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The emphasis in this course will be on a geometric formulation of the model
theory of algebraically closed fields, eventually with extra structure. From this
viewpoint, an abstract quantifier elimination, in which one need not mention
individual algebraically closed fields and their elements, is central, and uncount-
able categoricity peripheral.

From now on all rings are commutative with 1. Here we deal mainly with do-
mains, though this distinction is quite unnatural from the viewpoint of modern
algebraic geometry. Fields have 0 6= 1, ideals are assumed proper and homo-
morphisms of rings are unital. For any ring R and any subset A ⊂ R, we denote
by 〈A〉 the ideal generated by A in R.

1 Basic definitions and properties

Since any homomorphism of fields is injective, the category Fields has fields
as objects and ring monomorphisms as morphisms. Important variants restrict
the morphisms to be separable, or regular (see below, 4.2 4.5 4.6). Valuation
theory considers instead places, partially defined maps. Note that Fields is a
disjoint union of categories of fields of different characteristics.

Remark. If R is a domain with 0 6= 1, there is a unique homomorphism Z→ R
and its kernel is a prime ideal of Z, so either (0) or (p) for a unique prime p.
The characteristic of R is 0 in the first case, and p in the second.

2 Spectrum of rings and Noetherian spaces

2.1 Spectrum of rings

Definition 1. Let R be a ring. Then the spectrum of R, denoted by Spec(R),
is the topological space specified as follows: its elements are the prime ideals
P of R and its closed sets are of the form CA = {P : A ⊂ P}, for A ⊂ R.
Consequently, open sets are of the form UA = {P : A 6⊂ P}, for A ⊂ R.

It is useful to note that every CA (respectively UA) can be obtained with A
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a radical ideal, i.e. Rad(A) = A, where

Rad(A) = {r : rn ∈ A for some n ∈ N}

= (non-trivially)
⋂
{P : A ⊂ P , P prime}

The topology of Spec(R) is not Hausdorff in general. We have for example
that, if P a prime ideal of R, then {P} is closed in Spec(R) if and only if P is
maximal. Spec(Z) for instance is not Hausdorff, for (0) is not maximal, though
all other prime ideals are. Both P(R), the power set of R, and Spec(R) are
partially ordered by ⊂. The map

P(R)→ Spec(R)
A 7→ CA

is order-reversing, and
CS

Ai =
⋂
CAi .

Theorem 2. For any ring R, Spec(R) is compact.

Proof. Note first, by the fact that any proper ideal is contained in a maximal
one, that for any B ⊂ R, CB = ∅ if and only if 〈B〉 = R. One has to show that if
{CAi : i ∈ I} has the finite intersection property, then

⋂
CAi 6= ∅, i.e. CS

Ai 6= ∅.
Now if CS

Ai = ∅, then 〈
⋃
Ai〉 = R and thus 1 ∈ 〈

⋃
Ai〉. Then 1 ∈ 〈

⋃
i∈I0 Ai〉

for some finite I0 ⊂ I, and so CS
i∈I0

Ai = ∅, i.e.
⋂
i∈I0 CAi 6= ∅.

Let f : R→ S be a ring (homo)morphism. Define Spec(f), or f∗, as

f∗ : Spec(S)→ Spec(R)

P 7→ f−1(P )

It can be easily checked that f∗ maps Spec(S) to Spec(R), is continuous, and
is functorial, i.e. (fg)∗ = g∗f∗ and 1∗R = 1SpecR.

2.2 Noetherian Rings

Definition 3. A ring R is said to be Noetherian if every ideal of R is finitely
generated.

Lemma 4. A ring R is Noetherian if and only if R has the Ascending Chain
Condition (ACC) for ideals, i.e. any increasing chain of ideals is stationary.

Proof. Let (Ai)i<ω be an increasing chain of ideals of R, and let A =
⋃
i<ω Ai.

Since the Ai form a chain, A is an ideal, which moreover is finitely generated
by Noetherianity. Let a1, . . . , an be generators of A. For any j ≤ n, there is
mj < ω such that aj ∈ Amj . Let m be the biggest of all the mj . Then by the
fact that the Ai are increasing, all the aj for j ≤ n are in Am, so A ⊂ Am, and
since also Am ⊂ A, we get that Am = A. Therefore for all m′ ≥ m, Am′ = A,
which proves our claim.

Example. Any Principal Ideal Domain (PID) is Noetherian, and in particular
Z and K[X], for K a field, are Noetherian.

2



Theorem 5. (Hilbert’s Basis Theorem) If R is Noetherian, so is R[X].

This proof can be found in [2]. The following notion will be useful in the
proof and later: If f = anX

n + an−1X
n−1 + · · · + a0 ∈ R[X], with an 6= 0, we

define the initial term of f to be anXn, the initial coefficient of f to be an and
the degree of f to be n.

Proof. Assume towards a contradiction that there is an ideal I of R[X] that
is not finitely generated. Then choose a sequence of elements f1, f2, · · · ∈ I as
follows: Let f1 be a nonzero element of least degree in I 6= 0. For j > 1, since
by our assumption 〈f1, . . . , fj〉 6= I, choose fj+1 to be an element of least degree
among those in I but not in 〈f1, . . . , fj〉.

Let aj be the initial coefficient of fj . Since R is Noetherian, the ideal J =
〈a1, a2, . . . 〉 of all the aj is finitely generated. We may choose a finite set of
generators from among the aj themselves. Let m be the first integer such that
a1, . . . , am generate J .

We claim that I = 〈f1, . . . , fm〉. We may write am+1 = Σmj=1ujaj , for some
uj ∈ R. Since the degree of fm+1 is greater or equal to the degree of each
of f1, . . . , fm, we may define a polynomial g ∈ R having the same degree and
initial term as fm+1 by the formula

g = Σmj=1ujfjX
degfm+1−degfj ∈ 〈f1, . . . , fm〉.

The difference fm+1 − g is then in I but not in 〈f1, . . . , fm〉, and has degree
strictly less than the degree of fm+1. This contradicts the choice of fm+1 as
having minimal degree.

Corollary 6. If R is Noetherian, so is every R[X1, ..., Xn].

The following is easy to check

Lemma 7. A homomorphic image of a Noetherian ring is Noetherian. Conse-
quently, any finitely generated extension of a Noetherian ring is Noetherian.

2.3 Noetherian spaces

Definition 8. A topological space X is called Noetherian, if it has the De-
scending Chain Condition (DCC) for closed sets.

Lemma 9. If R is a Noetherian ring, then Spec(R) is a Noetherian Space.

Proof. If {CAn : n < ω} is strictly descending, for An ideals, then the ideal
generated by the union of the An cannot be finitely generated.

Parallel to this we have:

Lemma 10. If f : X → Y is a continuous surjection and X is Noetherian,
then Y is also Noetherian.

Proof. Given a descending chain {Yn : n < ω} of closed sets in Y , the descending
chain {f−1(Yn) : n < ω} of closed sets in X is eventually constant, and so must
be the former since Yn = f(f−1(Yn)).

When using Noetherianity of spaces the usual formulation is that every non-
empty collection of closed sets has a minimal element. We present to basic
examples of this.
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Use 1: Irreducible sets and components

A closed set C is said to be irreducible if there are no C1 and C2 proper closed
subsets of C such that C = C1 ∪ C2

Theorem 11. Let X be a Noetherian space.

1. Each closed set C of X can be written as a finite union of closed irreducible
sets.

2. This representation of C as C1∪· · ·∪Cn is unique if we require that there
are no inclusions among the Ci.

Proof. For the first part, suppose that there exists a counterexample, then let
C be a minimal such closed set. Obviously C cannot be irreducible, and then
C = C1 ∪ C2 for some C1 and C2 proper closed subsets of C. By our election
of C, both C1 and C2 can be written as finite unions of irreducible closed sets.
Putting together these representations we get one for C, and so we have a
contradiction.

For the uniqueness let C1, ..., Cn and Di, ..., Dn be closed irreducible sets
such that

C = C1 ∪ · · · ∪ Cn = D1 ∪ · · · ∪Dm,

and for every i 6= j, Ci 6⊂ Cj and Di 6⊂ Dj . Then for each i, Ci = Ci ∩⋃
j Dj =

⋃
j(Ci∩Dj), and by the irreducibility of Ci this implies that, for some

j, Ci = Ci ∩Dj , i.e. Ci ⊂ Dj . Moreover, using the irreducibility of Dj , there
exist l such that Dj ⊂ Cl, and so i = l and Ci = Dj . Finally, using an analogous
argument we have that for every j, there is an i such that Dj = Ci, thus the
two representations of C are the same.

Use 2: Dimension

This is essentially a notion of classical set theory. It is normally given in algebra
for closed irreducible sets by the recursion

dim(∅) = −1, dim(C) = sup{dim(D) + 1 : D ( C}.

With this definition it can be easily proved that every non-empty closed set
has an ordinal valued dimension.

Then the definition of dimension can be extended to all closed sets by

dim(C) = max{dim(D) : D is an irreducible component of C}.

2.4 Hilbert’s Nullstellensatz

Gauss’ fundamental theorem of algebra establishes the basic link between alge-
bra and geometry: It says that a polynomial in one variable over C, an algebraic
object, is determined up to a scalar factor by the set of its roots (with multiplic-
ities), a geometric object. Hilbert’s Nullstellensatz extends this link to certain
ideals of polynomials in many variables. It is a formal consequence of the funda-
mental theorem of algebra in the sense that it holds for any algebraically closed
field.
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Let k be a field, X ⊂ kn and I ⊂ k[x1, . . . , xn], we denote by

Z(I) := {(y1, . . . , yn) ∈ kn;∀g ∈ I, g(y1, . . . , yn) = 0}

and by

I(X) := g ∈ k[x1, . . . , xn];∀(y1, . . . , yn) ∈ X, g(y1, . . . , yn) = 0.

It is clear that I can be replaced by the ideal it generates in k[x1, . . . , xn] without
changing Z(I), and that I(X) is an ideal.

Theorem 12 (Nullstellensatz). Let k be an algebraically closed field. If I ⊂
k[x1, . . . , xn] is an ideal, then

I(Z(I)) = Rad(I).

Thus the correspondences I −→ Z(I) and X −→ I(X) induce a bijection be-
tween the collection of algebraic subsets of kn and the radical ideals of k[x1, . . . , xn]

See [2, 4.5 Theorem 1.6] for details.

2.5 Zariski Topology

Definition 13. Let K → L be a field extension, and n a positive integer. On
Ln take as closed sets all finite intersections of sets of the form

{ᾱ ∈ Ln : f(ᾱ) = 0}

with f ∈ K[X1, ..., Xn], the resulting topology is called the K-Zariski topology
on Ln.

Lemma 14. Given a field extension K → L, the space Ln with the K-Zariski
topology has the following properties:

1. It is quasi-compact,

2. It is Noetherian,

3. If K = L, all its points are closed,

4. If K infinite, it is not Hausdorff.

Proof. 1. Let F be a family of closed sets of Ln such that
⋂
F∈F F = ∅. Let

J be the ideal generated by the I(F )’s in K[x1, . . . , xn]. Then, by the null-
stellensatz, Rad(J) = K[x1, . . . , xn], and there are finitely many elements
fi ∈ I(Fi), Fi ∈ F , i ≤ n such that Rad〈f1, . . . , fn〉 = K[x1, . . . , xn],
thus Rad〈I(F1)

⋃
· · ·

⋃
I(Fn)〉 = K[x1, . . . , xn]. It is clear then that

F1

⋂
· · ·

⋂
Fn = ∅.

2. By the nullstellensatz, to a descending chain of closed sets in Ln corre-
sponds an increasing chain of radical ideals in K[x1, . . . , xn]. Noetherian-
ity of Ln follows then by the Hilbert’s basis theorem.

3. Clear.

4. In fact, for K infinite, if fg vanishes in every point of Kn, then by the
nullstellensatz, fg = 0 in K[X1, ..., Xn].
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2.6 Generic points (of spaces)

Definition 15. Let C be a closed set in a topological space X, we say that
α ∈ C is a generic point of C, if α belongs to no proper closed subset of C, i.e.

¯{α} = C.

Consider the question of existence and uniqueness of generic points.

Lemma 16. If a closed set C has a generic point, then it is irreducible.

Proof. Let α be a generic point of C and suppose that C = C1 ∪ C2 for some
closed sets C1 and C2. For some i ∈ {1, 2} α ∈ Ci, then ¯{α} ⊂ Ci, and so
Ci = C.

However, in a general Noetherian space irreducible closed sets need not have
generics and generics may not be unique.

Example. Consider the Q-Zariski topology on Q2. The unit circle C = {(u, v) ∈
Q2 : u2 + v2 = 1} is irreducible, but has no generic point.

Example. Now consider the Q-Zariski topology on R2. The unit circle C =
{(u, v) ∈ R2 : u2 + v2 = 1} has uncountably many generic points, namely every
(t,
√

1− t2) such that t is a real transcendental number with |t| < 1.

But for Spec(R), R any ring, irreducible closed sets have unique generics.

Theorem 17. If A is an ideal in R, CA is irreducible if and only if Rad(A)
is prime. Moreover, if CA is irreducible, then it has a unique generic point
Rad(A).

Proof. Recall that CA = CRad(A). Suppose that Rad(A) is not prime, and let
f, g ∈ A− Rad(A) be such that fg ∈ Rad(A). Then

CRad(A) = CRad(A)∪{f} ∪ CRad(A)∪{g}.

Moreover, since f, g 6∈ Rad(A) =
⋂
{P : A ⊂ P , P prime}, there exist prime

ideals Pf and Pg containing A such that f 6∈ Pf and g 6∈ Pg, and then Pf ∈
CRad(A) − CRad(A)∪{f} and Pg ∈ CRad(A) − CRad(A)∪{g}. Thus, CRad(A) is not
irreducible.

Conversely, if Rad(A) is prime, then Rad(A) is a generic point of CRad(A),
so CRad(A) is irreducible. The uniqueness follows immediately.

2.7 Z[X1, ..., Xn] and K[X1, ..., Xn]

The polynomial rings Z[X1, ..., Xn] and K[X1, ..., Xn], K a field, are Noetherian,
and for n = 1 the latter is a PID. We shall see that the quantifier elimination
for algebraically closed fields can naturally be stated and proved in terms of
the spaces Spec(Z[X1, ..., Xn]) (n = 0, 1, 2, ...) without ever mentioning a single
algebraically closed field.
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The meaning of point

Let g : R → S be a homomorphism of rings, and write g also for the in-
duced homomorphism from R[X1, ..., Xn] to S[X1, ..., Xn]. Then Spec(g) is a
continuous map from Spec(S[X1, ..., Xn]) to Spec(R[X1, ..., Xn]). If S is a do-
main, S[X1, ..., Xn] is too. Then an element ᾱ ∈ Sn determines an element of
Spec(S[X1, ..., Xn]) by

ᾱ 7→ Jᾱ = {h ∈ S[X1, ..., Xn] : h(ᾱ) = 0}.

We define I(ᾱ|R), when g is understood and S is a domain, as Spec(g)(Jᾱ).
When g is an embedding, identifying R and g(R), I(ᾱ|R) is the ideal of

polynomials over R vanishing in ᾱ. In fact, if R is a domain, we get all elements
of Spec(R[X1, ..., Xn]) in this way. For if P ∈ Spec(R[X1, ..., Xn]) let S =
R[X1, ..., Xn]/P and ᾱ = (X1 + P, ...,Xn + P ). We can also take S to be the
field of fractions of S = R[X1, ..., Xn]/P if we wish. Note that from this it
follows that I(ᾱ|R) need not be maximal, even if R is a field.

Seen from R, ᾱ and β̄ in perhaps different S are algebraically indistinguish-
able if I(ᾱ|R) = I(β̄|R). What remains after we forget the set-theoretic points
ᾱ, β̄, ... is the element of Spec(R[X1, ..., Xn]).

We are going to formulate the basic model theory of fields in terms of
Spec Z[X1, ..., Xn], n ∈ ω. This contrasts with the fact that neither Z[X1, ..., Xn]
nor its spectrum have much of a model theory in the classical sense.

Varieties

For this course and affine variety in n-space over R, which we assume to be
Z or a field, is defined as an irreducible closed set in Spec(R[X1, ..., Xn]) (It is
desirable to go further in the direction of a scheme-theoretic model theory, but
the length of the course precludes this).

We have seen in the discussion of generic points that an affine variety C is
of the form CP := C{P} for a unique prime ideal P , the generic point of C. By
a point of C we will understand an element of CP . Such points correspond to
the ideals I(ᾱ|R) ⊃ P , i.e. loosely to the set-theoretic points of the algebraic
set defined by P (note that P is finitely generated). They may very well not be
closed points of CP .

2.8 Logic topology and Spectral topology

For a language L, first-order or propositional, let Tarski(L) be the set of com-
plete L-theories. Tarski(L) is topologized by taking as closed sets the ones of
the form CT0 = {T : T0 ⊂ T} for an L-theory T0.

The Compactness Theorem says that Tarski(L) is compact, and has as basis
the set of clopens CT0 for T0 finite. So one says that Tarski(L) is a compact
totally disconnected space, or a Stone space. Also note that Tarski(L) is Haus-
dorff.

The clopen sets form a Boolean algebra, and thus a Boolean ring Ring(L)
under:

a · b = a ∩ b,
a+ b = (a ∩ bc) ∪ (ac ∩ b).
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Note, since Ring(L) is a Boolean ring, all its prime ideals are maximal.
So, what is the connection between Tarski(L) and Spec(Ring(L))?
For T ∈ Tarski(L) define

PT = {r ∈ Ring(L) : T 6∈ r}.

It is an easy exercise to check that PT is a prime ideal of Ring(R).
Conversely, for P ∈ Spec(Ring(L)) define

TP = {φ : C{φ} ∈ P}.

Again, it can be checked that TP ∈ Tarski(L), PTP = P and TPT = T . Thus
T 7→ PT is a bijection.

Moreover, if A is a set of clopens, the inverse image of CA ⊂ Spec(Ring(L))
is the set of theories T meeting all the complements of elements of A, and so is
closed. Thus the map T 7→ PT is continuous.

Now note that Spec(R) is Hausdorff for any Boolean ring R. For if P1 and P2

are distinct elements, there is r ∈ R with r ∈ P1 and 1−r ∈ P2. Finally, since a
continuous bijection of compact Hausdorff spaces need to be a homeomorphism,
we have that Tarski(L) and Spec(Ring(L)) are homeomorphic.

2.9 The Characteristic Revisited

Let L be the language of ring theory, and let Tarski(Fields) be the closed subset
of Tarski(L) consisting of the complete theories of fields.

The characteristic of a field is a first crude first-order invariant of fields: For
a field K, and p a prime number,

ch(K) = p ⇐⇒ K � 1 + 1 + ...+ 1︸ ︷︷ ︸
p times

= 1

ch(K) = 0 ⇐⇒ K � 1 + 1 + ...+ 1︸ ︷︷ ︸
p times

6= 1, for any prime p

Exercise 1. Show that no first-order sentence expresses that a field has char-
acteristic 0.

Exercise 2. Let Φ be a set of sentences in the language of ring theory. Prove
that if Φ holds in some fields of arbitrarily large characteristic, then Φ holds in
some field of characteristic 0.

Exercise 3. Give an example of a sentence ψ which holds in some field of
characteristic 0, but does not hold in any field of finite characteristic. [Hint:
Think of R]

For p a prime number or zero, consider Tarski(ch(K) = p) the closed subset
of Tarski(Fields). If p is a prime this set is a clopen, but if p = 0 it is not.

Exercise 4. The map

Tarski(Fields)→ Spec(R)
T 7→ ch(K), for K � T

is continuous but is not a homeomorphism.
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3 Chevalley-Tarski

3.1

This is the basic quantifier elimination for algebraically closed fields. We give
it as a direct image theorem for the system of spaces Spec(Z[Xi : i < n]) with
no reference to quantifiers.

3.2

Consider the natural monomorphism

jn : Z[Xi : i < n]→ Z[Xi : i < n+ 1]

and its dual map

Spec(jn) : Spec(Z[Xi : i < n+ 1])→ Spec(Z[Xi : i < n])
P 7→ P ∩ Z[Xi : i < n]

Spec(jn) is not in general a proper map, i.e. the image of a closed set need
not be closed. This corresponds to the fact that in the quantifier elimination
for algebraically closed fields negations of atomic formulas are needed.

The standard example of a non-proper Spec(jn) is obtained by taking n = 2
and considering the closed set C{X0X1−1} whose image is the complement of
CX0 in Z[X0] which is not closed.

Exercise 5. Show that indeed CX0 is not open in Z[X0].

3.3

To get the right theorem one works with constructible sets.

Definition 18. A subset Y of a topological space X is called locally closed if
for each y ∈ Y there is an open subset Uy and a closed set Cy such that y ∈ Uy
and Y ∩ Uy = Cy ∩ Uy.

Lemma 19. Let X be a space. Y ⊂ X is locally closed if and only if it can be
written as Y = U ∩ C for some open set U and some closed set C.

Proof. (⇐) Clear. (⇒) Suppose that Y is locally closed and, for each y ∈ Y ,
let Uy and Cy as in the definition. Since Y ∩ Uy = Cy ∩ Uy, we have that
Y c ∩ Uy = Ccy ∩ Uy, and so

Y c ∩ U =
⋃
y∈Y

(Ccy ∩ Uy),

where U =
⋂
y∈Y Uy. The set in the right hand side of the equality above is

obviously open, let us call it V . Finally note that Y = V c ∩ U .

Definition 20. A subset Y of a topological space X is called constructible if it
is a finite union of locally closed sets.

Note that the constructible sets of a space X form the smallest Boolean
subalgebra of P(X) containing all open and closed sets of X.
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Theorem 21 (Abstract Chevalley-Tarski). The image under Spec(jn) of a con-
structible set is constructible.

Remark. The most specific item used in the proof of the theorem is the fact
that K[X] is a Principal Ideal Domain, for K a field. In some way or another
this is used in all proofs of quantifier elimination in basic field theory.

Proof. Note that, since image commutes with finite unions, it is enough to show
that the image of every Y = U ∩C ⊂ Z[Xi : i < n+ 1], with U an open set and
C an irreducible closed set, is constructible.

Suppose for the sake of a contradiction that Spec(jn)(Y ) is not constructible
for some such Y . Given that Z[Xi : i < n+1] is Noetherian, we may also assume
that Y is a counterexample with minimal C, i.e. for every C ′ ( C closed, and
every U ′ open, Spec(jn)(U ′ ∩ C ′) is constructible.

Let P0 be the generic point of C and let g0, ..., gm be generators for P0. Then
P0 ∈ U , since otherwise Y would be empty, contradicting our initial assumption.
Let U = UB for B an ideal and note that if f0, ..., fr are generators of B, then
U = U{f0} ∪ ...∪U{fr} and so Y = (U{f0} ∩C)∪ ...∪ (U{fr} ∩C). Thus we may
assume that U = U{f} for some f ∈ Z[Xi : i < n+ 1].

To simplify the notation let R = Z[Xi : i < n]. Notice that Spec(jn) has a
section given by

Spec(R)→ Spec(R[Xn])
p 7→ 〈p〉

For p ∈ SpecR. We have a natural isomorphism

R[Xn]/〈p〉 ∼= R/p[Xn].

Also note that this induces a natural isomorphism:

((R− p)/〈p〉)−1R[Xn]/〈p〉 ∼= Fp[Xn],

where Fp is the field of fractions of R/p. In what follows we identify this two
rings.

Consider the natural projection R[Xn]→ R[Xn]/〈p〉, clearly P0/〈p〉 = 〈g0 +
〈p〉, ..., gm+ 〈p〉〉. Furthermore, consider 〈P0/〈p〉〉, the ideal generated by P0/〈p〉
in Fp[Xn]. We know that 〈P0/〈p〉〉 is principal, with generator gcd(g0+〈p〉, ..., gm+
〈p〉).

Let p0 = Spec(jn)(P0), i.e. p0 = P0 ∩R. Using the Euclidean algorithm g+
〈p0〉 := gcd(g0+〈p0〉, ..., gm+〈p0〉) can be written as a linear combination of g0+
〈p0〉, ..., gm+〈p0〉 in Fp0 [Xn], fix one such linear combination and let h0, ..., hm ∈
R − p0 be representatives for the 〈p0〉-classes which appear as denominators of
its coefficients. Let U ′ = U{

Q
hi} ⊂ Spec(R), open neighborhood of p0. In fact,

for every p ∈ U ′ ∩ Cp0 , g + 〈p〉 generates 〈P0/〈p〉〉.
Given that P0 is a prime ideal in R[Xn] containing 〈p0〉, P0/〈p0〉 is a prime

ideal in R[Xn]/〈p0〉. Also, since P0/〈p0〉 is disjoint from the multiplicative set
R − p0/〈p0〉, 〈P0/〈p0〉〉 is a prime ideal in Fp0 [Xn]. We conclude that g + 〈p0〉
is irreducible in Fp0 [Xn].

The irreducibility of g + 〈p0〉 gives us that, in the same polynomial ring,
gcd(g + 〈p0〉, f + 〈p0〉) = 1 + 〈p0〉. To check this note that otherwise we would
have

g + 〈p0〉(G+ 〈p0〉/H + 〈p0〉) = f + 〈p0〉
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for some G ∈ R[Xn], H ∈ R − p0. And then, writing g + 〈p0〉 as a linear
combination of the gi + 〈p0〉 and eliminating the denominators, we would have
that for some G0, ..., Gm ∈ R[Xn] and some H ′ ∈ R− p0

G0g0 + · · ·+Gmgm + 〈p0〉 = H ′f + 〈p0〉,

and it would follow that f ∈ P0.
Now, using the Euclidean algorithm in Fp0 [Xn] write 1 + 〈p0〉 as a linear

combination of g+ 〈p0〉 and f + 〈p0〉, and let h′0, h
′
1 ∈ R− p0 be representatives

for the denominators of the coefficients of the linear combination. Let W =
U{

Q
hi

Q
h′i} ⊂ SpecR, open neighbourhood of p0, then we have that, for every

p ∈W ∩ Cp0 , g + 〈p〉 and f + 〈p〉 generate Fp[Xn].
Claim:

W ∩ Cp0 ⊂ Spec(jn)(U ∩ C)

Proof of Claim:
We show that for p ∈W ∩Cp0, 〈p〉+P0 ∈ U ∩C and Spec(jn)(〈p〉+P0) = p.
It is clear that 〈p〉+P0 contains P0, so it belongs to C. Further we have the

following:

Spec(jn)(〈p〉+ P0) = (〈p〉+ P0) ∩R = (〈p〉 ∩R) + (P0 ∩R) = p+ p0 = p.

It is left to see that 〈p〉+ P0 is in U , i.e. that it does not contain f .
Suppose towards a contradiction that f ∈ 〈p〉+ P0. Since

(
H0 + 〈p〉
h′0 + 〈p〉

)(g + 〈p〉) + (
H1 + 〈p〉
h′1 + 〈p〉

)(f + 〈p〉) = 1 + 〈p〉,

for some H0, H1 in R[Xn] and h′0, h
′
1 as above, our assumption implies that

f + 〈p〉 ∈ P0. Thus

f + 〈p〉 =
∑
j

(Gj + 〈p〉)(gj + 〈p〉)

for some G0, dots,Gm ∈ R[Xn]. In the last equation, using the expression for
g+〈p〉 in terms of the gj+〈p〉 in Fp[Xn] and multiplying both sides by

∏
hi

∏
hj ,

we get that
∏
hi

∏
hj as a linear combination of g0, . . . , gm with coefficients in

R[Xn]/〈p〉. This implies that the equivalence class of
∏
hi

∏
hj modulo 〈p〉 is

the same as the equivalence class of an element of P0 modulo 〈p〉, which in turn
means that

∏
hi

∏
hj belongs to the ideal P0 + 〈p〉 of R[Xn]. Since

∏
hi

∏
hj

belongs to R, it follows that it lies in (P0 ∩ R) + (〈p〉 ∩ R) = p0 + p = p,
contradicting the hypothesis that p ∈W . This proves the claim.

To finish the proof finish the proof write Spec(jn)(U ∩ C) as

Spec(jn)(U ∩ C) = [Spec(jn)(U ∩ C) ∩W ] ∪ [Spec(jn)(U ∩ C) ∩W c].

The first part of the union is a constructible set since Spec(jn)(U ∩ C) ∩W =
CSpec(jn)(P0) ∩W . For the second part notice that Spec(jn)(U ∩ C) ∩W c =
Spec(jn)(U ∩C ∩Spec(jn)−1(W c)) and P0 ∈ C−Spec(jn)−1(W c), then, by our
minimality assumption on C, Spec(jn)(U ∩ C) ∩W c is constructible.
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3.4 The generality of the result

Inspection of the proof above shows that the result is true, not just for Z[X0, . . . , Xn],
but for R[X0, . . . , Xn] where R is Noetherian. The case R = K, a field, is di-
rectly connected to logic.

3.5 Constructible sets as functors

Let C be a closed set in Spec Z[X0, . . . , Xn], and L a field. Suppose C = CA.
Define C(L) = {ᾱ ∈ Ln+1 : g(ᾱ) = 0,∀g ∈ A}.

Lemma 22. This does not depend on the choice of A, for C(L) = {ᾱ ∈ Ln+1 :
I(ᾱ|Z) ∈ C}.

Proof. Clear.

C is to be construed as a syntax-free version of a finite conjunction of atomic
formulas.

If U is the complement of C, define U(L) as Ln+1 \ C(L), and in general,
for Y constructible, define Y (L) in the obvious way.

Lemma 23. For fixed L, Y 7→ Y (L) is a homomorphism from the Boolean
algebra of constructible subsets of Spec Z[X0, . . . , Xn] to the Boolean algebra of
constructible sets of Ln+1 for the Zariski topology.

Proof. Clear.

Functoriality Each Y defines a functor from the category of fields to the
category of sets. Most important is the cylindric aspect:

Let Y be constructible in Spec Z[X0, . . . , Xn] and Spec(jn)(Y ) its constructible
image in Spec Z[X0, . . . , Xn−1]. What is the connection between Y (L) ⊂ Ln+1,
and Spec(jn)(Y )(L) ⊂ Ln?

Let πn : Ln+1 → Ln be the natural projection onto the first n coordinates.
Warning. πn(Y (L)) 6= Spec(jn)(Y )(L) in general.
Example. Let n = 1 and Y = C{X2

0 + X2
1 + 1}. Then Spec(j1)(Y ) =

Spec Z[X0]. So, for L = R, Spec(j1)(L) = R. But Y (L) = ∅ ⊂ R2.
Quantifier elimination is true for algebraically closed fields L, in the strong

sense that
πn(Y (L)) 6= Spec(jn)(Y )(L).

We still have to prove this. Our earlier theorem has no reference to any field.
Mild generalisation. In the preceding replace Z by a field K. Then you get

functors from fields extending K to sets, in essentially the same way.

4 The important kinds of field extensions

4.1 Generalities

Fix K → L. α ∈ L is algebraic over K if I(α|K) 6= 0. In this case, I(α|K) is
principal, generated by a unique monic polynomial. The elements of L algebraic
over K form a subfield of L, the relative algebraic closure of K in L. If this is

12



L, K → L is said to be an algebraic extension. If α is algebraic over K, then
K(α) = K[α]. If α is not algebraic over K, α is transcendental.

If P 6= {0}, P ∈ SpecK[X], then K → K[X]/P gives an algebraic extension
with a zero of P (equivalently of its monic generator). An algebraic extension
of an algebraic extension is algebraic, i.e. the algebraic extension of K form a
category in an obvious way. The existence of algebraic L over K, with no proper
algebraic extension, is clear by a limit argument. Again, a Zorn argument gives
uniqueness up to isomorphism of this Kalg, the algebraic closure of K. Kalg

satisfies the infinite list of axioms, one for each n ≥ 1, which says that each monic
polynomial of degree n has a root. Let ACF be the class of fields satisfying
these axioms. C is of course the most visible example.

4.2 Separable algebraic extensions

Over Kalg, every monic element of K[X] splits into linear factors, with the
usual uniqueness. The inseparability phenomenon occurring only in nonzero
characteristic, has to do with f(X) irreducible over K but having a root of
multiplicity grater than one in Kalg. In this case, f and its derivative f ′x have
nontrivial gcd, unless f ′x = 0. But for f irreducible and f ′x 6= 0, there can be
no nontrivial gcd on degree grounds. Thus f ′x = 0 and easily, f(X) = g(Xp)
for some irreducible g ∈ K[X] and p the characteristic of K. An irreducible
polynomial f is separable if f has no multiple roots. If f is not separable, then
f = g(Xpm) for a unique m ≥ 1, and separable g.

α ∈ Kalg is separable over K if its minimal polynomial over K is separable.
In characteristic 0, α is automatically separable. In characteristic p, if β ∈ K is
not a p power in K, Xp − β is not separable. The elements of Kalg separable
over K form a subfield Ksep containing K; we call it the separable closure of
K. No element of Kalg \Ksep is separable over Ksep, indeed, each such element
has a minimal polynomial of the form Xpm − β.

Definition 24. An algebraic K → L is separable if every α ∈ L is separable
over K.

The separable algebraic extensions of a fixed K form a category, with a
distinguished extension K → Ksep, unique up to isomorphism over K.

4.3 Tensor products and linear disjointness

Suppose K → L1 and K → L2 are field extensions. Each naturally gives Li
the structure of a K-algebra, and one has the tensor product L1 ⊗K L2 of K-
algebras. This may or may not be a domain. If it is, we say that the extensions
are linearly disjoint over K. In that case, we have a natural field M in which the
tensor product embeds, its field of fractions, and one easily sees that elements
of L1 linearly independent over K remain so over L2(and the same with the
roles of L1 and L2 reversed). Conversely, if we merely have some M where the
natural L1⊗K L2 embeds, then the K → Li are linearly disjoint over K. Quite
generally, in a commuting diagram, we say L1 is linearly disjoint from L2 over
K if every set of elements of L1 linearly independent over K remains so over
L2. This turns out to be symmetric ([3, page 360]).
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4.4 K1/pn
and K1/p∞

Suppose K has characteristic p. Then x→ xp is an embedding from K to itself.
Inside Kalg, one has the subfield of all elements α such that αp

n ∈ K. This
is K1/pn , and K1/p∞ =

⋃
n∈N K

1/pn . K is said to be perfect if and only if
K = K1/p, or equivalently, K = Kp = {βp, β ∈ K}.

Aut(Kalg|K) is the group of all automorphisms σ of Kalg fixing the elements
of K. We have that K1/p∞ is fixed pointwise by any such σ, and any element
of Ksep \K can be moved by some σ. So, Aut(Kalg|K) = Aut(Ksep|K).

4.5 General separability

Lemma 25. Let K → L be an algebraic extension, where K and L are fields
of characteristic p. Then the following are equivalent:

1. K → L is separable

2. K → L is linearly disjoint from K → K1/p over K

3. K → L is linearly disjoint from K → K1/p∞ over K.

Proof. Suppose that K → L is a separable extension, but not linearly disjoint
from K1/p∞ . Choose n minimal, and elements β0, . . . , βn−1 in K1/p∞ linearly
independent over K but linearly dependent over L via

∑
αiβi = 0. Let σ ∈

Aut(Kalg|K), then
∑
σ(αi)βi = 0. By minimality, αi/σ(αi) is constant, so

σ(αi/α1) = αi/α1 for any σ, so αi/α1 ∈ K, giving a linear dependence over K.
Suppose K → L not separable, so get α ∈ L,α /∈ K,αp ∈ K. So 1 and α are
linearly independent over K but clearly linearly dependent over K1/p.

Definition 26. An extension K → L, not necessarily algebraic, is called sepa-
rable if and only if K → L and K → K1/p∞ are linearly disjoint over K.

We have then that K → L is separable if and only if K → L and K → K1/p

are linearly disjoint over K, and if K is perfect, then K → L is separable.

Exercise 6. Show that the definition does not depend on the K → K1/p∞ .
Show that the composition of separable maps is separable.

4.6 Regular extensions

K → L is regular if it is linearly disjoint from K → Kalg over K.

Lemma 27. If K → L is regular, then K → L is separable and K is relatively
algebraically closed in L.

Proof. Separability is clear sinceK1/p∞ ⊂ Kalg. Suppose that α ∈ L is algebraic
over K, then dimKalg{α} = 1, so dimK{α} = 1, so α ∈ K.

Theorem 28. Suppose that K → L is separable, and K → L is relatively
algebraically closed. Then K → L is regular.
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Proof. Since K → K1/p∞ is algebraic, L ⊗K K1/p∞ is a field by separability.
Suppose that we have a minimal relation α0l0 + · · ·+ αn−1ln−1 = 0, αi ∈ Kalg,
li ∈ L, contradicting linear disjointness. By the usual Galois argument, the αi
can be chosen in (L⊗K K1/p∞)1/p∞ . Thus some power of each αi is in L, but
since K is relatively algebraically closed in L, this implies that each αi ∈ K1/p∞ ,
and this contradicts separability.

Corollary 29. A composition of regular maps is regular.

4.7 Some logical points

1. An extension K → L is relatively algebraically closed if it preserves all the
predicates Soln(x0, . . . , xn−1), defined by: ∃y(x0 +x1y+ · · ·+xn−1y

n−1 +
yn = 0).

2. An extension K → L is separable if it preserves all Dn,p(x0, . . . , xn−1)
where p = ch(K) and Dn,p is defined by ∃y0, . . . ,∃yn−1 6= 0(

∑
ypjxj = 0).

This is easy, because, after taking pth roots, this is what linear disjointness
of K → L and K → K1/p says.

We will look now at the basic Robinsonian model theory for the category of
fields

1. for embeddings;

2. for regular maps;

3. for separable maps.

4.8

One basic idea is to characterise the various K → L in terms of the I(ᾱ|K),
where ᾱ ∈ Ln.

Exercise 7. 1. K → L is separable if and only if each such I(ᾱ|K) remains
prime over K1/p∞ , i.e. I(ᾱ|K) ·K1/p∞ is prime.

2. K → L is regular if and only if each I(ᾱ|K) is absolutely prime, i.e.
remains prime over Kalg.

5 ACF and ECF

5.1

We already defined ACF .

Definition 30. K is an existentially closed field, ECF, if, whenever a system
of polynomial equalities and inequalities g1 = · · · = gk = 0, f1 6= 0, . . . , fl 6= 0
over K has a solution in some K → L it has a solution in K.
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Rabinovich trick At the cost of going to an extra variable t, and for solv-
ability in fields, you can replace f 6= 0 by tf = 1. So in definition of ECF , one
needs only positive conditions, and then we see:

Lemma 31. K is ECF if and only if every element of Spec(K[X]) has a point
in K.

Note that this characterisation leaves it not obvious whether ECF is an
elementary condition.

Lemma 32. ECF ⇒ ACF .

Proof. If g is an irreducible polynomial in K[X], then g has a root in K[X]/(g),
which is an extension of K.

Conversely,

Theorem 33. ACF ⇒ ECF .

Proof. Suppose K is in ACF , consider a system g1 = · · · = gk = 0; f1 6=
0, . . . , fl 6= 0. This defines a locally closed set X in Spec(K[x0, . . . , xn−1]), and
X 6= ∅ if we assume as we now do, that the system can be solved in some
K → L. Now, without loss of generality, assume that X = C ∩ U , where C is
irreducible with generic P and U = {Q : f /∈ Q} for some fixed f .

Note the following: If Q ∈ X is maximal in X, then Q is actually a maximal
ideal. For if all proper Q1 ) Q contains f , then f ∈ RadQ, so f ∈ Q.

If n = 1, ACF clearly gives a K-point. So proceed by induction.
Let j : K[x0, . . . , xn−2]→ K[x0, . . . , xn−1] as usual. Now Spec(j)(C ∩ U) =⋃

0≤j<m Cj ∩Uj where the Cj are distinct irreducible closed sets, and Uj open.
Now Spec(j)(P ) is in exactly one Cj , say C0, and is C0-generic. By induc-
tion, C0 ∩U0 has a K-point β̄ = (β0, . . . , βn−2). Let I = I(β̄|K). I is maximal,
Spec(j)(P ) ⊂ I, I ∈ U0. Now choose J ∈ C∩U , I = Spec(j)(J), J maximal (by
what we said above). So P ⊂ J . Consider Γ = {h(β̄, xn−1) : h ∈ J} ⊂ K[xn−1].
Clearly, 1 /∈ Γ since 1 /∈ J . Also, Γ is an ideal. It is even prime. For if
h1(β̄, xn−1)h2(β̄, xn−1) = h(β̄, xn−1), h ∈ J , then (h − h1)h2 ∈ I[xn−1] ⊂ J ,
so h1 ∈ J or h2 ∈ J . So, Γ is either {0} (easy), or generated by an irre-
ducible g(xn−1) = h(β̄, xn−1), h ∈ J . Let βn−1 be a root of g in K and let
J1 = I((b0, . . . , bn−1)|K). Suppose h ∈ J , then h(β0, . . . , βn−2, xn−1) ∈ Γ, so
h(β0, . . . , βn−1) = 0. By maximality, J1 = J . Since J ∈ C∩U , we are done.

Corollary 34. ECF is first order.

Proof. Clear.

Corollary 35. Maximal ideals in K[x0, . . . , xn−1] , where K ∈ ACF , are of
the form I(β̄|K), β̄ ∈ Kn.

Proof. We have already showed this in the proof of our last theorem. Again: if
M is a maximal ideal ofK[x0, . . . , xn−1], thenM has a zero inK[x0, . . . , xn−1]/M ,
so it has a K-point β̄, since K is ECF . Let M ′ = I(β̄|K). M ⊂ M ′, and it’s
the same ideal by maximality of M . So M is of the wanted form.

Theorem 36. ACF has quantifier elimination.
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Proof. It suffices to show the following: Let C be closed irreducible and U open
in Spec Z[x0, . . . , xn−1], and

⋃
0≤j<m(Cj∩Uj) = Spec(j)(C∩U), with Cj closed

and Uj open as usual. Let π be the projection from Kn onto Kn−1 (to the first
n− 1 coordinates). Then π((C ∩ U)(K)) =

⋃
0≤j<m(Ci ∩ Uj)(K).

We have to prove that π((C ∩ U)(K)) ⊃
⋃

0≤j<m(Ci ∩ Uj)(K), since the
other inclusion is trivial. And for that, consider a j for which Cj ∩ Uj defines
a nonempty set of Spec[x0, . . . , xn−2]. Let β̄ ∈ Cj ∩ Uj(K), and let I = I(β̄|Z).
Now lift I to maximal J ∈ C ∩ U . The argument in the preceding proof gives
βn−1, so J = I((β0, . . . , βn−1)|Z), and β̄ ∈ π((C ∩ U)(K)).

Corollary 37. If K,L are two algebraically closed fields, then K ≡ L if and
only if ch(K) = ch(L).

Proof. A sentence corresponds to a constructible set of Spec(Z). But basic open
sets of Spec(Z) are defined by formulas of the form n · 1 6= 0, which say that the
characteristic is not n.

Corollary 38. ACF is strongly minimal.

Proof. Suppose that C ∩ U is a locally closed set in Spec Z[x0, . . . , xn−2, xn−1],
where C is closed irreducible and U an open set of the form {Q : f /∈ Q}.

Let K |= ACF , and λ0, . . . , λn−2 ∈ K. Let d1 be the maximal xn−1-degree
of a generating set for the generic P of C, and d2 be the xn−1-degree of f . Then,
either:

|(C ∩ U)(K) ∩ ({(λ0, . . . , λn−2)} ×K)| ≤ d1

or
|K \ ((C ∩ U)(K) ∩ ({(λ0, . . . , λn−2)} ×K))| ≤ d2.

One can go on from here by pure model theory to get uncountable categoric-
ity and other related properties.

We have not used the notion of transcendence degree. What is most impor-
tant is to relate it to topological dimension.

Exercise 8. 1. Any individual finite field has quantifier elimination (this
isn’t trivial).

2. 1 and ACF exhaust the fields with quantifier elimination.

5.2 Lefschetz Principle

This concerns the set

{P ∈ Spec(Z) : φ holds in all K ∈ ACF with ch(K) = P},

where φ is a first-order sentence. The Chevalley-Tarski result shows that this is
a constructible in Spec(Z). More is true:

Lemma 39. A constructible subset X of Spec(Z) is either:

1. a finite set of closed points, or,

2. a cofinite set containing (0).
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Proof. The point (0) belongs to every nonempty open set and the only closed set
to which (0) belongs is Spec(Z). So (0) is generic. If C is closed and irreducible
in Spec(Z) and contains more than one element then C = Spec(Z). This is
because the Krull dimension of Spec(Z) is one, so the generic point of C must
be (0) if C contains more than one element. Since every nonempty open set is
cofinite, for any set X of the form C ∩U , with C closed irreducible and U open,
X is cofinite, if C = Spec(Z), or, in the other case, X contains at most one
element. Thus any constructible set, being a finite union of such sets, is finite
or cofinite.

Corollary 40. A sentence φ holds in an algebraically closed field of character-
istic 0 if and only if it holds in all algebraically closed fields of sufficiently large
characteristic.

5.3 More on absolute irreducibility

Theorem 41. Suppose K → L and K,L ∈ ACF . Let P be a prime ideal in
K[x0, . . . , xn−1]. Then P · L[x0, . . . , xn−1] is a prime ideal in L[x0, . . . , xn−1].

Proof. Let ᾱ ∈ Kn be a zero of P . Then ᾱ is also a zero of P.L[x0, . . . , xn−1]. If
g ∈ L[x0, . . . , xn−1], g(x̄)− g(ᾱ) ∈ P.L[x0, . . . , xn−1] (for if we write g(x̄)− g(ᾱ)
as a sum of monomials of the form ci.Mi, where ci ∈ L and Mi ∈ K[x̄], we
will have that Mi ∈ P since Mi(ᾱ) = 0 ). So, if g(ᾱ) = 0, we will have that
g(x̄) ∈ P.L[x0, . . . , xn−1]. Thus, P.L[x0, . . . , xn−1] = I(ᾱ|L), so it’s prime.

Corollary 42. Let K be a field and P ∈ SpecK[x̄], then P is absolutely prime
if and only if for any K → L, P · L[x̄] is prime.

5.4 Definable sets and maps for ACF

Let K ∈ ACF . The definable subsets of Kn are the constructible subsets of
subsets of Kn for the Zariski topology.

The definable maps Y → Km, where Y ⊂ Kn, are those whose graphs are
definable subsets of Kn+m. Obviously, the case m = 1 is basic and other cases
easily follow. Again obviously, the case to understand is that of a graph defined
by C ∩ U , C irreducible, U open in SpecK[x0, . . . , xn−1].

Let P be the generic of C, and consider the domain D = K[x0, . . . , xn−1]/P ,
and the subdomain D0 = K[x0, . . . , xn−2]/Spec(j)(P ). There are two cases:

Case 1: xn−1 + P is transcendental over D0. (x0 + P, . . . , xn−1 + P ) and
(x0 + P, . . . , 1 + xn−1 + P ) are distinct and in C ∩ U(D): it’s clear for the
first, and for the second let’s take P ∈ P and write P (x0, . . . , xn−2, xn−1)) as
a polynomial in xn−1 with coefficients in Spec(j)(P ). Since this xn−1 + P is
a zero of this polynomial in D, and since xn−1 is transcendental over D0, this
polynomial has to be the zero polynomial. Now let K1 be the algebraic closure
of the field of fractions of D. Then, K1 |= C ∩ U is not a graph, so K |= C ∩ U
is not a graph. So Case 1 is impossible.
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Case 2: xn−1 + P is algebraic over D0. There are three subcases:

1. If xn−1 + P is in the fraction fields of D0: we treat this subcase later.

2. Not subcase 1, but xn−1 + P is algebraic and separable over the fraction
field of D0. This cannot happen, as we see by Galois Theory, if we take
a conjugate of xn−1 + P over the fraction field of D0 and proceed as in
case1, we’ll see that C ∩ U can’t be the graph of a function.

3. xn−1 + P is not separable, unless it is purely inseparable. An argument
like the one of subcase 2 gives a contradiction.

So for some m, xp
m

n−1 + P is an element of the fraction field of D0.

Now the common feature of the subcases 1 and 3 is that for some m ≥ 0 and
f(x1, . . . , xn−1) and g(x1, . . . , xn−1) ∈ K(x1, . . . , xn−1), g /∈ P , g.xp

m

n−1 − f ∈ P
(where, if p = 0,m = 0 and 00 = 1). Now let C1 ⊂ C consist of the Q with
g ∈ Q. Clearly, on C ∩ U ∩ (C \ C1), our graph is the graph of (f/g)−p

m

. We
can then handle C1 ∩ U by induction.

This proves:

Theorem 43. Let K be in ACF . A definable function on a subset of Kn is
a finite union of functions which on definable sets are of the form (f/g)(1/pm)

with f and g polynomials.

5.5 “Ax” theorem

Theorem 44. Let K be in ACF . Let X be a definable subset of Kn, and
f : X → X a definable map. If f is injective, f is surjective.

Proof. If not, consider any counterexample (X, f), X defined by a formula
φ(v0, . . . , vn−1, k0, . . . , km−1), where φ is constructible over Z and kj ∈ K, and
suppose that the graph of f is defined by ψ(v0, . . . , vn−1, w0, . . . , wn−1, l0, . . . , lr−1)
with ψ constructible over Z and lj ∈ K. Consider any k̄, l̄, such that ψ defines
the graph of an injective non-surjective function f on the corresponding X.
There must be a prime p so that there are such k̄, l̄ in Falg

p . But then, k̄, l̄ lie
in some Fps0 . Since each finite field is perfect, the preceding theorem shows
that for some s1 ≥ s0 and all s ≥ s1, f maps X(Fps) to X(Fps). But it is
clearly surjective on these finite sets, so also on X(Falg

p ), and we get the desired
contradiction.

6 Separably Closed Fields

6.1

A field K is separably closed if it has no separable extensions, i.e K = Ksep.
Let us fix a prime p, and for now consider only K of characteristic p (but our
discussion will be uniform in p). The class of separably closed fields is a first
order class: K is separably closed if and only if every irreducible polynomial in
K[x] is not prime with its derivative.
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6.2 p-dependence, p-basis, Ershov invariants

In 4.7, we observed that K → L is a separable extension if and only if it
preserves the predicates Dn,p(x0, . . . , xn−1), where p = ch(K), expressing that
x0, . . . , xn−1 are linearly independent over the field of pth powers. The (linear)
dimension of K over Kp is a basic invariant, algebraically and model theoreti-
cally.

Lemma 45. If dim(K/Kp) is finite, it is of the form pm.

Proof. Suppose K 6= Kp. Choose α /∈ Kp. Then, 1, α, α2, . . . , αp−1 are linearly
independent over Kp. For if not, say cp0 + cp1.α + · · · + cpp−1.α

p−1 = 0. So,
c0 + cp1.β+ · · ·+ cp−1.β

p−1 = 0 where βp = α, β /∈ K. But Xp−α is irreducible
(because this polynomial is equal to (X − β)p, which does not have any non
trivial divisor in K[X]). Thus, Xp − α is the minimal polynomial of β over K,
so all the ci are zero. Then, dim(α|Kp) ≥ p, but αp ∈ Kp, so dim(α|Kp) = p
(we mean by dim(α|Kp), the linear dimension of the field K[α] over Kp).

Now if α1 /∈ Kp[α] = K1, and suppose for a contradiction that dim(α1|K1) =
q < p. Then, αq1 ∈ K1, and since αp1 ∈ K1 and p and q are relatively
prime, we obtain by Bezout’s theorem in arithmetic, that α1 ∈ K1, which is
not possible. We have then by basic linear algebra that dim(Kp[α, α1]|Kp) =
dim(Kp

1 [α1]|K1) · dim(K1|Kp) = p2. And so on, we may continue to prove
that if our process needs at least m steps to have Kp[α1, . . . , αn] = K, then
dim(K|Kp) = pm.

If the (αi)i∈I are, as above, elements of K linearly independent modulo Kp,
and such that Kp[(αi)i∈I ] = K, we call p-basis of K, the family of monomials in
(αi)i∈I of degree < p . The cardinality of this family is pcard(I). p-bases always
exist, by a Zorn argument. Note that the cardinal of a p-basis of K is the linear
dimension of K over Kp. So if dim(K|Kp) is finite, then all the p-basis have
the same cardinal. Suppose that dim(K|Kp) is infinite, and let X be a p-basis.
So X is infinite, and |X| is the dimension of the vector space K over Kp. So,
by the properties of the dimension on vector spaces, two infinite p-bases of K
have the same cardinal.

This leaves the existence problem for p-dimensions: which occur?

Lemma 46. Let X be a set of algebraically independent elements over Fp. Let
K = Fp(X). Then the p-dimension of K is pcard(X) if card(X) is finite, and
card(X) if card(X) is infinite.

Proof. Kp = Fp(Y ) where Y consists of the pα powers of elements of X. Thus
it is clear that the reduced monomials in X of degree ≤ p − 1 span K over
Kp (observe that if g ∈ Fp[X], g 6= 0, then 1

g = ( 1
g )p.gp−1, and so, one gets

a spanning set from inside Fp[X]). It is obvious that a linear dependence of
the reduced monomials in X, over Fp(Y ) would give an algebraic dependence
between the X over Fp.

Now ask: Which p-dimensions occur for K separably closed? In fact, all of
those in the preceding lemma.

Lemma 47. Suppose K → L separable.

1. If X ⊂ K is p-independent in K, it remains p-independent in L.
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2. If in addition L is algebraic over K, then p− dim(K) = p− dim(L)

Proof. 1. Direct from 4.7

2. Obviously, it is sufficient to prove this when [L : K] < ω. Consider the
extensions Kp → K → L and Kp → Lp → L, and compute dimensions.
Clearly, [L : K] = [Lp : Kp], so [L : Lp] = [K : Kp].

So if K is a field of p-dimension n and if L is the separable closure of K,
then K and L satisfy the conditions of the second part of the preceding lemma,
so, [L : Lp] = n. Which proves that all the described p-dimensions can occur
for separably closed fields.

Definition 48 (Ershov invariant). Suppose K is separably closed. The Ershov
invariant of K is the p-dimension of K if this is finite, and ∞ otherwise. The
Ershov invariant is of the form pν , where p is the characteristic. ν will be called
the imperfection degree of K.

Theorem 49 (Ershov, 1960’s). Two separably closed fields are elementarily
equivalent if and only if they have the same characteristic and the same Ershov
invariant.

This requires preparation.

Lemma 50. 1. The property of having a specific finite Ershov invariant is
axiomatisable by a single sentence of field theory.

2. The property of having infinite Ershov invariant is axiomatisable by a set
of sentences, but not by a single sentence.

Proof. 1. We just have to know how to say with a first order sentence that
the imperfection degree of a field K is ν. It is axiomatised by:

∃b1, . . . ,∃bν∀x(∃!xj)j∈pνx =
∑

xpjmj(b1, . . . , bν),

where the mj are the monomials in ν variables with leading coefficient 1.

2. Clear by compactness and the fact that there are fields of finite and arbi-
trarily large Ershov invariant.

Now recall from 4.7 that separable extensions are exactly those preserving
the Dn,p. In particular, an extension K → L of fields cannot be elementary
unless it is separable. Ershov showed that separable extensions K → L of fields
with the same Ershov invariant are elementary. We shall now prove this.

6.3 Transcendence Bases

Consider any K → L extension, and ᾱ ∈ Ln, ᾱ = (α1, . . . , αn). The αi are
K-independent if I(ᾱ|K) = (0), otherwise they are K-dependent. A subset X
of L is K-independent if all its finite subsets are independent. Similarly for
K-dependence.
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A transcendence base for L over K is a K-independent X such that K(X)→
L is algebraic. Transcendence bases exist by Zorn, and they have the same
cardinality by the exchange principle, which holds in algebraically closed fields.
In fact, all this follows by strong minimality of ACF , purely model-theoretically.

The uncountable categoricity of ACF comes from the uniqueness of cardi-
nality of transcendence base, and uniqueness of algebraic closure.

We now assess the situation for separably closed fields.

6.4 Separating Transcendence Bases

Definition 51. X ⊂ L is a separating transcendence base for K → L if X is a
transcendence base and K(X)→ L is separable algebraic.

Note that separating transcendence bases exist only for separable extensions,
but not all separable extensions have a separating transcendence base: For any
prime number p, take the field extension Falg

p → Falg
p ((X1/pn)n∈N), where X is

transcendental over Falg
p . It is clear that it is a separable extension, since it is

purely transcendental, but one can easily see that it doesn’t have any separating
transcendence base.

Theorem 52 (McLane). If L is a separable extension of K, and is finitely
generated, then a separating transcendence base can be selected from any given
set of generators.

Proof. Assume that L is finitely generated overK, say L = K(x) = K(x1, . . . , xn).
Let the transcendence degree of this extension be r. If r = n, the proof is
complete. Otherwise, say x1, . . . , xr is a transcendence base. Then xr+1 is
algebraic over K(x1, . . . , xr). Let f(X1, . . . , Xr+1) be a polynomial of low-
est degree such that f(x1, . . . , xr+1) = 0. Then f is irreducible. We con-
tend that not all xi(i = 1, . . . , r + 1) appear to the pth-power throughout. If
they did, we could write f(X) =

∑
cαMα(X)p where Mα(X) are monomials

in X1, . . . , Xr+1 and cα ∈ K. This would imply that Mα(x) are linearly de-
pendent over K1/p (taking the pth-root of the equation

∑
cαMα(x)p) = 0).

However the Mαx are linearly independent over K (otherwise we could get an
equation for x1, . . . , xr+1 of lower degree) and we thus get a contradiction to
the linear disjointness of L and K1/p (which we have by the separability of the
extension K → L). Say X1 does not appear to the pth-power throughout but
actually appears in f(X). We know that f(X) is irreducible in K[X1, . . . , Xr+1]
and hence f(x) = 0 is an irreducible equation for x1 over x2, . . . , xr+1. Since
X1 does not appear through the pth-power throughout, this equation is a sep-
arable equation for x1 over K(x2, . . . , xr+1), in other words, x1 is separable
algebraic over K(x2, . . . , xr+1). From this it follows that is is separable alge-
braic over K(x2, . . . , xn). If (x2, . . . , xn) is a transcendence base, the proof is
complete. If not, say x2 is separable over K(x3, . . . , xn). Then L is separable
over K(x3, . . . , xn). Proceeding inductively, we see that the procedure can be
continued until we get down to a transcendence base. This proves our theo-
rem.

Theorem 53 (McLane). K → L is separable if and only if every finitely gen-
erated subfield of L has a separating transcendence base.
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Proof. If K → L is separable, then every finite subextension of K → L is
separable and by the preceding theorem, it has a separating transcendence base.
Reciprocally, suppose that K → L is not separable, then there is a finite sub-
extension K → L′ of K → L which is not separable, and easily cannot have a
separating transcendence base (since separating transcendence bases exist only
for separable extensions, by transitivity of separable extensions).

Let SCF be the theory of separably closed fields. Its completions are:

• ACF0 = SCF + (char = 0), and

• SCFp,ν = SCF + (ch = p) + (imperfection degree = ν),

for each prime p and ν ∈ N ∪ {∞}. We will prove below the completeness
of SCFp,ν for finite ν > 0 and p > 0, and ACF0 and SCFp,0 are theories of
algebraically closed fields of given characteristic, and are known to be complete.

From now on, we fix p > 0 and ν finite 6= 0.

Theorem 54. Each theory SCFp,ν is complete.

Proof. When studying inclusion of one model in another, we are interested
in elementary extensions, hence in our case separable extensions. Because
ν is finite, a p-basis of K is still a p-basis of any L � K. This justifies
adding to the language constants for the elements of a p-basis. Let us prove
that in the language {0, 1,+,−, .} ∪ {b1, . . . , bν}, the theory SCFp,ν+” the re-
duced monomial in {b1, . . . , bν} form a p-basis”, axiomatised as ∀x(∃!xj)j∈pνx =∑
xpjmj(b1, . . . , bν), is model complete and has a prime model. This will prove

the completeness ([1, 3.1.9]).
Since b1, . . . , bν are algebraically independent over Fp, the field Fp(b1, . . . , bν)s

is uniquely determined and embeds in every model. Now by the claim below,
any model is existentially closed in any model extension, this proves the model
completeness ([1, 3.1.7]).

Claim. Let K |= SCFp,ν and let L be a separable extension of K. Then L
K-embeds in some elementary extension of K.

Proof. It is enough to prove it for L finitely generated over K. By McLane’s the-
orem, such an L admits a separating transcendence basis l1, . . . , ln over K. But
any |K|+-saturated elementary extension K∗ of K has infinite transcendence
degree over K, therefore K(l1, . . . , ln) K-embeds in K∗, and K(l1, . . . , ln)s also
since K∗ is a model, hence so does L.
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