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Abstract

Let F be a collection of holomorphic functions and let R(PR(F))
denote the reduct of the structure Ran to the ordered field opera-
tions together with the set of proper restrictions (see below) of the
real and imaginary parts of all functions in F . We ask the question:
Which holomorphic functions are locally definable (ie have their real
and imaginary parts locally definable) in the structure R(PR(F))? It
is easy to see that the collection of all such functions is closed un-
der composition, partial differentiation, implicit definability (via the
Implicit Function Theorem in one dependent variable) and Schwarz
Reflection. We conjecture that this exhausts the possibilities and we
prove as much in the neighbourhood of generic points. More precisely,
we show that these four operations determine the natural pregeometry
associated with R(PR(F))-definable, holomorphic functions.

1 Introduction

In this paper a holomorphic function is always understood to have domain
an open subset of Cn for some n. If ∆ is an open box in Cn with rational
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data (ie ∆ = D1 × · · · ×Dn for some open rectangles D1, . . . , Dn in C with
Gaussian rational corners) and F is a holomorphic function whose domain
contains the closure of ∆ , ∆ ⊆ dom(F ), then we say that ∆ is suitable for
F , or if a point a ∈ ∆ is given, suitable for F around a. The holomorphic
function F |∆ is then called a proper restriction of F .

Let F be a collection of holomorphic functions. We assume that F con-
tains all polynomials with Guassian rational coefficients (in any number of
variables). Denote by PR(F) the set of all proper restrictions of all functions
in F . Let R(PR(F)) be the expansion of the ordered field of real numbers
by (the graphs of) the functions in PR(F) , where we identify C with R2 in
the usual way. A holomorphic function F is called locally definable from F
if all its proper restrictions are definable in the structure R(PR(F)) , where
“definable” always means first-order definable without parameters unless oth-
erwise stated. Clearly a holomorphic function F is locally definable from F
if and only if for all w ∈ dom(F ) there is some ∆ suitable for F around w
such that F |∆ is definable in R(PR(F)) .

1.1 Problem

Given F , characterize the class of functions locally definable from F in terms
of complex -analytically natural closure conditions.

I cannot claim to solve 1.1 completely here. However, I do give a complex
analytic characterization of the pregeometry arising from local definability,
and hence answer 1.1 in neighbourhoods of generic points of Cn .

Let us first make some simple observations concerning 1.1 which follow
from the fact that in the structure R(PR(F)) we may definably separate
out the real and imaginary parts of complex functions and apply definable
constructions coming from real algebra and analysis to them (such as ε − δ
methods).

1.2 Differentiation

If F : U → C is locally definable from F (where U ⊆ Cn) and 1 ≤ i ≤ n,
then so is the partial derivative ∂F

∂zi
: U → C.
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1.3 Schwarz Reflection

If F : U → C is locally definable from F then so is its Schwarz Reflec-
tion F SR : U ′ → C , where U ′ := {z : z ∈ U} (the bar here denotes
co-ordinatewise complex conjugation) and where F SR(z) := F (z) for z ∈ U ′.
(Note that Schwarz Reflection commutes with taking proper restrictions.)

Our results are most conveniently stated if we assume from the outset that
F is closed under differentiation and under Schwarz Reflection (which, in view
of 1.2 and 1.3 does not affect 1.1) and we fix such an F for the rest of this
paper. Our conjectured answer to 1.1 is, roughly speaking, that a function
is locally definable from F if and only if it can be obtained (locally) from
F by finitely many applications of composition and extractions of implicitly
defined functions :

1.4 Definition

Let F : U → C, f : V → C be holomorphic functions where U ⊆ Cn+1, and
V ⊆ Cn. Then we say that f is implicitly defined from F if for all w ∈ V ,
〈w, f(w)〉 ∈ U and F (w, f(w)) = 0 6= ∂F

∂zn+1
(w, f(w)).

1.5 Implicit Definability

Notice that if, in 1.4, F is locally definable from F , then so is f . For if a ∈ V
then by the Implicit Function Theorem we may choose a sufficiently small ∆,
suitable for f around a , and a rectangle D in C such that ∆×D is suitable
for F around 〈a, f(a)〉 and has the further property that for each w ∈ ∆
there is a unique u ∈ D such that F (w, u) = 0. Since this u is necessarily
equal to f(w) (for small enough ∆) and since the function F |(∆ × D) is
definable in the structure R(PR(F)) , it follows that the function f |∆ is too.
(No parameters are needed because ∆ and D have rational data.)

1.6 Composition

I leave the reader to check that if F : U → C (where U ⊆ Cn) and Gi : Vi → C
(where Vi ⊆ Cm for i = 1, . . . , n) are locally definable from F , then so is their
composition F ◦ 〈G1, . . . , Gn〉 :

⋂n
i=1 Vi ∩ 〈G1, . . . , Gn〉−1[U ] → C. (This is
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not an immediate consequence of the fact that definable functions are closed
under composition: one does need to invoke the continuity of the Gi’s.)

1.7 Definition

We denote by F̃ the smallest class of functions containing F and closed un-
der both composition and implicit definability.

Thus we have seen (1.5 and 1.6) that every function in F̃ is locally defin-
able from F .

1.8 Conjecture

A function F is locally definable from F if and only if for all a ∈ dom(F )
there exists a function G ∈ F̃ with a ∈ dom(G), and some ∆ suitable for
both F and G around a , such that F |∆ = G|∆.

In order to be able to state what I can actually prove, I require the
following

1.9 Definition

Let X be any subset of C . Then D̃(X) denotes the set of all complex num-
bers of the form F (w) where F ∈ F̃ and w is a tuple from X such that
w ∈ dom(F ). The set LD(X) is defined similarly except that F is allowed
to be any function locally definable from F .

It follows immediately from the comment preceeding 1.8 that D̃(X) ⊆
LD(X) for all X ⊆ C. The main result of this paper is the following

1.10 Theorem

The operators LD and D̃ are both pregeometries on C and are identi-
cal. Further, the conjecture holds in neighbourhoods of generic points.
In other words, if a1, . . . , an are independent complex numbers (for either
of the pregeometries) and F is a function locally definable from F with
a = 〈a1, . . . , an〉 ∈ dom(F ), then there exists a function G ∈ F̃ with
a ∈ dom(G), and some ∆ suitable for both F and G around a , such
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that F |∆ = G|∆.

Presumably a (positive) solution to 1.8 would, in addition to 1.10, require
some sort of resolution of singularities. However, for many model-theoretic
purposes 1.10 is sufficient: non-generic points may be dealt with by a suitable
inductive hypothesis.

The reader familiar with early work on o-minimal expansions of the
real field may have noticed by now that R(PR(F)) is a structure to which
Gabrielov’s theorem on reducts of Ran applies (see [2]), and hence is model
complete (and o-minimal). It is not hard to deduce from this that the ana-
logue of 1.10 for real analytic functions, in particular where we replace F by
the set of all real and imaginary parts of functions in F , holds. That is, the
real and imaginary parts of a function locally definable from F are (generi-
cally) locally equal to functions obtained from the real and imaginary parts of
functions in F by finitely many applications of composition and extraction of
implicitly defined (real analytic) functions. But it is by no means clear how to
deduce from this that the (complex) locally defined function itself has (gener-
ically) such a characterization in terms of the (complex) functions themselves
in F . For example, in the algebraic case (where F is just the set of all poly-
nomials with Gaussian rational coefficients) this amounts to showing that if
F (z) = F (x+

√
−1y) = u(x,y)+

√
−1v(x,y) is holomorphic for z in an open

neighbourhood of a generic n-tuple z0 = x0+
√
−1y0 (ie the co-ordinates of z0

are algebraically independent over Q), and if u and v are definable functions
in the ordered field of real numbers, then F (z0) is algebraic over Q(z0) (and,
indeed, that a polynomial relationship P (z0, F (z0)) = 0 extends to an open
neighbourhood of z0). Even this special case of 1.10 does not seem obvious
to me. In fact, this case arose out of a misinterpretation of mine of a question
of Hrushovski, namely whether quantifier elimination for the complex field
could be “easily deduced” from the deeper fact of quantifier elimination for
the real ordered field. Neither of us can remember exactly what the precise
formulation was (though Hrushovski now guesses that it probably had some-
thing to do with decidability) but, at any rate, I was motivated to revisit
elimination procedures for the real field with a view to investigating to what
extent they “preserve the Cauchy-Riemann equations”, and this is really the
issue here. Indeed, I suspect that 1.10 could be deduced using the methods
of van den Dries from the important and influential paper [1], but my main
point in this note is to connect real and complex definability via another pre-
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geometry associated with derivations where the Cauchy-Riemann equations
(and Schwarz Reflection) may be applied directly.

Another reason for looking at locally definable functions is that it might
help in studying expansions of the complex field by certain entire functions,
such as the exponential function, and thereby settling Zilber’s conjecture: is
every 〈C, +, ·, exp〉-definable (with parameters) subset of C either countable
or co-countable? (See [5].) Here we would take F to be the collection of all
polynomials in z1, z2, . . . , e

z1 , ez2 , . . . (with Gauassian rational coefficients)-
note that this F is closed under differentiation and Schwarz Reflection-and
the hope would be, as was successful in the real case (see [4]), that one could
study the unrestricted complex exponential function modulo its restrictions,
and 1.10 gives the necessary control on the latter. One should also remark
here that because R(PR(F)) is an o-minimal structure, one has available the
extensive theory, developed by Peterzil and Starchenko, of complex analysis
over such structures (see their survey [3]).

Of course, we cannot fruitfully expand the real field by the unrestricted
complex exponential function (ie by the unrestricted real exponential and
sine functions) because this results in a highly wild structure (equivalent to
second-order number theory). The point of 1.10 is that using first-order real
definability methods in the study of restricted holomorphic functions does
not take us outside the realms of complex geometry.

The plan of the proof of 1.10 is as follows. In the next section I shall show
that both LD and D̃ are pregeometries. Then I shall introduce another
pregeometry on C , denoted DD, via the class of derivations on the field
C that respect (ie satisfy the chain rule for) all the functions in F . It is
easy to show that D̃ and DD are identical, this being the analogue of the
classical fact that if k ⊆ K are fields of characteristic zero and a ∈ K, then
a is algebraic over k if and only if every derivation on K that vanishes on
k also vanishes at a. In the fourth section I set up the bijection between
the class of derivations on C respecting the functions in F and the class
of (pairs of) derivations on R respecting their real and imaginary parts, this
being where the Cauchy-Riemann equations and Schwarz Reflection are used.
Next I observe that the above pregeometric notions have analogues in the
real analytic case (still over the structure R(PR(F)) ) and then derive from
Gabrielov’s theorem that the corresponding version of 1.10 holds in this case.
(This might be new and, indeed, holds in general for expansions of the real
field to which Gabrielov’s theorem applies. But it is a very easy consequence
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of model completeness and I am not sure whether it is a particularly useful
one in this form, since it only holds for archimedean models.) Finally, the
required complex result, 1.10 itself, can now be read off from the bijective
correspondence between the real and complex derivations.

2 The operators LD and D̃ are pregeometries

Let us show that local definablity satisfies the axioms for a pregeometry.
Firstly, it follows immediately from 1.6 that LD(LD(X)) ⊆ LD(X) for

all X ⊆ C, so it only remains to prove the Steinitz Exchange Principle, all
the other axioms being trivially satisfied.

So suppose that X ⊆ C, a, b ∈ C and that a ∈ LD(X ∪ {b}). Then there
exists a function F , locally definable from F , and a tuple w from X with
〈w, b〉 ∈ dom(F ) such that F (w, b) = a. Say w is an n-tuple and suppose

first that ∂iF
∂zi

n+1
vanishes at the point 〈w, b〉 for all i ≥ 1. Then the function

zn+1 7→ F (w, zn+1) is (defined and) constant on an open neighbourhood of
b, with value a. Let q be a Gaussian rational lying in this neighbourhood
and define G : {z : 〈z, q〉 ∈ dom(F )} → C : z 7→ F (z, q). Then clearly G is
locally definable from F and G(w) = a. So a ∈ LD(X) in this case.

For the remaining case, let i ≥ 1 be minimal such that ∂iF
∂zi

n+1
does not

vanish at 〈w, b〉. Then we may suppose that i = 1, for if i ≥ 2 then

just replace F by F + ∂i−1F

∂zi−1
n+1

(which is permissable by 1.2 and 1.6). Now

define H(z, zn+1, zn+2) := F (z, zn+2) − zn+1 (for 〈z, zn+2〉 ∈ dom(F ) and
zn+1 ∈ C) so that H is clearly locally definable from F . Also H(w, a, b) =
0 6= ∂H

∂zn+2
(w, a, b). It follows from the Implicit Function Theorem that

there exists a holomorphic function g such that g(w, a) = b and, for all
〈z, zn+1〉 ∈ dom(g), H(z, zn+1, g(z, zn+1)) = 0 6= ∂H

∂zn+2
(z, zn+1, g(z, zn+1)).

Then g is implicitly defined from H and hence, by 1.5, locally definable from
F . Thus b ∈ LD(X ∪ {a}) in this case, and the proof of the Exchange
Principle is complete.

Now notice that the argument above almost goes through for the operator
D̃. The only thing missing is the fact (used in the second case) that the
collection of functions under consideration be closed under differentiation.
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2.1 Lemma

(i) Let U be an open subset of C \ {0}. Then the function ι : U → C : z1 7→
z−1
1 lies in F̃ .

(ii) F̃ is closed under differentiation.

Proof
For (i), one readily checks that the function ι is implicitly defined from

the polynomial z1 · z2 − 1 and so lies in F̃ . (I remind the reader that F , and
hence F̃ , contains all polynomials with Gaussian rational coefficients.)

For (ii), let S denote the set of all functions F ∈ F̃ such that for all i,
∂F
∂zi

∈ F̃ . Certainly F ⊆ S by our original assumption on F , so we only need
to show that S is closed under implicit definability and composition.

For the former, suppose that f , F are as in 1.4, that F lies in S and that
1 ≤ i ≤ n. By differentiating the identity in 1.4 with respect to zi we obtain,
for w ∈ dom(f):

∂f

∂zi

(w) =
∂F

∂zi

(w, f(w)) · ( ∂F

∂zn+1

(w, f(w)))−1.

It now follows from (i) and the fact that F̃ is closed under composition
that ∂f

∂zi
∈ F̃ . Since this also holds trivially for i > n we see that f ∈ S.

Now suppose that, in the notation of 1.6, the functions F, G1, . . . , Gn all
lie in S. I leave the reader to apply the chain rule to the composite function
F ◦ 〈G1, . . . , Gn〉 (and invoke the closure of F̃ under composition) to see that
each of its first partial derivatives lies in F̃ , and hence that the composite
function itself lies in S, as required. �

As remarked above, we have now established the following

2.2 Theorem

The operators LD and D̃ are both pregeometries on C .

The following observation, which will be used repeatedly, captures the
spirit of these pregeometries. It’s proof may be extracted easily from the
proof of 2.2.
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2.3 Lemma

Let w = 〈w1, . . . , wn〉 ∈ Cn. Then w1, . . . , wn are D̃-dependent (respectively,
LD-dependent) if and only if there exists a function F ∈ F̃ (respectively, a
function F locally definable from F ) such that w ∈ dom(F ) and F (w) = 0,
but such that F does not vanish identically on any open neighbourhood of
w contained in dom(F ). �

3 Derivations

Let K = R or C . By a derivation on K I shall simply mean a Q-linear map
from K to K which, in the case K = C, is also Q(

√
−1)-linear.

Suppose that F is a holomorphic function (if K = C) or a real analytic
function (if K = R). (A real analytic function is assumed to have domain an
open subset of Rn, for some n). Let a = 〈a1, . . . , an〉 be a point of dom(F ).
Then we say that a derivation δ : K → K respects F at the point a if
δ(F (a)) =

∑n
i=1 ∂iF (a) · δ(ai) , where ∂iF denotes the partial derivative of

F with respect to the i’th (real or complex) variable of F . If δ respects F at
all points of its domain then we say that δ respects F . (Thus, a derivation in
the usual sense is just a derivation in our sense that respects mutiplication.)

Let C be a set of functions as above. We denote by DerK(C) the set of
derivations that respect all F ∈ C. It is clear that DerK(C) is a K-vector
space (under pointwise operations).

3.1 Definition

Let C be as above. For a finite subset X ⊆ K we define

DDC
K(X) := {a ∈ K : for all δ ∈ DerK(C), if δ[X] = {0}, then δ(a) = 0}.

For an arbitrary subset X ⊆ K we define

DDC
K(X) := {a ∈ K : a ∈ DDC

K(X ′) for some finite X ′ ⊆ X}.

3.2 Lemma

For any C, the operator DDC
K is well defined (ie the two cases in 3.1 agree

when X is finite) and is a pregeometry on C.
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Proof

It is trivial to check that DDC
K is a well defined operator and that it

satisfes all the axioms for a pregeometry apart from, possibly, the Exchange
Principle. (The axiom of finite character is built into the definition.) To see
that the Exchange Principle holds too, let X ⊆ K, a, b ∈ K and suppose
that a /∈ DDC

K(X) and that b /∈ DDC
K(X∪{a}). Let X ′ be an arbitrary finite

subset of X and choose δ1, δ2 ∈ DerK(C) such that δ1[X
′] = {0}, δ1(a) 6= 0,

and δ2[X
′ ∪ {a}] = {0}, δ2(b) 6= 0. Let δ := δ2(b) · δ1 − δ1(b) · δ2. Then δ

lies in the K-vector space DerCK . Further, δ[X ′ ∪ {b}] = {0} and δ(a) 6= 0.
So a /∈ DDC

K(X ′ ∪ {b}), and since X ′ was an arbitrary finite subset of X,
a /∈ DDC

K(X ∪ {b}) as required. �

We now concentrate on the case K = C, and we write DD for DDF
C .

Our aim for the rest of this section is to show that DD and D̃ are the same
pregeometry on C . So we first prove the following

3.3 Lemma

DerC(F̃) = DerC(F).

Proof

Obviously DerC(F̃) ⊆ DerC(F), so suppose that δ ∈ DerC(F). Then
δ respects every function in F and we must show that this is preserved by
implicit definability and by composition. So suppose that f ,F are as in 1.4
and that δ respects F . Let a ∈ dom(f). Then it follows that

0 = δ(F (a, f(a))) =
∑n

i=1
∂F
∂zi

(a, f(a)) · δ(ai) + ∂F
∂zn+1

(a, f(a)) · δ(f(a)).

However, by differentiating the identity in 1.4 and evaluating at the point
w = a we see that ∂F

∂zi
(a, f(a)) = − ∂F

∂zn+1
(a, f(a)) · ∂f

∂zi
(a) for all i = 1, . . . , n.

By substituting these equations into the equation above, and cancelling the
non-zero term ∂F

∂zn+1
(a, f(a)), we obtain δ(f(a)) =

∑n
i=1

∂f
∂zi

(a) · δ(ai). Since

a ∈ dom(f) was arbitrary, this shows that δ respects f , as required.
Now suppose that, in the notation of 1.6, δ respects the functions F, G1, . . . , Gn.

Let b = 〈b1, . . . , bm〉 ∈ dom(F ◦ 〈G1, . . . , Gn〉). Then 〈G1(b), . . . , Gn(b)〉 ∈
dom(F ) and δ(F (G1(b), . . . , Gn(b))) =

∑n
i=1

∂F
∂zi

(G1(b), . . . , Gn(b))·δ(Gi(b)).

Also, b ∈ dom(Gi) and δ(Gi(b)) =
∑m

j=1
∂Gi

∂zj
· δ(bj) for each i = 1, . . . n.
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By combining these equations and using the chain rule, we see that δ also
respects the function F ◦ 〈G1, . . . , Gn〉 at an arbitrary point b of its domain
and this completes the proof. �

3.4 Theorem

The operators DD and D̃ are identical.

Proof

Let X ⊆ C.
Suppose first that a = 〈a1, . . . , an〉 is a tuple from X and that F is a func-

tion in F̃ with a ∈ dom(F ). Let δ be any derivation in DerC(F) satisfying
δ[{a1, . . . , an}] = {0}. By 3.3, δ respects F and it follows immediately that
δ(F (a)) = 0. This shows that D̃(X) ⊆ DD(X).

Now suppose that w is any complex number such that w /∈ D̃(X).
By 2.2 and the general theory of pregeometries, we may choose a D̃ -

basis for C of the form B∪{w}, where w /∈ B and X ⊆ D̃(B). We construct
a derivation δ ∈ DerC(F) such that δ(w) = 1 and δ[B] = {0} (so that
δ[X] = {0} by the first part of this proof). This shows that w /∈ DD(X) and
completes the proof of the theorem.

To construct δ, let c be an arbitrary complex number and, using the
fact that c ∈ D̃(B ∪ {w}), pick a tuple a = 〈a1, . . . , an〉 from B and a
function F ∈ F̃ such that 〈a, w〉 ∈ dom(F ) and F (a, w) = c. I claim that

∂F
∂zn+1

(a, w) depends only on c. For if also G(a, w) = c with G ∈ F̃ and

〈a, w〉 ∈ dom(G) (and we may suppose that the n and a are the same as
before by adding vacuous variables to F and G) then the function F −G lies
in F̃ and vanishes at the D̃ -generic (n + 1)-tuple 〈a, w〉. But then by 2.3,
it vanishes on some open neighbourhood of 〈a, w〉. Hence so do its partial
derivatives, and the claim follows. Thus we may set δ(c) := ∂F

∂zn+1
(a, w). It

is clear that δ is Q(
√
−1)-linear, and by taking F to be the first and second

projection function on C2 we see that δ[B] = {0} and δ(w) = 1 respectively.
Finally, the fact that δ respects all functions in F follows from (indeed, it is
an instance of) the chain rule, and I leave the easy details to the reader. �

4 Real versus complex derivations

Let C be any collection of holomorphic functions. For each n-ary function
F ∈ C there are two real valued, real analytic functions - the real and imag-
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inary parts of F - with domain the open subset of R2n corresponding to
dom(F ) under the usual identification of C with R2. Let us denote by Creal

the collection of all the real functions obtained in this way. Our aim in
this section is to investigate the relationship between the R-vector space
DerR(Creal) of derivations on R respecting all the functions in Creal and the
C-vector space DerC(C) of derivations on C respecting all the functions in C .

We shall use the following convention. If F : U → C is a holomor-
phic function, where U ⊆ Cn, then the real and imaginary parts, u, v
say, of F are the real analytic functions with domain Ureal := {〈x,y〉 =
〈〈x1, . . . , xn〉, 〈y1, . . . , yn〉〉 ∈ R2n : x+

√
−1y ∈ U} satisfying F (x+

√
−1y) =

u(x,y) +
√
−1v(x,y) for 〈x,y〉 ∈ Ureal.

4.1 Definition

For λ, µ : R → R any functions, the function [λ : µ] : C → C is defined by
[λ : µ](x +

√
−1y) := (λ(x)− µ(y)) +

√
−1(λ(y) + µ(x)) (for x, y ∈ R).

4.2 Lemma

If λ and µ are derivations on R then [λ : µ] is a derivation on C. Further, if
F is a holomorphic function with real and imaginary parts u, v, and domain
U ⊆ Cn, and if λ, µ both respect u and v at a point 〈x,y〉 ∈ Ureal , then
[λ : µ] respects F at the point x +

√
−1y .

Proof

Suppose that λ and µ are derivations on R . Then [λ : µ] is clearly
Q-linear. Further, for x, y ∈ R,

[λ : µ](
√
−1(x +

√
−1y)) = [λ : µ](−y +

√
−1x)

= (−λ(y)− µ(x)) +
√
−1(λ(x)− µ(y))

=
√
−1((λ(x)− µ(y)) +

√
−1(λ(y) + µ(x)))

=
√
−1[λ : µ](x +

√
−1y)

so [λ : µ] is also Q(
√
−1)-linear.

As for the second part, let us write ui for ∂u
∂xi

(x,y) and un+i for ∂u
∂yi

(x,y)

(for i = 1, . . . , n) and similarly for v. Then by 4.1, the fact that λ, µ respect
u, v at 〈x,y〉 , and the Cauchy-Riemann equations in the form un+i = −vi,
vn+i = ui (for i = 1, . . . , n) we obtain
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[λ : µ](F (x+
√
−1y)) = (λ(u(x,y))−µ(v(x,y)))+

√
−1(λ(v(x,y))+µ(u(x,y)))

=
∑n

i=1[uiλ(xi) + un+iλ(yi)− viµ(xi)− vn+iµ(yi)

+
√
−1(viλ(xi) + vn+iλ(yi) + uiµ(xi) + un+iµ(yi))].

=
∑n

i=1(ui+
√
−1vi)(λ(xi)−µ(yi)+

√
−1(λ(yi)+µ(xi)))

=
∑n

i=1
∂F
∂zi

(x +
√
−1y) · ([λ : µ](xi +

√
−1yi)).

Thus [λ : µ] respects F at the point x +
√
−1y , as required. �

Now suppose that δ is any derivation on C . Then, in particular, there
exist functions λ, µ : R → R such that δ(x) = λ(x) +

√
−1µ(x) for x ∈ R.

Clearly λ and µ are Q-linear, ie they are derivations on R . Further, for all
x, y ∈ R,

[λ : µ](x +
√
−1y) = (λ(x)− µ(y)) +

√
−1(λ(y) + µ(x))

= (λ(x) +
√
−1µ(x)) +

√
−1(λ(y) +

√
−1µ(y))

= δ(x) +
√
−1δ(y)

= δ(x +
√
−1y) (since δ is Q(

√
−1)-linear).

Thus δ = [λ : µ]. We now go on to prove the main result of this section.

4.3 Theorem

Let C be any collection of holomorphic functions closed under Schwarz re-
flection (see 1.3). Then the elements of DerC(C) are precisely the maps of
the form [λ : µ] : C → C for λ, µ ∈ DerR(Creal).

Proof

It follows from 4.2 that if λ, µ ∈ DerR(Creal) then [λ : µ] ∈ DerC(C).
So let δ ∈ DerR(Creal). We have observed above that δ = [λ : µ] for some
derivatives λ, µ on R and it remains to show that λ and µ both respect
Creal. To this end, let u, v be the real and imaginary parts of some function
F : U → C lying in C. Let 〈x,y〉 ∈ Ureal (see the convention immediately
preceding 4.1) and, to ease the notation, temporarily write u, ui and un+i

for the complex numbers u(x,y), ∂u
∂xi

(x,y), and ∂u
∂yi

(x,y) respectively (for

i = 1, . . . , n) and similarly for v.

Then since δ respects F we have

(1) δ(F (x +
√
−1y)) =

∑n
i=1

∂F
∂zi

(x,y) · δ(xi +
√
−1yi)
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But δ = [λ : µ], F (x +
√
−1y) = u +

√
−1v and ∂F

∂zi
(x,y) = ui +

√
−1vi

(for i = 1, . . . n), and hence it follows from 4.1 by equating real and imaginary
parts in (1) that

(2) λ(u)− µ(v) =
∑n

i=1 ui(λ(xi)− µ(yi))− vi(λ(yi) + µ(xi))

and

(3) λ(v) + µ(u) =
∑n

i=1 ui(λ(yi)− µ(xi)) + vi(λ(xi)− µ(yi))

Now consider the Schwarz Reflection F SR : U ′ → C of F (see 1.3). We

have x −
√
−1y ∈ U ′ and F SR(x −

√
−1y) = F (x +

√
−1y) = u −

√
−1v.

Further, ∂F SR

∂zi
(x−

√
−1y) = ui−

√
−1vi for i = 1, . . . , n. Also, by hypothesis,

F SR ∈ C and so δ respects F SR at the point x−
√
−1y. Hence, by applying

the argument above with F SR in place of F and x −
√
−1y in place of

x +
√
−1y we obtain the equations

(4) λ(u) + µ(v) =
∑n

i=1 ui(λ(xi) + µ(yi)) + vi(−λ(yi) + µ(xi))

and

(5) −λ(v) + µ(u) =
∑n

i=1 ui(−λ(yi)− µ(xi))− vi(λ(xi) + µ(yi)).

From (2), (4) and the Cauchy-Riemann equations in the form vi = −un+i,
ui = vn+i (for i = 1, . . . , n) we obtain the equations

λ(u) =
∑n

i=1 uiλ(xi)− viλ(yi) =
∑n

i=1 uiλ(xi) + un+iλ(yi), and

µ(v) =
∑n

i=1 uiµ(yi) + viµ(xi) =
∑n

i=1 vn+iµ(yi) + viµ(xi),

which show that λ respects the function u at the point 〈x,y〉 and that µ
respects the function v at 〈x,y〉 . The corresponding conclusions for λ, v
and µ, u follow similarly from (3) and (5). �

4.4 Remark

If δ is a derivation on the field C in the usual sense, and δ = [λ : µ] (which
determines λ and µ uniquely: just consider δ|R), then λ, µ are derivations
on the field R in the usual sense. This follows either by direct calculation or
from 4.5 by taking C = {h}, where h : C → C: z 7→ z2

2
, and observing that

real multiplication is the imaginary part of h.

5 The proof of the main theorem

We first observe that the results of the first three sections have versions
for real analytic functions (defined on open subsets of Rn, for various n).
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So let us fix a collection, E say, of such functions. We assume that E is
closed under partial differentiation and that it contains all polynomials with
rational coefficients. We let PR(E) denote the collection of all functions
f |∆, where f ∈ E and where ∆ is suitable for f , ie it is a product of open
intervals, with rational endpoints, such that ∆̄ ⊆ dom(f). Then R(PR(E))
denotes the expansion of the ordered field of real numbers by all functions
in PR(E). The definition of the notion of a function being locally definable
from E , and of the closure of E under composition and implicit definablility,
which we denote by Ẽ , go through as before: just replace “holomorphic”
everywhere by “real analytic”. Similarly, one defines the operators Ẽ(·) and
LED(·), of closure under functions in Ẽ and under functions locally definable
from E respectively, and proves that they are both pregeometries on R with
Ẽ(X) ⊆ LED(X) for all X ⊆ R. The analogue of 2.3 also holds.

We now establish the real version of 1.10.

5.1 Lemma

Ẽ and LED are identical pregeometries on R.

Proof

Let X ⊆ R. We must show that LED(X) ⊆ Ẽ(X) and it is clearly
sufficient to consider the case where X = {s1, . . . , sn} is finite and s :=
〈s1, . . . , sn〉 is Ẽ-generic (ie s1, . . . , sn are Ẽ-independent real numbers).

We shall use Gabrielov’s Theorem (see [2]) which tells us that any reduct
of the structure Ran in which the collection of basic functions of the language
is closed under differentiation, has a model complete theory. This clearly
applies to our structure R(PR(E)).

We set k = Ẽ({s1, . . . , sn}) and observe that k is a subfield of R (by the
real version of 2.1(i)) and is closed under all functions in Ẽ . The proof of the
lemma will be complete if we can show that the expansion of the field k by the
restriction to k of (the graphs of) all functions in PR(E) is existentially closed
in R(PR(E)). For, by model completeness, this implies that this expan-
sion is an elementary substructure of R(PR(E)) and hence closed under all
(parameter-free) R(PR(E))-definable functions, whence LED({s1, . . . , sn}) ⊆
k, as required.

Now, by standard manipulations of existential formulas in languages ex-
panding that of ordered fields, it is sufficient (in order to establish the required
existential closedness) to prove the following
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Claim: Let a ∈ kr, b ∈ Rm and f ∈ Ẽ . Suppose further that ∆ is suitable
for f , 〈a,b〉 ∈ ∆ and f(a,b) = 0. Then there exists b′ ∈ km such that
〈a,b′〉 ∈ ∆ and f(a,b′) = 0.

In fact, it is sufficient for our purposes to prove the claim just for func-
tions f lying in the compositional closure of E , but, by stating the claim as we
have, we may assume straight away that r = n and that a = s. Now, to prove
the claim, we pick a maximal Ẽ-independent subset of {b1, . . . , bm} over s,
where b = 〈b1, . . . , bm〉. Let us suppose, for notational convenience, that it is
{b1, . . . , bl} (for some l = 0, . . . ,m), so that bl+1, . . . , bm ∈ Ẽ({s1, . . . , sn, b1, . . . , bl}).
Say φi(s, b1, . . . , bl) = bl+i, where φi ∈ Ẽ , for i = 1, . . . ,m− l. Define g ∈ Ẽ by
g(x1, . . . , xn+l) = g(x) := f(x, φ1(x), . . . , φm−l(x)), so that g(s, b1, . . . , bl) =
0. However, since 〈s, b1, . . . , bl〉 is an Ẽ-generic point of Rn+l, it follows from
the real version of 2.3 that g vanishes on some open subset, V say, of dom(g)
with 〈s, b1, . . . , bl〉 ∈ V . Thus we may pick rationals q1, . . . , ql sufficiently close
to b1, . . . , bl (respectively) so that both 〈s, q1, . . . , ql〉 ∈ V and b′ ∈ ∆, where
b′ denotes the m-tuple 〈q1, . . . , ql, φ1(s, q1, . . . , ql), . . . , φm−l(s, q1, . . . , ql)〉. This
choice of b′ clearly satisfies the conclusion of the claim, and hence the proof
of the lemma is complete. �.

5.2 Corollary

Let s1, . . . , sn be Ẽ-independent real numbers and suppose that g is a func-
tion locally definable from E with s := 〈s1, . . . , sn〉 ∈ dom(g). Then there
exists a function f ∈ Ẽ with s ∈ dom(f) such that f = g on some open
neighbourhood of s.

Proof

Since, by definition, g(s) ∈ LED({s1, . . . , sn}), it follows from 5.1 that
there exists a function f ∈ Ẽ with s ∈ dom(f) such that f(s) = g(s). Then
the function f − g is locally definable from E and vanishes at the point s.
But s is also LED-generic (by 5.1), so the result follows from the real version
of 2.3. �

Suppose now that λ is a derivation on R respecting every function in
E , ie λ ∈ DerR(E). The proof of 3.3 goes through with complex variables
replaced by real (and no other changes), and so λ ∈ DerR(Ẽ). It now follows
immediately from 5.2 that λ respects every function locally definable from
E at generic points of their domains. One has to work a little harder at
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non-generic points:-

5.3 Lemma

Let λ ∈ DerR(E). Then λ respects every function locally definable from E .

Proof

Let f be a function locally definable from E and s = 〈s1, . . . , sn〉 a point
of dom(f). Choose a maximal Ẽ-independent subset of {s1, . . . , sn} and
suppose, for notational convenience, that it is {s1, . . . , sl}, where 0 ≤ l ≤ n.
Now choose functions φl+1, . . . , φn in Ẽ such that φi(s

′) = si for i = l +
1, . . . , n, where s′ := 〈s1, . . . , sl〉.

Define the function g by g(x′) = f(x′, φl+1(x
′), . . . , φn(x′)), so that g is

locally definable from E and g(s′) = f(s). Now by the discussion before the
statement of the lemma, λ respects the φi’s and g at the point s′, so we have

(*) λ(si) = λ(φi(s
′)) =

∑l
j=1

∂φi

∂xj
(s′) · λ(sj), for i = l + 1, . . . , n,

and

λ(f(s)) = λ(g(s′)) =
∑l

j=1
∂g
∂xj

(s′) · λ(sj),

=
∑l

j=1(
∂f
∂xj

(s) +
∑n

i=l+1(
∂f
∂xi

(s) · ∂φi

∂xj
(s′))) · λ(sj),

(by the chain rule)

=
∑l

j=1(
∂f
∂xj

(s)·λ(sj)+
∑n

i=l+1(
∂f
∂xi

(s)·(
∑l

j=1
∂φi

∂xj
(s′)·λ(sj)),

=
∑n

j=1(
∂f
∂xj

(s) · λ(sj), by (*).

So λ respects f at s, as required. �

We can now prove that LD and D̃ are identical pregeometries on C.
Let X ⊆ C. It remains to show that LD(X) ⊆ D̃(X). So let w ∈ LD(X)

and choose a function F , locally definable from F , and elements a1, . . . , an

of X such that a := 〈a1, . . . , an〉 ∈ dom(F ) and F (a) = w. I shall show
that w ∈ DD(X), which suffices by 3.4. Indeed, I shall show that w ∈
DD({a1, . . . , an}).

So let δ be an element of DerC(F) vanishing on the set {a1, . . . , an}. Then
by 4.3 (with C = F - recall our assumption on F stated just after 1.3) we
may choose λ, µ ∈ DerR(Freal) such that δ = [λ : µ]. Now since F contains
(complex) multiplication it follows that δ is a derivation on C in the usual
sense and hence, by 4.4, both λ and µ are derivations on R in the usual sense.
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So if we define E to be the union of Freal with the set of all polynomials with
rational coefficients, it follows that λ, µ ∈ DerR(E).

Now the function F is locally definable from F . So its real and imaginary
parts are certainly locally definable from E , and hence, by 5.3, are respected
by both λ and µ. But then, by 4.2, δ respects F at every point of its domain,
in particular at the point a. Since δ(ai) = 0 for each i = 1, . . . , n it follows
that δ(F (a) = 0, ie δ(w) = 0, and we are done.

The second part of 1.10 now follows by the same argument used to deduce
5.2 from 5.1.
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