-minimal setting.Lemma 8.4. If G is de�nably ompat and abelian then G has fsg.Proof. Sine we do have omplete generi types in abelian groups, it issuÆient to show that there is a small M0 suh that every generi setintersets M0.Let M0 be a small model suh that every �ng-lass in Def(G) hasa representative de�nable over M0 (reall, 5.4, that this equivalenerelation is bounded).Given X � G generi, there exists X1 � X suh that X1 is stillgeneri and Cl(X1) � X. Indeed, the following argument for that fat



20 PILLAY'S CONJECTUREwas suggested by the UIUC seminar:G = k[i=1 giX:By 4.4, Int(X) is also generi. For every � > 0 letX� = fg 2 X : d(g; Fr(X)) > �g:We have, X =[�>0X�:It is now suÆient to take � in a omplete type p(x) right of zero. So,G =[��p k[i=1 giX�:We obtained a de�nable open overing of G parameterized by a om-plete type. By the equivalent de�nition to de�nable ompatness, 2.3,there is a �nite subover, whih easily implies that some X� is generi.Let X1 = X�. Beause Cl(X1) � X we may assume that X is losed.Let Y � G be a de�nable set de�nable over M0 suh that Y4X isnongeneri. Again, by 4.4, we may assume that Y is losed, so both Xand Y are de�nably ompat. We will show that (Y \ X) \M0 6= ;.Notie that both X and Y are de�nably ompat.By 4.7, ifX\Y \M0 = ; then there are �nitely manyM0-onjugatesof X\Y whose intersetion is empty. Beause Y isM0-de�nable thereare X1; : : : ; Xk all M0-onjugates of X suh thatk\i=1Xi \ Y = ;:Sine Y is generi this implies that for some Xi we must have Y nXigeneri. Contradition to Y4X being non-generi. �Lemma 8.5. If H is de�nably ompat and semisimple then H hasfsg.The proof of this lemma is based on the almost-deomposition intode�nably almost simple groups. The de�nably simple ase is handledin [24℄ using measure theoreti arguments based on [4℄ and [1℄.Using 8.4, 8.5, and 8.3, we an onlude:Theorem 8.6. Every de�nably ompat group has fsg.



PILLAY'S CONJECTURE 21The above theorem, together with 8.2, implies that the set of left(hene also right) generis inG form an ideal, and that for any de�nableset X, Stabng(X) is a type-de�nable group of bounded index. Finally(and this is the main fat whih fored us to take this de`tour throughthe notion of \f.s.g"), the group G00 is the intersetion of all stabilizersof de�nable subsets of G.9. Completing the proof of PCWe an now return to the missing ingredient in the proof of PC,namely the proof of 7.1. We need to show that G00 \N = N00, whereN is a de�nably onneted normal entral subgroup. By 3.2, it issuÆient to prove that G00 \N is torsion-free.Given n 2 N , let Tn = Torn(N) and X � N be a de�nable set suhthat g 7! gn gives a bijetion of X and N . By de�nable hoie, thereis D � G whih intersets every oset of G=N exatly one. It is noweasy to verify that G is the �nite disjoint union of the translates of DXby the elements of Tn. In partiular, DX is generi andTn \ Stabng(DX) = feg:Beause this is true for every n, we have Stabng(DX) \ Tor(G) 6= ;:By the f.s.g property, G00 � Stabng(DX), therefore G00 \Tor(N) =feg:We thus proved that G00 \ N = N00; ompleting the proof of PC(see the argument preeding Lemma 7.1). �9.1. De�ning measure on G. As a result of the work on Pillay'sConjeture, the following theorem was established in [16℄.Theorem 9.1. If G is de�nably ompat in an o-minimal struturethen it admits a left-invariant Keisler measure on the de�nable subsetsof G. For a de�nable X � G, we have �(X) = 0 if and only if X isnon-generi.Proof. As we already pointed out, the existene of suh measure isimmediate when G is abelian. In the general ase, we �rst note thatG=G00, as a ompat Lie group, admits a left-invariant �nitely additiveprobability measure on a boolean algebra of sets ontaining all Borelmeasurable sets- the Haar measure m.We �rst �x a omplete generi type p(x) over G. Given a de�nableset X, we onsider the setX̂ = fgG00 2 G=G00 : p j= \x 2 gX 00g:(note that X is well de�ned. Namely, if gh�1 2 G00 then in partiular,gX4hX is non-generi and therefore not in p. It follows that gX 2 p



22 PILLAY'S CONJECTUREif and only if hX 2 p). The main part of the proof is to show that X̂is a Borel set in G=G00 (see Proposition 6.2 in [16℄). We then de�ne�p(X) =m(X̂):Clearly, �p is left invariant, and it is easy to verify that it is also�nitely additive (if X1 \X2 = ; then X̂1 \ X̂2 = ;).Finally, if X is generi then �nite additivity implies that �p(X) > 0and if X is non-generi then X̂ = ; and therefore �p(X) = 0. �10. Related work and some open questionsThis setion has gone through substantial hanges in the last stagesof writing. As will be explained below, most of the open questions listedhere were solved in a reent paper by Hrushovski and Pillay, [15℄.10.1. Omitting the real losed �eld assumption. As was pointedout early on, the only remaining obstale for proving PC without theassumption that M expands a real losed �eld is the lak of an ana-logue to Theorem 6.2 on the number of torsion points, without the �eldassumption. Suh a theorem was proved by Eleftheriou and Starhenko[13℄ when M was assumed to be an ordered division ring over an or-dered vetor spae and hene PC holds in this ase as well. Atually,a very lear desription of de�nable groups in this setting is given inthe paper, out of whih the number of torsion points is easily read.In order to prove the torsion points result under weaker assumptionsit seems important to develop similar topologial tools to the ones orig-inally used, but this time without the triangulation theorem. Indeed,Sheaf Cohomology in expansions of ordered groups has been the subjetof several papers of Edmundo, Jones and Peat�eld (see [8℄ and [9℄) andof Beradui and Fornasiero (see [3℄). A �rst appliation to ountingtorsion points is given in [8℄ where the orret upper bound is obtained.In a very reent result, [25℄, the author was able to prove the questionabout the torsion point and hene Pillay's Conjeture, in o-minimalexpansions of ordered groupsThe questions formulated below were written prior to the publiationof the reent pre-print by Hrushovski and Pillay [15℄. As I will even-tually point out, most of these questions are now solved by that paper,either expliitly or impliitly. I leave them here beause I �nd that theirdisussion ould still be of some interest



PILLAY'S CONJECTURE 2310.2. Uniform de�nability of G00. An important feature of the basiexample of Pillay's onjeture (where we start with a ompat real Liegroup and view it in an elementary extension) is the fat that the typede�ning G00 is given by a single formula, with varying parameters.Namely, G00 = fg 2 G : jgj < a : a 2 Rg:Consider the struture Gind whose universe is G=G00, with a fun-tion symbol for the group operation and a prediate for every set ofthe form �(X), for X � Gn de�nable in the o-minimal struture M.In [16℄ we showed, using a theorem of Baysalov and Poizat, that ifG = h[0; 1)n;+mod1i then struture Gind is de�nable in an o-minimalstruture over the reals. Later, in [18℄, Marikova re-proved this resultwithout referring to [1℄, and provided a muh �ner analysis of the de-�nable sets in this struture. The uniformity in parameters plays animportant role in both works.Conjeture If G is de�nably ompat then there is a formula �(x; y),where x varies over element of G, and a set of parameters A, suh thatG00 = fg 2 G : â2A�(g; a)g:Conjeture The struture on the ompat Lie group Gind is de�nablein some o-minimal struture over the real numbers.Related to the above onjeture is the following:Question What is the struture whih G indues Tor(G)? In partiu-lar, what subsets of Tor(G) are of the form X \Tor(G) for a de�nablesubset of G?Note that when G is abelian its torsion group an be realized asa de�nable set in the o-minimal struture hQ ;+; <i, namely it is iso-morphi as a group to h[0; 1)n;+mod1i, viewed inside of Q . It wasshown by Wilkie, [33℄, that there are nontrivial o-minimal expansionsof this struture. Moreover, if G itself equals to the real points ofh[0; 1)n;+mod1i, in the struture of the real �eld, then the torsionpoints of G inherit the ring operations and therefore the indued stru-ture is unstable and undeidable. However, even in this ase it isinteresting to ask whih de�nable subsets of Qn an be obtained as thetrae of a de�nable set in G.



24 PILLAY'S CONJECTURE10.3. The distribution of torsion points. Somewhat surprisinglyfor those of us who have worked on this problem, the solution of Pil-lay's Conjeture did not yield a muh better understanding of the dis-tribution of torsion points in a de�nably ompat abelian G. Here aresome onjetures on this matter:Conjeture A If X � G is generi then it ontains a torsion point.Conjeture B If GnX is non-generi then X ontains a torsion point.Clearly, (A) implies (B) and both imply the following result, reentlyproved in [21℄:Theorem If dim(G nX) < dimG then X ontains a torsion point.10.4. Other related work. In other work generated by Pillay's on-jeture the preise relationship between G and G=G00 was investigated.In [2℄, Berardui disusses the o-minimal spetrum ~G of a de�nablyompat G and proves that G=G00 is a topologial quotient of ~G. In[10℄, Edmundo, Jones and Peat�eld examine the onnetions betweenthe ohomology groups of G and of G=G00.In [20℄, Onshuus and Pillay study the analogous onjeture in thep-adi setting and show ases where it fails and other ases where theonjeture holds.In an unpublished result, Hrushovski, Pillay and the present author,prove that every de�nably ompat group G is elementarily equiva-lent, as a pure group, to G=G00. A better understanding of the grouptheoreti struture of G an then be dedued, and in partiular, oneonludes that the ommutator subgroup of G is de�nable and that Gis the almost diret produt of Z(G) and [G;G℄.Finally, the reent paper of Hrushovski and Pillay [15℄ puts some ofthe notions whih were examined in [16℄ in a very general ontext, andexamines forking, stability and measure in several di�erent abstratsettings, mainly in groups under the assumptions of NIP and the exis-tene of some measure. The mahinery and results obtained there arevery powerful and, as I now explain, yielded answers to most of thequestions raised above.10.5. The Compat Domination Conjeture and its reent so-lution. At �rst, it seems as if the most natural way to de�ne mea-sure on de�nable subsets of G would be diretly through the map



PILLAY'S CONJECTURE 25� : G ! G=G00. Namely, to let �(X) equal m(�(X)) (the Haar mea-sure of �(X)) for any de�nable set X � G. However, a diÆulty ariseswhen one tries to prove �nite additivity:Take X1; X2 � G two disjoint de�nable sets. Finite additivity shouldimply that the Haar measure of �(X1) \ �(X2) is zero (note that�(X1); �(X2) need not be disjoint anymore). However, until very re-ently this remained an open question and, as we will soon see, it isequivalent to the Compat Domination Conjeture below.We �rst introdue some notation: Given X � G, we letB(X) = fy 2 G=G00 : ��1(g) \X 6= ;& ��1(g) \G nX 6= ;g:We say that G is ompatly dominated by G=G00, via �, in a measuretheoreti sense if for every de�nable X � G, the Haar measure of B(X)is zero. We say that G is ompatly dominated by G=G00, via �, in atopologial sense if every suh B(X) is nowhere dense in G. (The term\ompat domination" is modeled after the notion \stably dominated"referring to a situation where an unstable set is \ontrolled" by a stableone).The Compat Domination Conjeture, formulated in [16℄ stated thatevery de�nably ompat group is ompatly dominated (in both senses).In an earlier version of these notes several equivalenes to the aboveonjetures were proved, implying for example that the measure theo-reti onjeture implies the topologial one. Both are known to implyConjeture (A) above about the density of torsion points. However,the reent preprint of Hrushovski and Pillay [15℄ proves the CompatDomination Conjeture, and at the same time the torsion point andthe uniform de�nability onjetures formulated above.Theorem 10.1. [15℄ Every de�nably ompat group is ompatly dom-inated, in the measure theoreti (and hene topologial) sense.Sine the paper is very new I will only try to roughly sketh the ideasbehind this solution:As in [16℄, the authors make use of the theorem of Baysalov andPoizat mentioned above. Namely, they onsider an elementary exten-sionM� ofM, and for every M�-de�nable set X they add a prediateto M for the the trae of X, on Mn. The main theorem in [1℄ (latergeneralized by Shelah to any theory with NIP), implies that this newstruture eliminates quanti�ers and in partiular it is weakly o-minimal.We denote it by �M.
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